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Motivation

• A typical assumption in 
combinatorial optimization:

The exact values of all input
data are known in advance

• This assumption can be violated in 
practical (real-world) applications

• The optimal solution, even if computed very accurately, can be very 
hard to implement accurately

• The solution found using nominal values of the parameters can be sub-
optimal or even infeasible

• Small uncertainty in the data can make the nominal optimal solution 
completely meaningless from a practical viewpoint.
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Dealing with Uncertainty
• Nominal problem (LP)

• We assume that each coefficient  aij

of matrix A can take any value ãij

in the interval [aij – âij, aij + âij] 

• Bertsimas and Sim (BS’04): a solution is considered robust if it 
remains feasible when at most Γi coefficients in each row i take 
their worst value

min { cTx: Ax  ≤ b, x  ≥ 0  }
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Compact formulation
• Replace the i-th row with its robust counterpart 

where              

represents the level of protection of the solution with respect to row 

• Using LP duality, BS obtained a compact formulation for the robust 
LP involving a substantial n. of additional var.s and constraints

β(Γi, x) = max { ∑jЄS aijxj, |S| ≤ Γi}

ai
Tx + β(Γi, x) ≤ bi



5

Robustness by cutting planes

• Robustness of the solution with respect to row i 
can alternatively be imposed by means of 
robustness cuts

• This allows one to work on the original variable space but requires to 
handle an exponential number of constraints.

– Cutting planes approach
– Separation of the current solution x* can be carried out in linear time: select 

the (at most) Γi variables with largest positive values of 

∑jЄN aijxj + ∑jЄS âijxj ≤ bi,                              for all S: |S| ≤ Γi
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LP instances: computational experiments

instance T
%Δz T(BS) T(CP) %Δz T(BS) T(CP)

BNL2 0.07 0.790 1.26 0.50 1.840 1.69 0.97
D2Q06C 2.71 - 18.76 3.84 - 41.77 5.26
DEGEN3 0.43 - 58.34 1.45 - 88.69 1.84
GANGES 0.01 0.053 0.02 0.01 0.430 0.02 0.05
PILOT 3.05 - 661.72 12.95 - 58.95 4.85
SCTAP2 0.01 1.533 0.12 0.24 2.814 0.18 0.62
SCTAP3 0.02 1.602 0.17 0.39 2.995 0.24 1.46
SHIP12L 0.04 0.060 0.10 0.05 0.346 0.11 0.08
SHIP12S 0.02 0.062 0.06 0.03 0.386 0.09 0.05
STOCFOR2 0.06 0.759 0.56 0.18 1.522 0.55 0.17
STOCFOR3 1.58 0.733 11.68 12.95 1.482 10.41 11.61
p17 0.09 0.447 0.12 0.12 1.280 0.15 0.11

Average 0.67 62.73 2.73 16.90 2.26

Γ = 1 Γ = 10

CPU seconds on a PC AMD Athlon 4200+ using Cplex 11.0

For each coefficient:                          For each row,           (constant)âij = aij/100 Γi = Γ

(instances from NETLIB)
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Cutting planes as the only option

There are situations where cutting 
planes are the only possible way 
to deal with uncertainty

Indeed, compact formulation by BS 
cannot be applied, e.g., 

• when the nominal formulation of the problem is itself noncompact (e.g., 
TSP)

• when the uncertainty domain cannot be fully described by a linear 
system

– e.g., when the uncertainty domain involves yes-no decisions that 
cannot be modeled by continuous variables.

Uncertain set covering problems
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The Uncertain Set Covering Problem
Classical set covering problem

• Given a n x m binary matrix A and a cost cj
for each column j find a minimum-cost set S of 
columns such that each row is covered by 
(at least) one selected column

Uncertain counterpart (USCP)

• Each column j has a positive (independent) probability pj of 
disappearing, and each row must be covered with a probability larger 
than a given threshold P

USCP arises, e.g., in crew scheduling
applications where each pairing can be
unavailable due to uncertainty (driver’s nonshow)

Prob(ai
Tx ≥ 1 ) > P,   for all row i
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Modeling USCP
• Basic ILP model (M1): each row i must be covered by a set of 

columns having a small probability of disappearing all together 

– Separation problem can be solved quickly (knapsack problem)

• Alternative compact ILP model (M2), exploiting aij and xj binaries:

with 

∑jЄN\S aijxj ≥ 1 for all S: ∏jЄS pj > 1-P

Prob(ai
Tx ≥ 1 ) > P

∏jЄN aijxjpj ≤ 1 - P

Probabilities are independent one each other

Apply logarithm to both terms∑jЄN aijwjxj ≥ W   (*)

wj = -log(pj), W = -log(1-P)

Probability that the selected col.s covering row i 
disappear all together
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Modeling USCP
• The models are equivalent in terms of integer solutions, but the

associated LP relaxations are different (and no dominance exists
among them)

• Constraints                                      
can be strengthened

– Replacing wj with w’j = min{wj, W}

– With a rounding argument akin to Gomory’s fractional cuts; given a positive 
integer k, the following inequality is valid for USCP

where vij are “small integer” defined as  (k-1)aijwj/(W-ε) rounded up  

No dominance exists between (*) and (**) 
These new constraints make the model more stable from a numerical point of 
view.

∑jЄN vij xj ≥ k           (**)

∑jЄN aijwjxj ≥ W    (*)   
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USCP: computational experiments
• Test instances randomly derived from some SCP 

instances in the ORlibrary.
• All probabilities are randomly generated in [0, 0.2].
• Required probability: P = {0.90, 0.95}
• Both ILP models solved using Cplex 11.0

instance z* T
z T(M1) T(M2) z T(M1) T(M2)

scp41 429 0,01 701 0,06 0,09 921 1,32 0,17
scp51 253 0,10 391 0,95 0,24 467 20,76 0,60
scp61 138 0,45 199 0,84 0,71 236 11,86 1,05
scpa1 253 1,47 383 8,68 3,88 472 1152,59 11,60
scpb1 69 1,57 109 77,24 33,21 125 1455,35 12,85
scpc1 227 1,12 360 54,56 16,06 442 >1800.00 63,91
scpd1 60 2,64 89 129,47 21,57 106 >1800.00 70,01
scpe1 5 0,39 5 74,92 5,40 6 110,30 9,72
scpnrf1 14 113,12 16 >1800.00 291,87 19 >1800.00 184,62

P = 0.90 P = 0.95
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Uncertain graph connectivity
• Given an undirected graph with costs 

and probabilities associated with edges, 
find a min-cost partial graph that is 
connected with a given probability P
(NP-hard)

• Arises e.g. in the design of reliable 
telecommunication network

• ILP formulation
min ∑eЄE cexe

Prob(∑eЄδ(S) xe ≥ 1) > P   for each proper nodeset S
x binary

• Assuming probabilities to be independent, the constraint associated 
with a given subset S reads 

∑eЄδ(S) we xe ≥ W
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Computational  experiments
• Test instances randomly derived from some TSP 

instances in the TSPLIB.
• All probabilities are randomly generated in [0, 0.2].
• Required probability: P = {0.85, 0.90, 0.95, 0.99}
• Branch-and-cut embedded within Cplex 11.0

instance
z T z T z T z T

burma14 2671 1,06 2811 0,49 3182 0,14 3881 1,94
fri26 780 8714,49 841 1548,62 874 2,80 1080 281,15
gr17 1496 0,25 1599 0,21 1807 0,12 2466 925,66
gr21 2330 5,42 2554 58,67 2584 0,29 3113 23,15
ulysses16 4985 1,97 5540 10,53 6414 0,21 7770 0,63
ulysses22 4952 18,93 5410 18,22 5999 0,30 7061 133,77

P = 0.90 P = 0.95 P = 0.99P = 0.85
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Uncertain (?!) Plots
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