MIP models for MIP heuristics or the Bracket-and-Fix method

Matteo Fischetti DEI, University of Padova, Italy

Andrea Lodi DEIS, University of Bologna, Italy

11th Combinatorial Optimization Workshop, Aussois, January 12, 2007

LOCAL BRANCHING

or

How to enhance the heuristic behaviour of your favourite 0-1 MIP solver

AUSSOIS, January 2002

THE FEASIBILITY PUMP

AUSSOIS, January 2004

THE LOCAL BRANCHING FRAMEWORK

• Consider a generic Mixed-Integer Linear Programming Problem (MIP) with 0-1 variables

min
$$c^T X$$

 $A \times 7b$
 $x_j \in \{0,1\}$, $\forall j \in \beta \neq \emptyset$
 $x_j integer$, $\forall j \in \mathcal{G} (2\emptyset)$

• We aim at embedding a **black-box** (general-purpose or specific) 0-1 MIP solver within an overall **heuristic framework** that "helps" the solver to deliver improved heuristic solutions

The available black-box module

Hard variable fixing (diving)

- A commonly-used (often quite effective) heuristic framework
- Let x^{H} be an (almost) feasible "target solution", and let

$$S = \{ j \in B : x_j^H = 1 \}$$

denote its **binary support** (binary var.s at value 1).

- **Heuristic depth-first search** of the branching tree:
 - iteratively <u>fix to 1</u> certain "highly efficient" variables in S (green nodes)
 - apply the **black-box module** to some **green nodes** only
 - only limited **backtracking** allowed

Advantages:

- Problem size quickly reduced: the black-box solver can concentrate on smaller and smaller "core problems"
- The black-box solver is applied over and over on different subproblems (diversification)

Disadvantages:

- How to choose the "highly efficient variables" to be fixed?
- Wrong choices at early levels are typically very difficult to detect, even when **lower bounds** are computed along the way

How to reach a sufficiently-deep branching level with a good lower bound?

Soft variable fixing

- Idea: Given the heuristic solution x^{H} , don't decide the actual variables to be fixed, but just their **number**
 - Introduce the <u>local branching</u> constraint

$$\Delta(x, x^{H}) := \sum_{j \in B: x_{j}^{H} = 0} x_{j} + \sum_{j \in B: x_{j}^{H} = 1} (1 - x_{j}) \le k$$

so as to define a convenient **k-OPT neighbourhood** $N(x^H, k)$ of the target solution x^H (the larger *k*, the larger the neighbourhood)

"Akin to k-OPT for TSP"

- Search $N(x^H, k)$ by means of the **black-box** module
- Diversification (also modelled through MIP cuts)

RINS

- An effective variable-fixing heuristic proposed in
 - E. Danna, E. Rothberg, C. Le Pape. Exploring relaxation induced neighborhoods to improve MIP solutions. Mathematical Programming 102, 71-90, 2005.
- Given a heuristic solution x^{H} (e.g., the incumbent) and a fractional solution x^{*} (e.g., the LP optimum at some branching node): fix $x_{j} = x_{j}^{H}$ whenever $x_{j}^{H} = x_{j}^{*}$ and solve (heuristically) the resulting sub-MIP through a black-box MIP solver.

Advantages

- Fixing can reduce the MIP size (and difficulty) dramatically
- Simple and clever identification of the variables to be fixed
- Easy diversification if applied for different fractional sol.s \mathbf{X}^* (e.g., within Branch & Cut)

Disadvantages

• Little control on the number of fixed var.s (if too few, the method is completely useless)

A new variable-fixing heuristic: bracket and fix

"Hard-fixing the var.s is Ok, but choosing those to fix is a difficult decision → just MIP it!"

• Original MIP

A new variable-fixing heuristic: bracket and fix

"Hard-fixing the var.s is Ok, but choosing those to fix is a difficult decision \rightarrow just MIP it!"

Original MIP
 Bracketing MIP

 $\begin{array}{ll} \min c^T x & \min c^T x \\ Ax \leq b & & Ax \leq b \\ x_j \geq 0 \quad \forall j \in \mathcal{C} & & x_j \geq 0 \quad \forall j \in \mathcal{C} \\ x_j \geq 0 \quad \text{integer} \quad \forall j \in \mathcal{I} & & x_j \geq 0 \quad \text{integer} \quad \forall j \in \mathcal{I} \\ x_j \in \{0,1\} \quad \forall j \in \mathcal{B} & & \int_{j \in \mathcal{B}}^{1} (f_j^0 + f_j^1) \geq k \\ & & \int_{j \in \mathcal{B}}^{0} (f_j^0 + f_j^1) \geq k \\ & & f_j^0, f_j^1 \in \{0,1\} \quad \forall j \in \mathcal{B} \end{array}$

A new variable-fixing heuristic: bracket and fix

"Hard-fixing the var.s is Ok, but choosing those to fix is a difficult decision → just MIP it!"

Original MIP	Bracketing MIP	sub-MIP with fixed var.s
$egin{aligned} \min c^T x & & & & & & & & & & & & & & & & & & $	$egin{aligned} \min c^T x & & & & & & & & & & & & & & & & & & $	$egin{aligned} \min c^T x & & & & & & & & & & & & & & & & & & $
	$f_j^{0}, f_j^{1} \in \{0,1\} \hspace{0.5cm} orall j \in \mathcal{B}$	$x_j = 0 \forall j \in \mathcal{B} : \bar{f}_j^0 = 1$

where (\bar{f}^0, \bar{f}^1) is an almost-optimal solution of the bracketing MIP

The bracket-and-fix heuristic

```
Basic Bracket-and-fix heuristic:

0. run ILOG-Cplex default until a first feasible solution is found

1. while (time < timeLimit) and (iteration < iterationLimit) do

1.a solve the bracketing MIP with a limit of n_B nodes

1.b define and solve the fixed sub-MIP with a limit of n_F nodes

1.c modify the bracketing MIP with a nogood cut

(plus eventually with some random perturbation)

2. enddo
```

Preliminary implementation (BF1):

• Exploit the incumbent x^H (as in RINS): set

 $f_j^0 = 0$ if $x_j^H = 1$ \rightarrow never fix to 0 a variable having value 1 in x^H $f_j^1 = 0$ if $x_j^H = 0$ \rightarrow never fix to 1 a variable having value 0 in x^H

• Hardwired parameters: ; $n_B = 100$, $n_F = 500$, k = 0.2 * total number of binary variables

$$\sum_{j \in B} (f_j^0 + f_j^1) \ge 0.2 \mid B$$

Variants under investigation

• Variant 1 (BF2): As BF1, but in the bracketing MIP invert the role of the objective function and of the cardinality constraint

$$c^T x \iff \sum_{j \in B} (f_j^0 + f_j^1) \ge k$$

 $c^T x \le LB + 0.1 * GAP$ "percentage gap w.r.t. incumbent value"

"Which is the maximum n. of var.s that I can fix by accepting a 10% lower-bound worsening?"

• Variant 2 (LB+RINS): Instead of the bracketing MIP, solve the LP relaxation of the initial problem with a local branching constraint

$$\sum_{j \in B: x_j^H = 0} x_j + \sum_{j \in B: x_j^H = 1} (1 - x_j) \le 0.2 |B|$$

"Parameter 0.2 should be better tuned on the fly to reach a sufficient matching between x^H and x^* "

• Asymmetric versions: for all variants, forget about 0-fixing (i.e., set $f_j^0 = 0$ for all $j \to still$ to be tested

Preliminary computational results

		Cplex 10.0	RINS		LB+RINS (.20)		
name	$ \mathcal{B} $	value	value	time	fixed	value	time
A1C1S1	192	12,452.4276	11,837.1930	36.43	75	11,791.3993	99.31
biella1	6110	3,680,593.9300	3,630,472.4800	46.92	5526	3,349,537.4100	34.27
CMS750_4	7196	773.0000	364.0000	57.76	4923	503.0000	21.27
dg012142	640	153,388,548.0000	8,232,594.0000	57.91	243	3,268,726.0000	143.80
ljb2	681	1.2129	0.6681	2.47	493	0.6363	6.48
sp97ar	14101	693,904,022.4000	693,904,022.4000	49.82	13868	680,750,648.6400	16.83
tr12-30	360	133,478.0000	130,901.0000	5. <mark>8</mark> 2	113	131,033.0000	9.09

Table 1: One iteration: symmetric versions, Cplex 10.0 initial, RINS vs LB+RINS

		BF1 (.20)			BF2 (.10)		
name	$ \mathcal{B} $	fixed	value	time	fixed	value	time
A1C1S1	192	38	11,591.1888	89.53	102	11,563.2272	<mark>4</mark> 9.92
biella1	6110	5524	3,345,029.3600	34.20	5922	3,250,161.4700	155.63
CMS750_4	7196	3229	346.0000	61.05	4332	404.0000	31.98
dg012142	640	243	3,460,266.7500	137.42	589	16,316,886.9333	15.02
ljb2	681	136	0.7441	6.98	662	0.9432	3.28
sp97ar	14101	13873	684,494,973.1200	11.91	13985	686,543,415.6800	100.36
tr12-30	360	72	130,815.0000	5.14	100	130,913.0000	4.81

Table 2: One iteration: symmetric versions, variants of BF