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Cutting plane methods

• Cutting plane methods widely used in convex optimization and to 
provide bounds for Mixed-Integer Programs (MIPs)

• Made by two equally important components: 
– (i) the separation procedure (oracle) that produces the cut(s) 

used to tighten the current relaxation, and 
– (ii) the overall search framework that actually uses the 

generated cuts and determines the next point to cut

• In the last 50 years, considerable research effort devoted to the 
study of (i) families of cuts, cut selection criteria, etc.

• Search component (ii) much less studied by the MIP community 
the standard approach is to always cut an optimal LP vertex
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The problem

• Let’s focus on a generic MIP:      z(PLI) := min { cT x : x ε conv(X) }

• We are given an LP relaxation 

z := min {cT x: x ε P } ,      P := { x : A x ≤ b }

• We are also given a set P1 with conv(X)   ≤ P1  ≤ P, 
described only implicitly through a separation function:

oracle(y) returns a valid inequality for P1 violated by y (if any)

• We want to compute  z1 := min {cT x: x ε P1 }
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Kelley’s cutting plane method
• A classical search scheme 

J. E. Kelley. The cutting plane method for solving convex programs, 
Journal of the SIAM, 8:703-712, 1960.

– Let P’ := { x ε P : x satisfies all cuts generated so far}
– Find an optimal vertex x* of the current LP: min {cT x: x ε P’ } ,
– Invoke oracle(x*) and repeat (if a violated cut is found)

• Practically satisfactory only in case the oracle is able to find “deep” 
cuts (e.g., defining facets of P1 or, al least, supporting it).

• Very ineffective in case shallow cuts are generated 
• May induce a dangerous correlation between x* and the returned cut 

(e.g. when the cuts are read from the LP tableau)
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1-dimensional problems: binary search

• Kelley’s method very unnatural (and inefficient) for 1-dim. problems

• The most effective search scheme available for 1D is binary 
search, invoking oracle(q) for the middle point q of P’

• Its convergence does not depend on the cut quality (the cut needs 
not be deep—a cut just tight at q suffices!!)

cT x ≤ cT q
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Ellipsoid & analytic center methods
• Generalize binary search to the multi-

dimensional case: at each iteration, a 
corepoint q in the relative interior of P’
is computed and passed to the oracle

• If no cut is generated, then q ε P1 and the 
neutral cut cT x ≤ cT q (tight at q) is 
added—in this context, even a tight cut 
works!

• The overall convergence does not 
depend (too much) on the quality of the 
oracle’s cut, but the computation of 
corepoint q can be heavy

cT x ≤ cT q
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A hybrid method: 
yoyo search

• Two is better than one: maintain two points (x*,q)
– x* in an optimal vertex of P’, as in the Kelleys’ method
– q is an internal point of P1, in the spirit of corepoint methods

where the uncertainty interval [cTx* , cTq] contains the unknown z1

• Think of the line segment [x*,q] as in the 1-dimensional binary 
search, and invoke oracle(y) for its middle point y := (x* + q )/2

• Two possible outcomes:
(1) If a cut is returned, add it to P’ (the cut is likely to be deep!)
(2) otherwise update q := y (this halves the uncertainty interval!)
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An example of yoyo search
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The two bound trajectories

cT q

cT x*
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yoyo search: pros and cons
PROS 

Wrt Kelley’s method
much deeper cuts are typically generated

Wrt corepoint methods 
no extra-time to update the internal point q
no neutral cuts generated, hence non-corepoint q allowed 

POTENTIAL CONS
Wrt Kelley’s method

denser point to be separated (more time can be needed)
heuristic separation oracles can lead to weak cuts or loops
fewer cuts can be generated at the beginning (half of y is q)
q needs to be initialized (it can be easy for many problems)
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Preliminary computational tests
• We wanted to evaluate yoyo search in a controlled setting first

• For a given LP problem (e.g. root node relaxation of a MIP)

min {cT x: A’ x ≤ b’, A’’ x = b’’, l ≤ x ≤ u  }

– P := { x: A’’ x = b’’, l ≤ x ≤ u  }
– oracle() stores the list of the constraints in A’ x ≤ b’

• 3 cut selection criteria implemented for the oracle return:

A) the deepest violated cut in the list (Euclidean distance) 
B) a convex combination of the deepest one and of the (at most) first 10 
violated or tight cuts encountered when scanning the list
C)  the cut first defined as in case B, and then its rhs is weakened so 
as to half the degree of violation
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Different scenarios: bound vs iter.s

std-A

std-B

std-C



Bertinoro, 30/11-2/12/2009 13

and the winner is …
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Some plots: bound vs iter.s
yoyo-A

std-A
yoyo-B

yoyo-C

std-B

std-C
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Some plots: bound vs CPU time

yoyo-A

std-A
yoyo-B

yoyo-C

std-B

std-C
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Some plots: bound vs iter.s

std-C

std-B
yoyo-C

yoyo-B
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Some plots: bound vs CPU time

yoyo std std
yoyo



Bertinoro, 30/11-2/12/2009 18

Results on set-covering and MIPLIB
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More details for shallow cuts
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Benders’ decomposition

std

yoyo

std
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Benders’ decomposition 

…..

Multicommodity-flow network design problem
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Work in progress

• Evaluation of disjunctive cut separation based on different cut 
generation LPs

• Modification of yoyo search for specific classes of oracles
(including again disjunctive cut separation)

• Integration with feasibility-pump like heuristics

• Use of analytic-center fast codes (do you have one to lend?)
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Lessons learned (to be discussed…)
Separating a vertex is often an over-simplified task, that hides the real difficulty of 

the problem at hand. 

Complexity theory implies the following dichotomy for NP-hard problems:

(i) either one cuts only LP vertices and uses the LP tableau to simplify 
separation (thus accepting the unavoidable cut saturation issues), 

(ii) or else one uses a more sophisticated search scheme with a polynomial 
number of steps (thus accepting an increased complexity inside the separation 
oracle).

E.g., for MIPs one can easily read violated intersection cuts from the optimal LP 
tableau, but these cut cannot be embedded into an efficient search scheme 
(unless P=NP)

If an exact black-box separation procedure is available that works with non-
extreme points, the standard search method can be much less efficient than 
those working with internal points.
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