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Cutting plane methods

Cutting plane methods widely used in convex optimization and to
provide bounds for Mixed-Integer Programs (MIPs)

Made by two equally important components:

— (i) the separation procedure (oracle) that produces the cut(s)
used to tighten the current relaxation, and

— (ii) the overall search framework that actually uses the
generated cuts and determines the next point to cut

In the last 50 years, considerable research effort devoted to the
study of (i) = families of cuts, cut selection criteria, etc.

Search component (ii) much less studied by the MIP community -
the standard approach is to always cut an optimal LP vertex
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The problem

Let’s focus on a generic MIP:  z(PLI) := min {c" x : x € conv(X) }
We are given an LP relaxation
z=min{c"x:xeP)}, P:={x:Ax <b}

We are also given a set P, with conv(X) < P, < P,
described only implicitly through a separation function:

oracle(y) returns a valid inequality for P, violated by y (if any)

We want to compute z, :=min {c" x: x € P, }
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Kelley’s cutting plane method

A classical search scheme

J. E. Kelley. The cutting plane method for solving convex programs,
Journal of the SIAM, 8:703-712, 1960.

— Let P’:={ x € P : x satisfies all cuts generated so far}
— Find an optimal vertex x* of the current LP: min {c" x: xe P’} ,
— Invoke oracle(x*) and repeat (if a violated cut is found)

Practically satisfactory only in case the oracle is able to find “deep”
cuts (e.g., defining facets of P, or, al least, supporting it).

Very ineffective in case shallow cuts are generated

May induce a dangerous correlation between x* and the returned cut
(e.g. when the cuts are read from the LP tableau)
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1-dimensional problems: binary search

Kelley’s method very unnatural (and inefficient) for 1-dim. problems

The most effective search scheme available for 1D is binary
search, invoking oracle(q) for the middle point g of P’

Its convergence does not depend on the cut quality (the cut needs
not be deep—a cut just tight at g suffices!!)
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Ellipsoid & analytic center methods

Generalize binary search to the multi-
dimensional case: at each iteration, a
corepoint q in the relative interior of P’
is computed and passed to the oracle

If no cut is generated, then q € P, and the

cx

neutral cut ¢’ x < ¢’ q (tight at q) is =) L
added—in this context, even a tight cut Txs<cTq
works!

The overall convergence does not
depend (too much) on the quality of the
oracle’s cut, but the computation of
corepoint g can be heavy
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A hybrid method:
yoyo search

« Two is better than one: maintain two points (x*,q)
— x*in an optimal vertex of P’, as in the Kelleys’ method
— g is an internal point of P., in the spirit of corepoint methods
where the uncertainty interval [c"x*, ¢'q] contains the unknown z,

« Think of the line segment [x* q] as in the 1-dimensional binary
search, and invoke oracle(y) for its middle point y := (x*+ q )/2

 Two possible outcomes:
(1) If a cut is returned, add it to P’ (the cut is likely to be deep!)
(2) otherwise update q :=y (this halves the uncertainty intervall!)
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An example of yoyo search
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The two bound trajectories
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yoyo search: pros and cons

PROS
Wrt Kelley’s method
- much deeper cuts are typically generated
Wrt corepoint methods
- Nno extra-time to update the internal point q
—> no neutral cuts generated, hence non-corepoint q allowed

POTENTIAL CONS
Wrt Kelley’s method
- denser point to be separated (more time can be needed)
- heuristic separation oracles can lead to weak cuts or loops
—> fewer cuts can be generated at the beginning (half of y is q)
—> g needs to be initialized (it can be easy for many problems)
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Preliminary computational tests

« We wanted to evaluate yoyo search in a controlled setting first
« For a given LP problem (e.g. root node relaxation of a MIP)
min {c" x:A’x<b’,A’x=b", I<x<u}

— P={x:A”x=b",I<x<u}
— oracle() stores the list of the constraints in A’ x < b’

« 3 cut selection criteria implemented for the oracle - return:

A) the deepest violated cut in the list (Euclidean distance)

B) a convex combination of the deepest one and of the (at most) first 10
violated or tight cuts encountered when scanning the list

C) the cut first defined as in case B, and then its rhs is weakened so
as to half the degree of violation
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Different scenarios: bound vs iter.s
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and the winner iIs ...
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Some plots: bound vs iter.s
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Some plots: bound vs CPU time
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Some plots: bound vs iter.s
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Some plots: bound vs CPU time
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Results on set-covering and MIPLIB

itr time %CLGap
testbed scenario std yOyO std  yoyo  std voyo
A 360.2 3818 704  7.60 100.0 100.0
scp B 6,248.4  871.5 1,558.59 157.85 100.0 100.0
C 10,000.0 3,471.0 1,936.75 903.18 92.2 100.0
A 761.2  738.2 537 476 100.0 100.0
miplib B 8,720.0 3,442.1 26759 14495 46.0 T77.7
C 10,000.0 6,207.2  171.96 221.87 34.7 68.1
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More detalls for shallow cuts

Itr
problem method  90%  95% 99% Y%CLGap totTime totltr
epelrt1 3470 5473 ; 088  807.25 10,000
yoyo 29 316 757 100.0 70628 4,087
std 7723 - ; 03.6 04648 10,000
sepelrl2 o oo 73171 740 100.0 1,160.06 3,885
std 7,136 - ; 938 2,399.71 10,000
sepelrld o oo 123 187 1,064 100.0 8,872.70 4,804
opurgl i - ; 86.7 2,179.87 10,000
yoyo 773 1,007 1,613 100.0 1,027.77 4,255
oprrg2 i - ; 88.7 191355 10,000
yoyo 749 993 1511 100.0 76645 4,138
eprrgs 0,773 - ; 004 1,863.02 10,000
yoyo 631 925 1,536 100.0 98329 3931

Table 3: Set covering results under scenario C.
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Benders’ decomposition
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Benders’ decomposition

itr time #cuts
problem std  yoyo std  yoyo  std yoyo
o5 511 155 83 2476 11.01 154 71
0 5 5 f2 137 75 25,85 1491 136 63
o 5 513 131 81 15.97 9.80 130 68
o5 hf4 129 80 1516 11.21 128 68

r255.03 2041 241 441.66 111.01 4080 447
r25504 1728 196 469.09 7734 3450 359
T o) 31 124 16298 5040 1675 222

geom.mean 314 105 50.74 2286 441 129

Multicommodity-flow network design problem
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Work In progress

Evaluation of disjunctive cut separation based on different cut
generation LPs

Modification of yoyo search for specific classes of oracles
(including again disjunctive cut separation)

Integration with feasibility-pump like heuristics

Use of analytic-center fast codes (do you have one to lend?)
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Lessons learned (to be discussed...)

Separating a vertex is often an over-simplified task, that hides the real difficulty of
the problem at hand.

Complexity theory implies the following dichotomy for NP-hard problems:

(i) either one cuts only LP vertices and uses the LP tableau to simplify
separation (thus accepting the unavoidable cut saturation issues),

(ii) or else one uses a more sophisticated search scheme with a polynomial
numbe)r of steps (thus accepting an increased complexity inside the separation
oracle).

E.g., for MIPs one can easily read violated intersection cuts from the optimal LP
tableau, but these cut cannot be embedded into an efficient search scheme
(unless P=NP)

If an exact black-box separation procedure is available that works with non-
extreme points, the standard search method can be much less efficient than
those working with internal points.
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