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Problem Definition
• single one-way line
• aperiodic daily timetable to be designed 

• Minimize the timetable cost computed as follows…
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An event-scheduling MIP model

• Minimum travel times 
• Safety constraints:

• buffer times, no overtaking outside stations, etc.
• Typical constraints of the type:

• Arrival and departure times (event times)   ………….  ti
• Binary variables modeling event precedences ……… xij

Variables:

Constraints:

ti − tj ≥ dij −Mxij
Objectives:

• Minimize the cost of the schedule
• Robustness (whatever it means)

dij
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Timetable robustness …

• … is not concerned with major disruptions  
• … is not intended to cope with heavy truck breaks or alike

• to be handled by   REAL TIME  CONTROL  SYSTEMS

• … is a way to control delay propagation
• … has to favor delay compensation without heavy actions from the 

traffic control center

• no overtaking allowed to prevent delay propagation
• no train cancellation
• train precedences unchanged w.r.t. to the planned timetable
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Non-robust and robust timetables
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Our approach

• Take a feasible timetable -> near-optimal solution of the “nominal”
timetable problem

• Fix a maximum price of robustness the cost of the robust solution 
cannot exceed by more than XX% the optimal cost of the nominal 
problem

• Fix all train precedences (binary var.s xij in the MIP model)
• Relax the integrality on the event-time var.s ti (the only unknowns)
• Enforce robustness in the resulting LP by using alternative techniques
• Evaluate the achieved robustness through a common validation 

model
• Compare the results 
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Pursuing robustness in the LP/MIP context

• Stochastic Programming
– Take first-stage decisions
– Pay for restoring feasibility afterwards (second-stage recource var.s)
– Applied successfully by the Kroon’s group to periodic timetabling
– Very flexible but computationally heavy in scenario-based approaches

• Robustness à la Bertsimas-Sim
– Kind of worst-case analysis of robustness
– Limits the moves of the adversary (just a few coefficients can change in each constraint)
– Feasibility deterministic (if adversary behaves as expected) or with high probability 

(otherwise)
– Very simple model
– Unfortunaltely, of no use in the timetable context (infeasible or very inefficient solutions)

• Light Robustness
– “Light” version of Bertsimas-Sim using slack variables for “too conservative” constr.s
– Linear or quadratic objective function (minimize slack var.s)
– Very well suited for timetabling talk in the afternoon…
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Stochastic programming model

DisturbanceRecourse

Nominal constraint
• Two-stage model with recourse var.s (unabsorbed delay)

• Deterministic model through scenario expansion 

• Objective function: minimize the average unabsorbed delay

• big LP model to be solved (though each scenario actually introduces just a 
few new var.s and constr.s)
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Scenario Generation

• Delay model:

– Random cumulative train delay
– Scaled by time band factors
– Distributed across lines with 

section factors
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Validation model
• Simulation tool used to evaluate the actual robustness of a given timetable 

• Uses information on the line to generate a delay scenario for each run 

• For each run, solve an LP model to   absorbe as much delay as possible

– Fixed precedences

– Continuous event-time var.s only = actual times in the delayed schedule

– Cannot anticipate with respect to the input solution to evaluate

– Minimize sum of delays (event-time shifts) 

• Gather statistical information

(x̃, t̃)

xij := x̃ij

$
t
_
i
$

ti ≥ t̃i

ti

min
P

i(ti − t̃i)
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Test  bed

• Real world instances from RFI

– PD-BO: 17 stations, ~35 trains
– BZ-VR: 27 stations, ~130 trains
– Mu-VR: 48 stations, ~50 trains
– Br-BO: 48 stations, ~70 trains

• For each instance, 5 almost-optimal (non-
robust) timetables computed by DEIS



Validation results







Computing times



Restoring integrality on the timetable var.s



Importance of the quadratic LR function
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Computing times (updated)
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Thanks
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