
George Reloaded

M. Monaci (University of Padova, Italy)

joint work with M. Fischetti

MIP Workshop, July 2010



Why George?
Because of Karzan, Nemhauser, Savelsbergh “Information-based
branching schemes for binary linear mixed integer problems”
(MPC, 2009)



Branching on Nonchimerical Fractionalities

M. Monaci (University of Padova, Italy)

joint work with M. Fischetti

MIP Workshop, July 2010



Why chimerical?



Why chimerical?

Chimerical

I Created by or as if by a wildly fanciful imagination; highly
improbable.

I Given to unrealistic fantasies; fanciful.

I Of, related to, or being a chimera.



Outline

Branching
Branch on largest fractionality
Full strong branching
Chimeras

Parametrized FSB

Perseverant branching

Asymmetric FSB

Conclusions and future work



Branching

I Computationally speaking, branching is one of the most
crucial steps in Branch&Cut for general MIPs.

I We will concentrate on binary branching on a single variable
(still the most used policy)

I Key problem: how to select the (fractional) variable to branch
on?

I Recent works on this subject:
I Linderoth and Savelsbergh (IJOC, 1999)
I Achterberg, Koch, Martin (ORL, 2005)
I Patel and Chinneck (MPA, 2007)
I Karzan, Nemhauser, Savelsbergh (MPC, 2009)



Discussion

I Branching on a most-fractional variable is not a good choice.

I It is alike random branching.

Why?
I Think of a knapsack problem with side constraints:

I Large vs small items;
I Because of side constraints, many fractionalities might arise

(LP wants to squeeze 100% optimality, taking full advantage
of any possible option);

I E.g., we could have a single large item with small fractionality,
and a lot of small items with any kind of fractionality;

I Branching should detect the large fractional item . . .
I . . . but the presence of a lot of other fractionalities may favor

small items

I Even worse: MIPs with big-M coefficients to model
conditional constraints

I An “important” binary variable activating a critical constraint
may be very close to zero → never preferred for branching.



Full Strong Branching

I Proposed by Applegate, Bixby, Chvàtal and Cook in 1995.

I Simulate branching on all fractional var.s, and choose one
among those that give “the best progress in the dual bound”.

I . . . “finding the locally best variable to branch on”.
I Computationally quite demanding: in practice, cheaper

methods:
I strong branching on a (small) subset of variables;
I hybrid schemes based on pseudocosts;
I . . .



Chimeras

I We need to distinguish between:
I “structural” fractionalities, that have a large impact in the

current MIP;
I “chimerical” fractionalities, that can be fixed by only a small

deterioration of the objective function.

I Strong branching can be viewed as a
computationally-expensive way to detect chimerical
fractionalities.

I Try and fix every fractionality by simulating branching;
I 2 LPs for each candidate

I (Studying the implication of branching through, e.g.,
constraint propagation is also another interesting option, see
Patel and Chinneck)



Our starting point . . .



Computation (Actherberg’s thesis)



Our goal

I Full strong branching (FSB) vs the SCIP basic benchmark
version

I FSB doubles computing time, but
I reduces the number of nodes of 75%,
I though other effective options are available

I A speedup of just 2x would suffice to make FSB the fastest
method!

I OUR GOAL:
Find a computationally cheaper way to gather the same
information as FSB (or something similar) by solving fewer
LPs, so as to (at least) halve computing times.



Full Strong Branching (FSB)

I Let score(LB0, LB1) be the score function to be maximized
e.g., score = min(LB0, LB1), score = LB0 ∗ LB1, or alike

I Assume score is monotone: decreasing LB0 and/or LB1
cannot improve the score;

I FSB: for each fractional variable xj
(i) compute LB0j (resp. LB1j) as the LP worsening when

branching down (resp. up) on xj
(ii) compute scorej = score(LB0j , LB1j)

and branch on a variable xj with maximum score.

I We aim at saving the solution of some LPs during the FSB
computation.



First Step: parametrized FSB

I let x∗ be the node frac. sol., and F its fractional support
I Simple data structure: for each j ∈ F

I LB0j and LB1j (initially LB0j := LB1j :=∞)
I f 0j indicating whether LB0j has been computed exactly or it is

just an upper bound (initially f 0j := FALSE); same for f 1j

I Updating algorithm
I Look for the candidate variable xk that has maximum score,
I if (f 0k = f 1k = TRUE) DONE
I exactly compute LB0k (or LB1k), update f 0k (or f 1k), and

repeat

I KEY STEP: whenever a new LP solution x̃ is available:
I possibly update LB0j if x̃j ≤ bx∗

j c for some j ∈ F
I possibly update LB1j if x̃j ≥ dx∗

j e for some j ∈ F



Parametrized FSB

1. let x∗ be the node frac. sol., and F its fractional support

2. set LB0j := LB1j :=∞ and f 0j := f 1j := FALSE ∀j ∈ F

3. compute scorej = score(LB0j , LB1j) ∀j ∈ F

4. let k = arg max{scorej : j ∈ F}
5. if (f 0k = f 1k = TRUE) return(k)

6. if (f 0k = FALSE)
I solve LP with additional constraint xk ≤ bx∗k c (→ solution x̃)
I set δ = cT x̃ − cT x∗, LB0k = δ, and f 0k = TRUE
I ∀j ∈ F s.t. x̃j ≤ bx∗j c (resp. x̃j ≥ dx∗j e)

I set LB0j = min{LB0j , δ} (resp. LB1j = min{LB1j , δ})
I if (δ = 0), set f 0j = TRUE (resp. f 1j = TRUE)

I goto 3

7. else . . . the same for LB1k and f 1k



Testbed

I Set of 24 instances considered by Achterberg, Koch, Martin.

I Branching rule imposed within Cplex branch-and-bound.
I All heuristics and cut generation procedures have been

disabled
I optimal solution value used as an upper cutoff;
I instances obtained after preprocessing and root node using

Cplex default parameters.

I Test on a PC Intel Core i5 750 @ 2.67GHz

I 4 instances have been removed (unsolved with standard FSB
in 18,000 secs).

I Different score functions
I score(a, b) = min(a, b)
I score(a, b) = a ∗ b
I score(a, b) = µ∗min(a, b) + (1−µ)∗max(a, b), with µ = 1/6



Parametrized FSB: results

I Lexicographic implementation→ same number of nodes.

I For each method: arithmetic (and geometric) mean of the
computing times (CPU seconds)

min prod µ

FSB 700.68 (163.69) 551.71 (97.53) 450.88 (85.46)
PFSB 394.17 (87.47) 381.19 (69.00) 338.45 (66.04)

% impr. 43.74 (46.56) 30.90 (29.25) 24.93 (22.72)



Second Step: perseverant branching

I Idea: if we branched already on a variable, then that is likely
to be nonchimerical.

I Reasonable if the high-level choices have been performed with
a “robust” criterion.

I Implementation: use strong branching on a restricted list
containing the already-branched variables (if empty, use FSB).

I Related to the backdoor idea of having compact trees (see
Dilkina and Gomez, 2009);

I Similar to strong branching on a (restricted) candidate list
(defined, e.g., by means of pseudocosts).



Perseverant branching: results

min prod µ

FSB 700.68 (163.69) 551.71 (97.53) 450.88 (85.46)
PFSB 394.17 (87.47) 381.19 (69.00) 338.45 (66.04)

PPFSB 276.35 (60.45) 174.23 (46.02) 249.41 (52.15)

% impr. 60.55 (63.07) 68.42 (52.81) 44.68 (38.97)

I Small reduction in the number of nodes.



Third Step: asymmetric branching

I Idea: for most instances, the DOWN branching is the most
critical one;

I fixing a variable UP is likely to improve the bound anyway
(“relevant” choice);

I not too many UP branchings occur.

I Implementation: when evaluating the score, forget about the
UP branching:

I guess that only LB0 is useful in computing score;
I at most 1 LP for candidate.



Asymmetric branching: results

min prod µ

FSB 700.68 (163.69) 551.71 (97.53) 450.88 (85.46)
PFSB 394.17 (87.47) 381.19 (69.00) 338.45 (66.04)

PPFSB 276.35 (60.45) 174.23 (46.02) 249.41 (52.15)
APPFSB 197.01 (43.73) 189.40 (40.55) 188.56 (40.31)

% impr. 71.88 (73.28) 65.67 (58.42) 58.17 (52.83)

I Large increase in the number of nodes.



Some further results

I Set of 13 hard instances considered by Karzan, Nemhauser,
Savelsbergh.

I Same preprocessing and tuning as for the previous instances.

I 2 instances have been removed (unsolved with standard FSB).

min prod µ

FSB 2638.98 (1264.86) 1995.64 (834.79) 1826.38 (770.40)
PFSB 1344.79 (700.50) 1372.97 (608.88) 1301.54 (590.07)

PPFSB 914.29 (430.06) 782.51 (322.58) 875.45 (410.39)
APPFSB 876.77 (343.39) 759.46 (298.42) 728.20 (293.76)

% impr. 66.77 (72.85) 61.94 (64.25) 60.12 (61.86)



Conclusions and future work

We mainly focused on (pure) full strong branching,
that does not require any tuning,
Future research topics:

1. integration with different state-of-the-art strategies for
branching

I strong branching on a (restricted) candidate list;
I hybrid: use FSB at the first (high) nodes, then pseudocosts;
I reliability branching;
I . . .

2. consider a computationally cheaper way of defining
nonchimerical fractionalities:

I Threshold Branching (TB): put a threshold on the LB
worsening, and solve a sequence of LPs to drive to integrality
as many (chimerical) fractional variables as possible, by using
a feasibility pump scheme


	Branching
	Branch on largest fractionality
	Full strong branching
	Chimeras

	Parametrized FSB
	Perseverant branching
	Asymmetric FSB
	Conclusions and future work



