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Motivation

• Basic assumption in combinatorial optimization:

The exact value of all input data is known in advance

• This assumption is often violated in practical (real-world) applications

• ⇒ The optimal solution found using nominal values of the parameters can be suboptimal or

even infeasible

• ⇒ Small uncertainty in the data can make the usual optimal solutions completely meaningless

from a practical point of view
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Dealing with Uncertainty

Consider the nominal LP (or MIP) min {cx : Ax ≤ b, x ≥ 0}

Stochastic Programming

Find a solution that is optimal by considering possible recourse variables yk implementing

corrective actions after a random scenario k ∈ K has taken place

min cx +
∑
k∈K

pk(d
k
y

k
)

Ax ≤ b, x ≥ 0

T
k
x + W

k
y

k
= h

k
, y

k ≥ 0, k ∈ K

⇒ (+) Does not restrict the original solution space, just penalizes the corrective actions needed to

face a certain scenario

⇒ (-) Requires the knowledge of the probability/main features of the various scenarios

⇒ (-) Huge LP’s to be solved (through clever decomposition techniques)
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Robust Optimization

• Uncertainty is associated with hard constraints restricting the solution space

• Find a solution that is still feasible for worst-case parameters chosen in a certain uncertainty
domain

• ⇒ (+) Easy way to model uncertainty

• ⇒ (-) The solution can be overconservative, hence be quite bad in terms of efficiency

(actually, a feasible solution may not exist)
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Literature on Robust Optimization

• Soyster (1973)

– First attempt to handle data uncertainty through mathematical models

– Definition of the robust counterpart of an uncertain linear program

– Uncertain linear program of the form

min {cx|
n∑

j=1

Aj xj ≤ b, ∀Aj ∈ Kj, j = 1, · · · , n}

where Kj are convex sets associated with “column-wise” uncertainty

– Very conservative model

• Ben-Tal and Nemirovski (1998-2000)

– Less conservative models by considering ellipsoidal uncertainty

– Nonlinear (convex) models → computationally hard problems

– Similar results by El-Ghaoui et al. (1998-2000)
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Literature on Robust Optimization

Bertsimas and Sim (2001-2004)

• W.l.o.g., assume the RHS b and cost vector c are not affected by uncertainty, and recall that

x ≥ 0 is required

• Each entry of matrix A takes values in the interval [aij, aij + âij]

• Assumption: for each constraint i, at most Γi coeff.s can change

• Each constraint
∑n

j=1 aij xj ≤ bi in the nominal LP is replaced by

n∑
j=1

aij xj + β(x, Γi) ≤ bi (1)

where

β(x, Γi) = max
S⊆{1,···,n}:|S|≤Γi

∑
j∈S

âijxj (2)

• The role of the protection-level parameter Γi (here assumed to be integer to simplify

notation) is to adjust the robustness of the solution:

• Γi = 0 → constraint i equivalent to the nominal one

• Γi = n → conservative method by Soyster
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• Using LP duality, a compact formulation for the robust LP is

(BS) min

n∑
j=1

cj xj

n∑
j=1

aij xj + Γizi +

n∑
j=1

pij ≤ bi, i = 1, · · · , m,

zi + pij ≥ âij, i = 1, · · · , m, j = 1, · · · , n,

zi ≥ 0, i = 1, · · · , m,

pij ≥ 0, i = 1, · · · , m, j = 1, · · · , n,

xj ≥ 0, j = 1, · · · , n

• The robust counterpart of an uncertain problem has the same complexity/approximability of

the nominal problem

• The compact formulation of Bertsimas and Sim extends easily to (M)ILP’s—in fact, a MIP is

just a sequence of LP’s
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Robustness through cutting planes

• Alternative approach: cutting plane method based on cut separation

• Separation problem: given x∗, find S ⊆ {1, · · · , n} (if any) such that |S| ≤ Γi and

n∑
j=1

aijx
∗
j +

∑
j∈S

âijx
∗
j > bi

• Separation problem solvable in O(n) time

• Important extensions: more detailed (and realistic) descriptions of the uncertainty domain

can be handled within the cut separation procedure (possibly involving integrality of the

worst-case parameters...)
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Computational experiments: knapsack problem

• Nominal Problem: Knapsack problems as in the BS paper, with 10% uncertainty on the

nominal LHS coefficients

• n ∈ {200, 400, 600, 800, 1000}
• weights wj randomly generated in [16, 77]

• profits pj randomly generated in [20, 29]

• c = 4000

• Times expressed in CPU seconds of a PC AMD Athlon 4200+

Instance Nominal KP Γ = 5 Γ = 20 Γ = 50

n z T z BS B&C z BS B&C z BS B&C

200 8463 0.00 8456 0.02 0.02 8442 0.02 0.00 8409 0.03 0.02

400 10417 0.05 10406 1.05 0.85 10377 0.05 0.04 10314 0.72 8.13

600 11384 0.02 11371 0.65 1.15 11336 0.06 1.42 11262 0.15 10.91

800 11982 0.02 11971 0.04 2.03 11932 0.12 7.53 11853 20.04 43.61

1000 12361 0.02 12348 0.40 0.14 12307 7.70 64.83 12225 14.14 44.75

• For KP problems, the BS compact formulation is faster than Branch-and-Cut

• BUT ...
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Computational experiments: set covering problem

• Set covering instances from the literature (scp41, scp42, and scp43) with n = 1, 000 and

m = 200

• Uncertainty: Γi = 1 for each row (meaning that at most one entry can go from 1 to 0 in each

row of A).

Instance Γ = 0 Γ = 1

z∗ T z BS B&C

scp41 429 0.02 1148 3,278.24 1,463.88

scp42 512 0.04 1205 23,251.23 5,393.41

scp43 516 0.03 1213 211,842.50 12,794.06

For set covering instances:

• Branch-and-Cut is faster than the BS compact formulation

• Even more effective (ad hoc) models exist...
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Robustness for problems with a strong structure

Many Combinatorial Optimization Problems have a strong combinatorial structure, e.g.

Set Covering Problem

• covering constraint for row i = 1, · · · , m:

n∑
j=1

aij xj ≥ 1 with aij ∈ {0, 1}

• Robust counterpart:

– What does it mean that a coefficient aij can change?

– Do values like 0.9 or 1.1 make sense?

– It makes sense to assume that (at most) Γi entries in row i go from 1 to 0

– ⇒ Row i has to be covered by (at least) Γi + 1 different columns

• Conclusions:

– the classical scheme is either meaningless or too conservative
– ⇒ robust solutions can be useless or very inefficient
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Train Timetabling Problem

• MIP models where a minimum distance in time between two events i and j

(departures/arrivals of trains) is imposed:

ti − tj ≥ ∆ij

• Robust counterpart:

– The only nonstructural coefficient in each row is the required minimum time-distance ∆ij

– Increasing ∆ij to ∆ij + ∆̂ij is a way to cope with train delays ...

– ... but the BS worst-case parameter setting occurs when all coefficients ∆ij go to their

upper bound ∆ij + ∆̂ij

• Conclusions:

– a robust solution is just obtained from the nominal problem by replacing all ∆ij with

∆ij + ∆̂ij

– ⇒ highly inefficient solutions (and often impossible to find due to train capacity

constraints)
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From Robustness to Light Robustness

Robustness (left) vs. Light Robustness (right)
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Light Robustness

Idea: robustness is about putting enough slacks on the constraints ⇒ introduce explicit

unsatisfied slack var.s γi (kind of second-order recourse var.s) to be minimized, and fix an upper

bound on the acceptable solution cost (so as to limit inefficiency)

(LR) z
LR

= min

m∑
i=1

γ
2
i

Ax ≤ b, x ≥ 0, cx ≤ z∗(1 + δ)

n∑
j=1

aij xj + β(x, Γi)− γi ≤ bi, i = 1, · · · , m,

• The role of parameter δ is to balance the quality (optimality) and the feasibility (robustness) of

the solution

• δ = 0 → nominal problem (of value z∗)

• δ = ∞→ robustness in the spirit of Bertsimas and Sim

• Just a thin idea, but ... maybe it works?!
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Computational experiments: light robustness for set covering problems

• Set covering instances from the literature (scp41, scp42, and scp43)

• n = 1000 and m = 200

• Uncertainty: Γ = 1 for each row

• Loss of optimality bound: δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}

Instance Nominal Light Robustness BS
Problem δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.5

z∗ T z z
LR

z z
LR

z z
LR

z z
LR

z z
LR

z

scp41 429 0.02 471 94 514 79 557 67 600 57 640 49 1,148

scp42 512 0.04 563 87 613 68 664 56 716 46 768 37 1,205

scp43 516 0.03 567 86 619 68 670 55 721 47 759 40 1,213
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Computational experiments: light robustness for set covering problems
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Figure 1: zLR = n. of rows covered only once
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Computational experiments: train timetabling

• Aperiodic train timetabling instances from Rete Ferroviaria Italiana (RFI), the Italian railway

infrastructure management company (from the ARRIVAL project)

• Different lines, for each line different schedules–each corresponding to a timetable that is

feasible with respect to nominal data

• BS robustness: each travel and stop time to be increased by 5% (just infeasible)

• Comparison w.r.t. a Stochastic Programming (SP) model (400 scenarios)

• Robustness evaluated a posteriori through a simulation model
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Computational experiments: train timetabling
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• Computing times: LR is one order of magnitude faster than SP

• Quality: the a-posteriori robustness of the LR solution is comparable or better than that

obtained through SP
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Role of the quadratic LR function (train timetabling)

• LR with linear objective function: shorter computing times but considerably less robustness

• Results to be validated on other combinatorial problems (work in progress)

• Extension obtained by sampling a set of scenarios so as to get average slacks and covariance

matrices to be used in the LR model (work in progress)
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