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Why chimerical?



Why chimerical?

Chimerical

I Created by or as if by a wildly fanciful imagination; highly
improbable.

I Given to unrealistic fantasies; fanciful.

I Of, related to, or being a chimera.
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Branching

I Computationally speaking, branching is one of the most
crucial steps in Branch&Cut for general MIPs.

I We will concentrate on binary branching on a single variable
(still the most used policy)

I Key problem: how to select the (fractional) variable to branch
on?

I Recent works on this subject:
I Linderoth and Savelsbergh (IJOC, 1999)
I Achterberg, Koch, Martin (ORL, 2005)
I Patel and Chinneck (MPA, 2007)
I Karzan, Nemhauser, Savelsbergh (MPC, 2009)



Discussion

I Branching on a most-fractional variable is not a good choice.

I It is alike random branching.

Why?
I Think of a knapsack problem with side constraints:

I Large vs small items;
I Because of side constraints, many fractionalities might arise

(LP wants to squeeze 100% optimality, taking full advantage
of any possible option);

I E.g., we could have a single large item with small fractionality,
and a lot of small items with any kind of fractionality;

I Branching should detect the large fractional item . . .
I . . . but the presence of a lot of other fractionalities may favor

small items

I Even worse: MIPs with big-M coefficients to model
conditional constraints

I An “important” binary variable activating a critical constraint
may be very close to zero → never preferred for branching.



Full Strong Branching

I Proposed by Applegate, Bixby, Chvàtal and Cook in 1995.

I Simulate branching on all fractional var.s, and choose one
among those that give “the best progress in the dual bound”.

I . . . “finding the locally best variable to branch on”.
I Computationally quite demanding: in practice, cheaper

methods:
I strong branching on a (small) subset of variables;
I hybrid schemes based on pseudocosts;
I . . .



Chimeras

I We need to distinguish between:
I “structural” fractionalities, that have a large impact in the

current MIP;
I “chimerical” fractionalities, that can be fixed by only a small

deterioration of the objective function.

I Strong branching can be viewed as a
computationally-expensive way to detect chimerical
fractionalities.

I Try and fix every fractionality by simulating branching;
I 2 LPs for each candidate

I (Studying the implication of branching through, e.g.,
constraint propagation is also another interesting option, see
Patel and Chinneck)



Our starting point . . .



Computation (Actherberg’s thesis)



Our goal

I Full strong branching (FSB) vs the SCIP basic benchmark
version

I FSB doubles computing time, but
I reduces the number of nodes of 75%,
I though other effective options are available

I A speedup of just 2x would suffice to make FSB the fastest
method!

I OUR GOAL:
Find a computationally cheaper way to gather the same
information as FSB (or something similar) by solving fewer
LPs, so as to (at least) halve computing times.



Full Strong Branching (FSB)

I Let score(LB0, LB1) be the score function to be maximized
e.g., score = min(LB0, LB1), score = LB0 ∗ LB1, or alike

I Assume score is monotone: decreasing LB0 and/or LB1
cannot improve the score;

I FSB: for each fractional variable xj
(i) compute LB0j (resp. LB1j) as the LP worsening when

branching down (resp. up) on xj
(ii) compute scorej = score(LB0j , LB1j)

and branch on a variable xj with maximum score.

I We aim at saving the solution of some LPs during the FSB
computation.



First Step: parametrized FSB

I let x∗ be the node frac. sol., and F its fractional support
I Simple data structure: for each j ∈ F

I LB0j and LB1j (initially LB0j := LB1j :=∞)
I f 0j indicating whether LB0j has been computed exactly or it is

just an upper bound (initially f 0j := FALSE); same for f 1j

I Updating algorithm
I Look for the candidate variable xk that has maximum score,
I if (f 0k = f 1k = TRUE) DONE
I exactly compute LB0k (or LB1k), update f 0k (or f 1k), and

repeat

I KEY STEP: whenever a new LP solution x̃ is available:
I possibly update LB0j if x̃j ≤ bx∗

j c for some j ∈ F
I possibly update LB1j if x̃j ≥ dx∗

j e for some j ∈ F



Parametrized FSB

1. let x∗ be the node frac. sol., and F its fractional support

2. set LB0j := LB1j :=∞ and f 0j := f 1j := FALSE ∀j ∈ F

3. compute scorej = score(LB0j , LB1j) ∀j ∈ F

4. let k = arg max{scorej : j ∈ F}
5. if (f 0k = f 1k = TRUE) return(k)

6. if (f 0k = FALSE)
I solve LP with additional constraint xk ≤ bx∗k c (→ solution x̃)
I set δ = cT x̃ − cT x∗, LB0k = δ, and f 0k = TRUE
I ∀j ∈ F s.t. x̃j ≤ bx∗j c (resp. x̃j ≥ dx∗j e)

I set LB0j = min{LB0j , δ} (resp. LB1j = min{LB1j , δ})
I if (δ = 0), set f 0j = TRUE (resp. f 1j = TRUE)

I goto 3

7. else . . . the same for LB1k and f 1k



Testbed

I Set of 24 instances considered by Achterberg, Koch, Martin.

I Branching rule imposed within Cplex branch-and-bound.
I All heuristics and cut generation procedures have been

disabled
I optimal solution value used as an upper cutoff;
I instances obtained after preprocessing and root node using

Cplex default parameters.

I Test on a PC Intel Core i5 750 @ 2.67GHz

I 4 instances have been removed (unsolved with standard FSB
in 18,000 secs).

I Different score functions
I score(a, b) = min(a, b)
I score(a, b) = a ∗ b
I score(a, b) = µ∗min(a, b) + (1−µ)∗max(a, b), with µ = 1/6



Parametrized FSB: results

I Lexicographic implementation→ same number of nodes.

I For each method: arithmetic (and geometric) mean of the
computing times (CPU seconds)

min prod µ

FSB 700.68 (163.69) 551.71 (97.53) 450.88 (85.46)
PFSB 394.17 (87.47) 381.19 (69.00) 338.45 (66.04)

% impr. 43.74 (46.56) 30.90 (29.25) 24.93 (22.72)



Second Step: perseverant branching

I Idea: if we branched already on a variable, then that is likely
to be nonchimerical.

I Reasonable if the high-level choices have been performed with
a “robust” criterion.

I Implementation: use strong branching on a restricted list
containing the already-branched variables (if empty, use FSB).

I Related to the backdoor idea of having compact trees (see
Dilkina and Gomez, 2009);

I Similar to strong branching on a (restricted) candidate list
(defined, e.g., by means of pseudocosts).



Perseverant branching: results

min prod µ

FSB 700.68 (163.69) 551.71 (97.53) 450.88 (85.46)
PFSB 394.17 (87.47) 381.19 (69.00) 338.45 (66.04)

PPFSB 276.35 (60.45) 174.23 (46.02) 249.41 (52.15)

% impr. 60.55 (63.07) 68.42 (52.81) 44.68 (38.97)

I Small reduction in the number of nodes.



Third Step: asymmetric branching

I Idea: for most instances, the DOWN branching is the most
critical one;

I fixing a variable UP is likely to improve the bound anyway
(“relevant” choice);

I not too many UP branchings occur.

I Implementation: when evaluating the score, forget about the
UP branching:

I guess that only LB0 is useful in computing score;
I at most 1 LP for candidate.



Asymmetric branching: results

min prod µ

FSB 700.68 (163.69) 551.71 (97.53) 450.88 (85.46)
PFSB 394.17 (87.47) 381.19 (69.00) 338.45 (66.04)

PPFSB 276.35 (60.45) 174.23 (46.02) 249.41 (52.15)
APPFSB 197.01 (43.73) 189.40 (40.55) 188.56 (40.31)

% impr. 71.88 (73.28) 65.67 (58.42) 58.17 (52.83)

I Large increase in the number of nodes.



Some further results

I Set of 13 hard instances considered by Karzan, Nemhauser,
Savelsbergh.

I Same preprocessing and tuning as for the previous instances.

I 2 instances have been removed (unsolved with standard FSB).

min prod µ

FSB 2638.98 (1264.86) 1995.64 (834.79) 1826.38 (770.40)
PFSB 1344.79 (700.50) 1372.97 (608.88) 1301.54 (590.07)

PPFSB 914.29 (430.06) 782.51 (322.58) 875.45 (410.39)
APPFSB 876.77 (343.39) 759.46 (298.42) 728.20 (293.76)

% impr. 66.77 (72.85) 61.94 (64.25) 60.12 (61.86)



Conclusions and future work

We mainly focused on (pure) full strong branching,
that does not require any tuning,
Future research topics:

1. integration with different state-of-the-art strategies for
branching

I strong branching on a (restricted) candidate list;
I hybrid: use FSB at the first (high) nodes, then pseudocosts;
I reliability branching;
I . . .

2. consider a computationally cheaper way of defining
nonchimerical fractionalities:

I Threshold Branching (TB): put a threshold on the LB
worsening, and solve a sequence of LPs to drive to integrality
as many (chimerical) fractional variables as possible, by using
a feasibility pump scheme
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