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MIP solvers for hard optimization problems 
 

• Mixed-integer linear programming (MIP) plays a central role in modelling difficult-to-solve 
(NP-hard) combinatorial problems 

 
• General-purpose (exact) MIP solvers are very sophisticated tools, but in some hard cases they 

are not adequate even after clever tuning 
 
• One is therefore tempted to quit the MIP framework and to design ad-hoc heuristics for the 

specific problem at hand, thus loosing the advantage of working in a generic MIP framework  
 

• As a matter of fact, too often a MIP model is developed only “to better describe the problem” or, 
in the best case, to compute bounds for benchmarking the proposed ad-hoc heuristics  

 
 

Can we devise an alternative use of a general-purpose MIP solver, e.g., 
to address important steps in the solution process? 
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I MIP you 
 
A neologism: To MIP something = translate into a MIP model and solve through a black-box solver 
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MIP-heuristic  enslaved  to  an  exact MIP solver 
 

• MIPping Ralph: use a black-box (general-purpose) MIP heuristic for the separation of  
Chvàtal-Gomory cuts, so as to enhance the convergence of an exact MIP solver  

(M. F., A. Lodi, “Optimizing over the 
first Chvàtal closure”, IPCO’05, 
2005) 
 

  
MIPped !!!          

Matteo
Rejected



 5

 

MIP-solver  enslaved  to  a  local-search  metaheuristic 
 

MIPping Fred: use a black-box (general-purpose) MIP solver to  
• explore large solution neighbourhoods defined through invalid linear inequalities called local 

branching cuts;  
• diversification is also modelled through MIP cuts  

     (M.F., A. Lodi, “Local Branching”, Mathematical Programming B, 98, 23-47, 2003) 
 

Given a feasible 0-1 solution Hx , define a MIP  
neighbourhood though  the local branching constraint 
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MIPping  critical  sub-tasks  in  the  design  of  specific  algorithms 
 
We teach engineers to use MIP models for solving their difficult problems 
(telecom, network design, scheduling, etc.) 
 
 
 
 

 
     Be  smart  as  an  engineer!  
 
Model the most critical steps in the design of your own algorithm 
through MIP models, and solve them (even heuristically) through a 
general-purpose MIP solver… 
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A method for the TSP (Sarvanov and Doroshko, 1981)
The ASSIGN neighborhood

1. consider a given tour as a sequence
of nodes

2. fix the nodes in odd position, and
remove the nodes in even
position

3. Reassign the removed nodes in
optimal way—an easy-solvable
min-cost assignment problem

Neighborhood of exponential cardinality
searchable in polynomial time, recently
studied by:

Deineko and Woeginger (2000)
Firla, Spille and Weismantel (2002)
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(1, 2, 3, 4, 5, 6, 7, 8, 9, …)
(1,--, 3, --,5, --,7, --, 9, …)
(1, 2, 3, 6, 5, 4, 7, 8, 9,…)
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Capacitated Vehicle Routing Problem

Depot
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with minimum total cost



7

The SERR algorithm

Steps

Initialization generate, by any heuristic or metaheuristic, an initial
solution

Iteratively:
Selection select the nodes to be extracted, according to suitable

criteria (schemes)
Extraction remove the selected nodes and generate a restricted

solution (edges = potential insertion points)

Recombination starting from extracted nodes, generate a (possibly large)
number of potential node sequences

Re-insertion re-insert a subset of the potential sequences into the
restricted solution, in such a way that all the extracted
nodes are covered again

Evaluation verify a stopping condition and return, if it is the case,
to the selection step
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An example
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An example
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SERR Algorithm

Node re-insertion

Node re-insertion is done by solving the following set-partitioning model:
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An example (cont.d)
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An example (cont.d)
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Initial Solution
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Interesting solutions

Initial solution: cost 1076 Final solution: cost 1067
New best known solution

Instance E-n101-k14 with rounded costs

Xu and Kelly, 1996
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Interesting solutions

Initial solution: cost 1023

Instance M-n151-k12 with rounded costs

Final solution: cost 1022
New best known solutionGendreau, Hertz and Laporte, 1996



16

Some Computational Results

-
-
0.00%
0.70%
< 0.01%
0.00%
0.61%
1.08%
0.60%
0.95%
0.00%
0.00%
0.24%
0.48%
0.51%
0.72%
0.00%
0.86%
0.00%
Gap

1023 -> 1022
1076 -> 1067
819.56
831.91
835.32
524.61
820
1032
835
742
682
521
1275
834
796
975
744
700
631
SERR sol. TimeOptimalInstance

7:46:33-M-n151-k12-a
1:36:05-E-n101-k14
2:35:36819.56E101-10c
2:30:55826.14E101-08e
1:12:05835.26E076-10e

4:51524.61E051-05e
2:54:04815E-n101-k8
2:45:201021E-n76-k14
1:19:30830E-n76-k10

30:39735E-n76-k8
27:35682E-n76-k7
4:30521E-n51-k5

3:02:011272B-n68-k9
50:08827P-n70-k10
12:26792P-n65-k10
12:27968P-n60-k15
25:01744P-n60-k10
16:50694P-n55-k10
11:08631P-n50-k8

New best known solution

Optimal solution(*)

New best heuristic solution
known

CPU times in the format
[hh:]mm:ss

PC: Pentium M 1.6GHz

(*) Most optimal solutions
have been found 
recently by Fukasawa, Poggi
de Aragao, Reis, and Uchoa
(September 2003)
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Results

Convergence properties of the SERR method

Low-cost solutions
available in the first
iterations

The best
heuristics
from the
literature are
credited for
errors of
about 2%
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Conclusions

Achieved goals
1. Definition of a new neighborhood with exponential cardinality and of

an effective (non-polynomial) search algorithm
2. Simple implementation based on a general ILP solver
3. Evaluation of the algorithm on a widely-used set of instances
4. Determination of the new best solution for two of the few instances not

yet solved to optimality

Future directions of work

1. Adaptation of the method to more constrained versions of VRP,
including VRP with precedence constraints

2. Use of an external metaheuristic scheme
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Notation and definitions

• We consider an Integer Linear Program (ILP) of the form:

min{cTx : Ax ≤ b, x ≥ 0 integer}

and two associated polyhedra:

P := {x ∈ IRn
+ : Ax ≤ b}

PI := conv{x ∈ Zn
+ : Ax ≤ b} = conv(P ∩ Zn)

• A Chvàtal-Gomory (CG) cut is a valid inequality for PI of the form:

buTAcx ≤ buTbc
where u ∈ Rm

+ is called the CG multiplier vector, and b·c denotes lower integer part.

• The first Chvàtal closure of P is defined as:

P1 := {x ≥ 0 : Ax ≤ b, buTAcx ≤ buTbc for all u ∈ IRm
+}

• P1 is indeed a polyhedron, i.e., a finite number of CG cuts suffice to define it. [Chvàtal 1973]
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Notation and definitions (cont.d)

• Clearly, PI ⊆ P1 ⊆ P .

• Every fractional vertex x∗ of P associated with a certain basis B (say) of (A, I) can be cut

off by the CG cut in which u is chosen as the i-th row of B−1, where i is the row associated

with any fractional component of x∗. [Gomory 1958,1963]

• In some cases, one has that PI = P1 as, e.g., for matching problems where undominated CG

cuts correspond to the famous Edmonds’ blossom inequalities. [Edmonds 1965]

• By the well-known equivalence between optimization and separation, we will address the

Chvàtal-Gomory separation problem (CG-SEP) of the form:

Given any point x∗ ∈ P find (if any) a CG cut that is violated by x∗, i.e., find u ∈ IRm
+

such that buTAcx∗ > buTbc, or prove that no such u exists.

• However, CG-SEP is NP-hard, so optimizing over P1 also is. [Eisembrand 1999]
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Some practical questions

• How difficult is, in practice, to optimize exactly over the first Chvàtal closure of a generic ILP?

• Which fraction of the integrality gap can be closed this way, e.g., for some hard problems in the

MIPLIB library?

• Before affording the effort of designing and implementing sophisticated separation
tools, we want to be sure the overall approach has some potentials...
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MIPping CG separation

• Given the input point x∗ ≥ 0 to be separated, CG-SEP calls for a CG cut αTx ≤ α0 which is

(maximally) violated by x∗, where α = buTAc and α0 = buTbc for a certain u ∈ IR+.

• Some properties:

1. Any variable xj such that x∗j = 0 can be omitted.

Indeed, it does not contribute to the violation and its coefficient can be recomputed a

posteriori as αj := uTAj (no time-consuming lifting operations being needed).

2. The same holds for variables at their upper bound in x∗, which can be complemented.

3. It is known that one can assume ui < 1 in case the i-th row of (A, b) is integer.

• Avoiding weak cuts:

– Several equivalent solutions of the separation problem (in its optimization version) typically

exist, some of which produce very weak cuts.

– In practice, finding stronger cuts corresponds to producing “minimal” CG multiplier vectors

with as few nonzero entries as possible.

• Our approach is to model the rank-1 Chvàtal-Gomory separation problem, which is
known to be NP-hard, through a MIP model, which is then solved
(exactly/heuristically) through a general-purpose MIP solver.
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Mipping CG separation (cont.d)

• We then propose the following MIP model for CG-SEP:

max (
∑

j∈J(x∗)

αjx
∗
j − α0)−

m∑
i=1

wiui (1)

fj = u
T
Aj − αj, for j ∈ J(x

∗
) (2)

f0 = u
T
b − α0 (3)

0 ≤ fj ≤ 1− δ, for j ∈ J(x
∗
) ∪ {0} (4)

0 ≤ ui ≤ 1− δ, for i = 1, · · · , m (5)

αj integer, for j ∈ J(x
∗
) ∪ {0} (6)

where J(x∗) := {j ∈ {1, · · · , n} : x∗j > 0} is the support of x∗ (possibly after having

complemented some variables and updated b accordingly).

• We chose the δ = 0.01 so as to improve numerical stability.

• We also introduced the penalty term −
∑

i wiui in the objective function (1), where

wi = 10−4 for all i, which is aimed at favoring the “minimality” of the CG multiplier vector u.
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Solving the CG-separation MIP

• Preliminary experiments where the CG-separation MIP is solved through a commercial

general-purpose MIP solver (ILOG-Cplex 9.0.2)

1. When the LP relaxation of the original ILP model is solved, we take all the violated Gomory

fractional cuts that can be read from the tableau, and skip CG separation.

2. The MIP solver for CG separation is invoked with an initial lower bound of 0.01, meaning

that we are only interested in CG cuts violated by more than 0.01.

3. At each update of the MIP incumbent solution x∗, the corresponding CG cut is stored in a

pool, and added at the end of the separation phase (among the cuts with the same

violation, only the one with the sparsest support is added).

4. The MIP execution for CG separation is stopped if:

• either the optimal solution has been found,

• or τ branching nodes has been explored after the last x∗update.

τ = 1000 if the violation of the incumbent is less than 0.2, and τ = 100 otherwise.

• We keep generating violated CG cuts of rank 1 until either no such violated cut exists (in which

case we have optimized over the first closure), or because a time-limit condition is met.
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Can we solve matching problems?

• We started in a “friendly” setting by addressing 2-matching problems

ID initial LB Optimum # iter.s # cuts CPU time

eil101 619.0 623.0 26 43 9.01

gr120 6,662.5 6,694.0 33 45 10.47

pr124 50,164.0 51,477.0 124 320 555.54

gr137 66,643.5 67,009.0 11 31 1.68

pr144 32,776.0 33,652.0 39 78 9.57

ch150 6,281.0 6,337.0 59 141 71.19

rat195 2,272.5 2,297.0 85 237 202.87

kroA200 27,053.0 27,426.0 26 84 10.93

kroB200 27,347.0 27,768.0 189 558 2,249.55

ts225 115,605.0 121,261.0 323 857 4,906.48

pr226 55,247.5 57,177.0 401 901 4,077.66

gr229 127,411.0 128,353.0 78 224 219.00

gil262 2,222.5 2,248.0 105 266 372.10

a280 2,534.0 2,550.0 52 104 40.21

lin318 38,963.5 39,266.0 292 768 6,103.32
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Can we solve matching problems? (cont.d)

• Some of these instances can be solved in a much shorter computing time by just applying

ILOG-Cplex 9.0.2 MIP solver (by heavy branching), and obviously by considering the use of

the special purpose separation of 2-matching inequalities. [Letchford, Reinelt and Theis 2004]

• However, for some hard instances a cut-and-branch approach in which we separate 100 rounds

of rank-1 cuts, and we then switch to a commercial MIP solver for concluding the optimization

gives promising results.

ILOG-Cplex cut-and-branch

% gap % gap separation total

ID closed nodes time # cuts closed time nodes time

pr124 100.0 43,125 104.17 116 62.1 27.96 1,925 37.51

kroB200 100.0 330,913 2,748.24 129 64.1 49.34 4,113 76.30

ts225 47.1 230,115 1h 250 80.7 164.77 13,552 352.35

pr226 55.0 288,901 1h 179 62.9 61.13 19,977 281.89

gr229 100.0 15,005 180.79 126 82.8 9.65 155 60.94

gil262 100.0 117,506 2,094.77 110 84.0 12.24 217 36.78

lin318 53.3 117,100 1h 187 64.9 110.69 25,953 933.97
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How tight is the first closure for MIPLIB instances?

• Instances from MIPLIB, time limit of 3 hours

% gap

ID Optimum # iter.s # cuts closed time

air03 340,160.00 1 35 100.0 1.47

gt2 21,166.00 160 424 100.0 506.25

lseu 1,120.00 73 190 91.3 565.22

mitre 115,155.00 1,509 5,398 100.0 9,394.17

mod008 307.00 26 109 100.0 8.00

mod010 6,548.00 17 62 100.0 13.05

nw04 16,862.00 78 236 100.0 227.13

p0033 3,089.00 40 152 85.4 12.95

p0548 8,691.00 886 3,356 100.0 1,575.83

stein27 18.00 98 295 0.0 490.02

• A cut-and-branch approach on instance harp2 gave very interesting results:

– 100 rounds of separation (211 rank-1 CG cuts, 53 tight at the end),

– 1,500 CPU seconds and 400K nodes (including both cut generation and branching).

– ILOG-Cplex alone required more than 15,000 CPU seconds and 7M nodes.
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Beyond the first closure?

• We addressed the possibility of using our cutting plane method as a pre-processing tool, to be

used to strengthen the user’s formulation by exploiting cuts of Chvàtal rank larger than 1.

This idea was evaluated by comparing two different cut preprocessors, namely:

– cpx : Apply ILOG-Cplex 9.0.2 (with mip emphasis “move best bound”) on the current ILP

model, save the final root-node model (including the generated cuts) in a file, and repeat on

the new model until a total time limit is exceeded.

– cpx-cg : Apply ILOG-Cplex 9.0.2 (with mip emphasis “move best bound”) on the current

ILP model, followed by 600 seconds of our CG separation procedure; then save in file the

ILP model with all the cuts that are active in the last LP solution, and repeat on the new

model until a total time limit is exceeded.

• For the first time we found a provable optimal solution of value 51,200.00 for the very hard

instance nsrand-ipx.

• Precisely, cpx-cg ran for 4,800 CPU seconds obtaining a tightened formulation that brought the

initial LP bound from 49,667.89 to 50,665.71.
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Beyond the first closure? (cont.d)

Figure 1: Lower bounds provided by cpx and cpx-cg after each call of the separation procedures,

for the hard MIPLIB instance timtab1.
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Can we discover new classes of strong inequalities?

• As in the spirit of PORTA, we can use the framework for obtaining off-line the facial structure

of a specific problem. Advantage: we are not restricted to instances of very small size.

• To illustrate a possible application to the Asymmetric Travelling Salesman Problem (ATSP), we

took a partial ATSP formulation including out- and in-degree equations, plus the SECs on

2-node sets, i.e., the NP-hard Asymmetric Assignment Problem (AAP) relaxation. [Balas 1989]

• We applied the method to ry48p from ATSPLIB, and we stored the CG cuts along with the

associated CG multipliers.

• Through a careful analysis of one returned cut we have that:

α =



0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0
0 1 0 0 1 1 0 0
1 1 0 1 0 1 1 0
0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0


; α0 = 5 (7)

which is (by computational methods) facet-defining for ATSP. Using clique lifting we can then

obtain a large class of ATSP facets, that to the best of our knowledge is new.
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Conclusion and future work

• We have been able to show computationally the quality of the Chvàtal-Gomory cuts and to

answer (at least partially) to several natural questions about their practical effectiveness.

• Although an NP-hard problem has to be solved to separate inequalities of rank 1, the issue of

generating those cuts is affordable in practice and it definitely deserves attention.

• An obvious issue for future research is the design of more specific separation procedures for CG

cuts, i.e., ad-hoc heuristics for the corresponding MIP model.
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The feasibility pump 
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Summary of the computational results

• ILOG-Cplex 8.1 is run on default version but avoiding preprocessing (following the suggestion

of Ed Rothberg).

• FP solves LPs by leaving ILOG-Cplex decide which is the best algorithm (CPXoptimize).

• Over 83 hard 0-1 MIP instances in the MIPLIB test-bed:

FP failed in finding a feasible solution only in 3 case, while

ILOG-Cplex 8.1 failed 19 times.

• The quality of the solutions obtained is generally comparable, as well as the computing times.

M. Fischetti, F. Glover, A. Lodi, The feasibility pump 8
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