George Reloaded

M. Monaci (University of Padova, ltaly)

joint work with M. Fischetti

MIP Workshop, July 2010

Why George?
Because of Karzan, Nemhauser, Savelsbergh “Information-based
branching schemes for binary linear mixed integer problems”
(MPC, 2009)

Branching on Nonchimerical Fractionalities

M. Monaci (University of Padova, ltaly)
joint work with M. Fischetti

MIP Workshop, July 2010

Why chimerical?

EISANDROCASTELLLCOM

Why chimerical?

Chimerical

> Created by or as if by a wildly fanciful imagination; highly
improbable.

» Given to unrealistic fantasies; fanciful.

» Of, related to, or being a chimera.

Outline

Branching
Branch on largest fractionality
Full strong branching
Chimeras

Parametrized FSB
Perseverant branching
Asymmetric FSB

Conclusions and future work

Branching

» Computationally speaking, branching is one of the most
crucial steps in Branch&Cut for general MIPs.

» We will concentrate on binary branching on a single variable
(still the most used policy)

» Key problem: how to select the (fractional) variable to branch
on?
» Recent works on this subject:
» Linderoth and Savelsbergh (1JOC, 1999)
Achterberg, Koch, Martin (ORL, 2005)
Patel and Chinneck (MPA, 2007)
Karzan, Nemhauser, Savelsbergh (MPC, 2009)

v VvYyy

Discussion

» Branching on a most-fractional variable is not a good choice.

» It is alike random branching.

Why?
» Think of a knapsack problem with side constraints:
» Large vs small items;
» Because of side constraints, many fractionalities might arise
(LP wants to squeeze 100% optimality, taking full advantage
of any possible option);
» E.g., we could have a single large item with small fractionality,
and a lot of small items with any kind of fractionality;
» Branching should detect the large fractional item ...
... but the presence of a lot of other fractionalities may favor
small items
» Even worse: MIPs with big-M coefficients to model
conditional constraints

» An “important” binary variable activating a critical constraint
may be very close to zero — never preferred for branching.

v

Full Strong Branching

v

Proposed by Applegate, Bixby, Chvatal and Cook in 1995.

Simulate branching on all fractional var.s, and choose one
among those that give “the best progress in the dual bound”.

v

v

... "finding the locally best variable to branch on”.

v

Computationally quite demanding: in practice, cheaper
methods:
» strong branching on a (small) subset of variables;

> hybrid schemes based on pseudocosts;
> .

Chimeras

» We need to distinguish between:
» “structural” fractionalities, that have a large impact in the
current MIP;
» ‘“chimerical” fractionalities, that can be fixed by only a small
deterioration of the objective function.
» Strong branching can be viewed as a
computationally-expensive way to detect chimerical
fractionalities.

» Try and fix every fractionality by simulating branching;
» 2 LPs for each candidate
» (Studying the implication of branching through, e.g.,
constraint propagation is also another interesting option, see
Patel and Chinneck)

Our starting point . ..

test set_random most inf least inf_pseudocost fullstrong strong hyb str

s ;9 19 206 TR—rTa—y
coma 32 i34 osms w0 e s
o s 100 23 07 e
Dokt 115 0 149 2 s o
ca o aaeer e ey s 1
Elcre ae s2er sare 3 3 s
2 e 1 a e
e o2 us2 ew @ 4 e
e TT e ro e
ik il006 110605 o008 12 59 i
ol 220 210 a1 s os w4
4t L 109 o =3
consi 164 is17 11380 1 o

i 14 e 306 n
iowr 1163 29 1219 s o
Taw o7 szt sosa 1% 7
Frore su e o o
. 33 s e o8 52

o ssa2 15060 60 603 i
eser 13210 12034 w73 2 5
o iesea iner iows 12 a6
ol isas a8 o7 98 o5

Table 5.1. Performance effect of different branching rules for solv;
denote the percental changes in the shifted geometric mean of
of branching nodes (bottom) compared to the default hybrid relial
Positive values represent a deterioration, negative values an improv

Computation (Actherberg’s thesis)

test set random most inf least inf pseudocost full strong strong hybr strong psc strinit reliability inference

MIFLIB +139 +139 +266 +16 +92 +38 +20 +5 -1 +101
CORAL +332 +314 +575 +40 +97 +59 +27 +2 +T +177
MILP +81 +86 +109 +23 +107 +a4 +43 +9 +6 +20
ENLIGHT +115 40 +149 27 +45 +11 +9 +27 +5 70
@ ALU +1271 +1991 +1891 +619 +180 +13 +11 +55 +36 35
E FCTP +288 +267 +379 +35 +36 +25 +4 +14 +2 +187
ACC +52 +85 +138 41 +174 +B2 +153 +11 +84 24
PO +912 +1152 +837 +98 +14 +18 +14 5 2 +188
ARCsET 41276 41114 £1296 +106 +112 +72 +38 +18 -1 4317
MIK +10606 +10606 +9009 +102 +59 +8 +11 +35 +2 45841
total +226 4219 +341 +33 +95 44 +30 -8 6 +95
MIPLIB +475 +341 +1096 +87 65 62 18 +13 7 +269
CORAL +694 +517 +1380 79 79 68 12 +18 +16 +329
MILP +194 +187 +306 71 72 59 +41 +40 +7 +76
ENLIGHT +163 29 +219 +3 83 85 +1 +23 8 49
2 ALy +6987 +5127 +9084 +1659 60 78 31 +120 +17 +6
-§ FOTP +511 +443 +931 +103 73 68 +6 +39 0 +364
Aco +393 +513 +1422 +88 95 52 +392 +31 +404 +33
PO +5542 +5060 +6039 +603 B1 73 28 +54 o +1137
ARCSET +3219 +2434 43573 +248 60 51 6 +£37 o +742
MIK +8994 47397 49195 +123 90 86 +1 +32 -1 +4652
total +543 +428 <976 98 75 -65 +3 +27 +9 +217

‘Table 5.1. Performance effect of different branching rules for solving MIP instances. The values
denote the percental changes in the shifted geometric mean of the runtime (top) and number
of branching nodes (bottom) compared to the default hybrid reliability/inference branching rule.
Positive values represent a deterioration, negative values an improvement.,

Our goal

» Full strong branching (FSB) vs the SCIP basic benchmark
version

» FSB doubles computing time, but
» reduces the number of nodes of 75%,
» though other effective options are available
> A speedup of just 2x would suffice to make FSB the fastest
method!

» OUR GOAL:
Find a computationally cheaper way to gather the same
information as FSB (or something similar) by solving fewer
LPs, so as to (at least) halve computing times.

Full Strong Branching (FSB)

» Let score(LBO, LB1) be the score function to be maximized
e.g., score = min(LB0, LB1), score = LB0 % LB1, or alike

» Assume score is monotone: decreasing LBO and/or LB1
cannot improve the score;

» FSB: for each fractional variable x;

(i) compute LBO; (resp. LB1j) as the LP worsening when
branching down (resp. up) on x;
(ii) compute score; = score(LBO;, LB1;)

and branch on a variable x; with maximum score.

» We aim at saving the solution of some LPs during the FSB
computation.

First Step: parametrized FSB

> let x* be the node frac. sol., and F its fractional support
» Simple data structure: for each j € F
» LBO; and LB1; (initially LBO; := LB1; := 00)
» f0; indicating whether LBO; has been computed exactly or it is
just an upper bound (initially f0; := FALSE); same for f1;
» Updating algorithm
» Look for the candidate variable x, that has maximum score,
» if (fOx = f1x = TRUE) DONE
» exactly compute LBOy (or LB1y), update fOx (or f1i), and
repeat

» KEY STEP: whenever a new LP solution X is available:
> possibly update LBO; if X; < [x] for some j € F
> possibly update LB1; if X; > [x"] for some j € F

Parametrized FSB

A o

let x* be the node frac. sol., and F its fractional support
set LBO; := LB1; := o0 and f0; := f1; := FALSE Vj € F
compute score; = score(LB0j, LB1;) Vje F
let k = argmax{score; : j € F}
if (fOx = f1y = TRUE) return(k)
if (fOx = FALSE)
» solve LP with additional constraint xx < [x;| (— solution X)

» set § =c'x — c"x* LBOx =6, and fOx = TRUE

> Vj € F st X < |x7] (resp. x; > [x])
> set LBO; = min{LBO0;,8} (resp. LB1; = min{LB1;,0})
> if (6 =0), set f0; = TRUE (resp. f1; = TRUE)

» goto 3

. else ...the same for LB1, and 1y

Testbed

> Set of 24 instances considered by Achterberg, Koch, Martin.

» Branching rule imposed within Cplex branch-and-bound.

» All heuristics and cut generation procedures have been
disabled

» optimal solution value used as an upper cutoff;
» instances obtained after preprocessing and root node using
Cplex default parameters.

» Test on a PC Intel Core i5 750 @ 2.67GHz
» 4 instances have been removed (unsolved with standard FSB
in 18,000 secs).
» Different score functions
» score(a, b) = min(a, b)
» score(a,b) =axb
» score(a, b) = pxmin(a, b) + (1 — p) *max(a, b), with = 1/6

Parametrized FSB: results

» Lexicographic implementation— same number of nodes.

» For each method: arithmetic (and geometric) mean of the
computing times (CPU seconds)

min prod °
FSB|700.68 (163.69)|551.71 (97.53)|450.88 (85.46)
(
(

PFSB|394.17 (87.47)|381.19 (69.00)338.45 (66.04)
% impr.| 43.74 (46.56)| 30.90 (29.25)| 24.93 (22.72)

Second Step: perseverant branching

» ldea: if we branched already on a variable, then that is likely
to be nonchimerical.
» Reasonable if the high-level choices have been performed with
a “robust” criterion.
» Implementation: use strong branching on a restricted list
containing the already-branched variables (if empty, use FSB).

» Related to the backdoor idea of having compact trees (see
Dilkina and Gomez, 2009);

» Similar to strong branching on a (restricted) candidate list
(defined, e.g., by means of pseudocosts).

Perseverant branching: results

min

prod

FSB
PFSB
PPFSB

700.68 (163.69
394.17 (87.47
276.35 (60.45

551.71 (97.53
381.19 (69.00

450.88
338.45
249.41

85.46
66.04
52.15

% impr.

60.55 (63.07

)
)
)
)

(
174.23 (46.02
68.42 (52.81

)
)
)
)

44.68

7
(
(
(
(

38.97

)
)
)
)

» Small reduction in the number of nodes.

Third Step: asymmetric branching

» ldea: for most instances, the DOWN branching is the most
critical one;
» fixing a variable UP is likely to improve the bound anyway
(“relevant” choice);
» not too many UP branchings occur.

» Implementation: when evaluating the score, forget about the
UP branching:
» guess that only LBO is useful in computing score;
» at most 1 LP for candidate.

Asymmetric branching: results

min

prod

FSB
PFSB
PPFSB
APPFSB

700.68 (163.69
394.17
276.35
197.01

551.71 (97.53
381.19 (69.00
174.23 (46.02

450.88
338.45
249.41
188.56

85.46
66.04
52.15
40.31

% impr.

71.88

)
(69.00)
(46.02)

189.40 (40.55)

65.67 (58.42)

58.17

W
(
(
(
(
(

52.83

)
)
)
)
)

> Large increase in the number of nodes.

Some further results

Savelsbergh.

>

» 2 instances have been removed (unsolved with standard FSB).

Set of 13 hard instances considered by Karzan, Nemhauser,

Same preprocessing and tuning as for the previous instances.

min

prod

I

FSB
PFSB
PPFSB
APPFSB

2638.98 (1264.86
1344.79 (700.50
914.20 (430.06
876.77 (343.39

1995.64 (834.79
1372.97 (608.88
782.51 (322.58
759.46 (298.42

1826.38
1301.54
875.45 (410.39
728.20 (293.76

770.40
590.07

~ NS

% impr.

66.77 (72.85

)
)
)
)
)

61.94 (64.25

)
)
)
)
)

60.12 (61.86

)
)
)
)
)

Conclusions and future work

We mainly focused on (pure) full strong branching,
that does not require any tuning,
Future research topics:
1. integration with different state-of-the-art strategies for
branching

strong branching on a (restricted) candidate list;
hybrid: use FSB at the first (high) nodes, then pseudocosts;
reliability branching;

vV vy vVvyYy

2. consider a computationally cheaper way of defining
nonchimerical fractionalities:

» Threshold Branching (TB): put a threshold on the LB
worsening, and solve a sequence of LPs to drive to integrality
as many (chimerical) fractional variables as possible, by using
a feasibility pump scheme

	Branching
	Branch on largest fractionality
	Full strong branching
	Chimeras

	Parametrized FSB
	Perseverant branching
	Asymmetric FSB
	Conclusions and future work

