Robustness by cutting planes and the Uncertain Set Covering Problem

Matteo Fischetti Michele Monaci

DEI, University of Padova {fisch,monaci}@dei.unipd.it

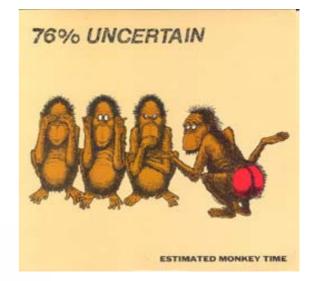
AIRO 2008, Ischia, 10 September 2008 (work supported my MiUR and EU) 1

Motivation

• A typical assumption in combinatorial optimization:

The exact values of all input data are known in advance

• This assumption can be violated in practical (real-world) applications



- The optimal solution, even if computed very accurately, can be very hard to implement accurately
- The solution found using nominal values of the parameters can be suboptimal or even infeasible
- Small uncertainty in the data can make the nominal optimal solution completely meaningless from a practical viewpoint.

Dealing with Uncertainty

• Nominal problem (LP)

```
min { c^T x: Ax \leq b, x \geq 0 }
```

 We assume that each coefficient a_{ij} of matrix A can take any value ã_{ij} in the interval [a_{ij} – â_{ij}, a_{ij} + â_{ij}]

 Bertsimas and Sim (BS'04): a solution is considered robust if it remains feasible when at most Γ_i coefficients in each row i take their worst value

Compact formulation

• Replace the i-th row with its robust counterpart

$$a_i^T x + \beta(\Gamma_i, x) \le b_i$$

where
$$\beta(\Gamma_i, x) = \max \{ \sum_{j \in S} a_{ij} x_{j,j} | S | \le \Gamma_i \}$$

represents the level of protection of the solution with respect to row

• Using LP duality, BS obtained a **compact formulation** for the robust LP involving a substantial n. of additional var.s and constraints

Robustness by cutting planes

 Robustness of the solution with respect to row i can alternatively be imposed by means of robustness cuts

$$\sum_{j \in N} a_{ij} x_j + \sum_{j \in S} \hat{a}_{ij} x_j \le b_{ij}$$
 for all S: |S| $\le \Gamma_i$

- This allows one to work on the original variable space but requires to handle an exponential number of constraints.
 - Cutting planes approach
 - Separation of the current solution x^* can be carried out in linear time: select the (at most) Γ_i variables with largest positive values of

LP instances: computational experiments (instances from NETLIB)

instance	Т		Γ = 1	Γ = 10		
		%∆z	T(BS)	T(CP)	%∆z	T(BS)
BNL2	0.07	0.790	1.26	0.50	1.840	1.69
D2Q06C	2.71	-	18.76	3.84	-	41.77
DEGEN3	0.43	-	58.34	1.45	-	88.69
GANGES	0.01	0.053	0.02	0.01	0.430	0.02
PILOT	3.05	-	661.72	12.95	-	58.95
SCTAP2	0.01	1.533	0.12	0.24	2.814	0.18
SCTAP3	0.02	1.602	0.17	0.39	2.995	0.24
SHIP12L	0.04	0.060	0.10	0.05	0.346	0.11
SHIP12S	0.02	0.062	0.06	0.03	0.386	0.09
STOCFOR2	0.06	0.759	0.56	0.18	1.522	0.55
STOCFOR3	1.58	0.733	11.68	12.95	1.482	10.41
p17	0.09	0.447	0.12	0.12	1.280	0.15

CPU seconds on a PC AMD Athlon 4200+ using Cplex 11.0

0.67

Average

For each coefficient: $\hat{a}_{ij} = a_{ij}/100$ For each row, $\Gamma_i = \Gamma$ (constant)

62.73

2.73

T(CP)

16.90

0.97

5.26

1.84

0.05 4.85 0.62 1.46 0.08 0.05 0.17 11.61 0.11

2.26

Cutting planes as the only option

There are situations where cutting planes are the **only** possible way to deal with uncertainty

Indeed, compact formulation by BS cannot be applied, e.g.,

- when the nominal formulation of the problem is itself noncompact (e.g., TSP)
- when the uncertainty domain cannot be fully described by a linear system
 - e.g., when the uncertainty domain involves yes-no decisions that cannot be modeled by continuous variables.

→Uncertain set covering problems

The Uncertain Set Covering Problem

Classical set covering problem

• Given a n x m binary matrix A and a cost c_j for each column j find a minimum-cost set S of columns such that each row is covered by (at least) one selected column

Uncertain counterpart (USCP)

 Each column j has a positive (independent) probability p_j of disappearing, and each row must be covered with a probability larger than a given threshold P

$Prob(a_i^T x \ge 1) > P$, for all row i

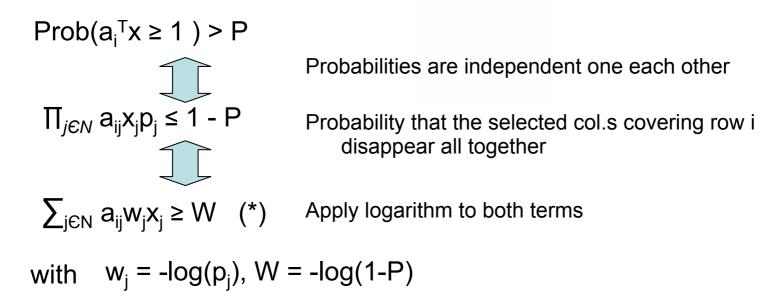
USCP arises, e.g., in **crew scheduling** applications where each pairing can be unavailable due to uncertainty (driver's nonshow)

Modeling USCP

• **Basic** ILP model (M1): each row i must be covered by a set of columns having a small probability of disappearing all together

$$\sum_{j \in N \setminus S} a_{ij} x_j \ge 1$$
 for all S: $\prod_{j \in S} p_j > 1-P$

- Separation problem can be solved quickly (knapsack problem)
- Alternative compact ILP model (M2), exploiting a_{ii} and x_i binaries:



Modeling USCP

- The models are equivalent in terms of integer solutions, but the associated LP relaxations are different (and no dominance exists among them)
- Constraints ∑_{j∈N} a_{ij}w_jx_j ≥ W (*) can be strengthened
 - Replacing w_j with $w'_j = \min\{w_j, W\}$

 With a rounding argument akin to Gomory's fractional cuts; given a positive integer k, the following inequality is valid for USCP

$$\sum_{j \in N} v_{ij} x_j \geq k \qquad (**)$$

where v_{ij} are "small integer" defined as $(k-1)a_{ij}w_{i}/(W-\epsilon)$ rounded up

No dominance exists between (*) and (**)

These new constraints make the model more stable from a numerical point of view.

USCP: computational experiments

- Test instances randomly derived from some SCP instances in the ORlibrary.
 - All probabilities are randomly generated in [0, 0.2].
 - Required probability: $P = \{0.90, 0.95\}$
 - Both ILP models solved using Cplex 11.0

instance	Ζ*	Т	P = 0.90			P = 0.95			
			z T(M1)		T(M2)	z	T(M1)	T(M2)	
scp41	429	0,01	701	0,06	0,09	921	1,32	0,17	
scp51	253	0,10	391	0,95	0,24	467	20,76	0,60	
scp61	138	0,45	199	0,84	0,71	236	11,86	1,05	
scpa1	253	1,47	383	8,68	3,88	472	1152,59	11,60	
scpb1	69	1,57	109	77,24	33,21	125	1455,35	12,85	
scpc1	227	1,12	360	54,56	16,06	442	>1800.00	63,91	
scpd1	60	2,64	89	129,47	21,57	106	>1800.00	70,01	
scpe1	5	0,39	5	74,92	5,40	6	110,30	9,72	
scpnrf1	14	113,12	16	>1800.00	291,87	19	>1800.00	184,62	

Uncertain graph connectivity

- Given an undirected graph with costs and probabilities associated with edges, find a min-cost partial graph that is connected with a given probability P (NP-hard)
- Arises e.g. in the design of reliable telecommunication network
- ILP formulation

 $\min \sum_{e \in E} c_e x_e$ Prob $(\sum_{e \in \delta(S)} x_e \ge 1) > P$ for each proper nodeset S x binary

 Assuming probabilities to be independent, the constraint associated with a given subset S reads

 $\sum_{e \in \delta(S)} w_e x_e \ge W$

Computational experiments

- Test instances randomly derived from some TSP instances in the TSPLIB.
 - All probabilities are randomly generated in [0, 0.2].
 - Required probability: P = {0.85, 0.90, 0.95, 0.99}
 - Branch-and-cut embedded within Cplex 11.0

instance	P = 0.85		P = 0.90		P = 0.95		P = 0.99	
	Z	Т	Z	Т	z	Т	Z	Т
burma14	2671	1,06	2811	0,49	3182	0,14	3881	1,94
fri26	780	8714,49	841	1548,62	874	2,80	1080	281,15
gr17	1496	0,25	1599	0,21	1807	0,12	2466	925,66
gr21	2330	5,42	2554	58,67	2584	0,29	3113	23,15
ulysses16	4985	1,97	5540	10,53	6414	0,21	7770	0,63
ulysses22	4952	18,93	5410	18,22	5999	0,30	7061	133,77

Uncertain (?!) Plots

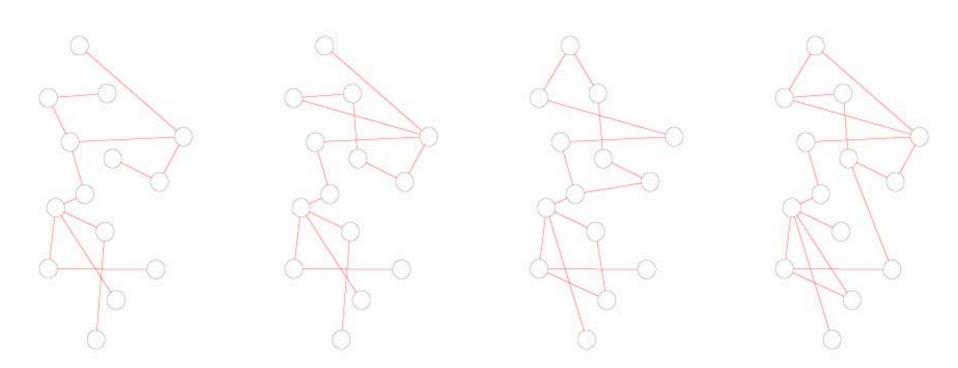


Figure 2: Optimal solutions of instance burma14 for $P^{\min} \in \{0.85, 0.90, 0.95, 0.99\}$.