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QAP definition
complete directed graph G=(V,A) and n=|V| facilities to be 

assigned to its nodes 

distance from node i to node j is bij

required flow from facility u to facility v is auv

decision var.s: xiu =1 iff facility u is assigned to node i, =0 othw.



ESC instances in 3 steps



Step 1: don’t break my symmetries!
Many QAP instances are highly symmetrical (certain facility/node 

permutations do not affect solution cost nor feasibility) 

Symmetry is typically viewed as a useful feature in mathematics, but…

… it tricks enumeration (equivalent sol.s visited again and again)

Usual recipe in discrete optimization:  break it! 

Instead, we propose a new way to exploit it to reduce problem size and 

complexity



Clone definition

afg = agf

afh = agh for all h <> f,g

ahf = ahg for all h <> f,g

Assume wlog bii = 0 for all nodes i.

Two facilities f and g are clones iff:

Equivalence relation that partitions the set of facilities 

into clone clusters



Shrinking clones

All esc instances have such clones 

(not just “isolated” ones…)

We shrink them and update the model 

accordingly

esc32a 32 x 32 32 x 26

esc32b 32 x 32 32 x 25

esc32c 32 x 32 32 x 10

esc32d 32 x 32 32 x 13

esc32h 32 x 32 32 x 14

esc64a 64 x 64 64 x 15

esc128 128 x 128 128 x 21



Step 2: B&C design 



Main ingredients  

carefully chosen MILP formulation

locally valid cut separation based on 

Gilmore-Lawler bounds

custom QAP-specific branching strategy

custom symmetry detection on matrix b 

and aggressive orbital branching



Step 2.1: choosing the model

Introducing variables

we get the basic Kaufman-Broeckx (KB) MILP model



Step 2.1: handy MILP

The Kb model is tiny and fast ... but its bound is really 

bad (always zero at the root)

However we can improve it through the following 

family of inequalities (Xia and Yuan, 2006)

where minAPiu is the Gilmore-Lawler term computed by 

solving a linear assignment problem with xiu = 1

This family of cuts strengthen the KB model a lot  we 

separate local versions of them throughout the B&C 

tree, by using a fast separation procedure



Step 2.2: branching
A good branching order is crucial for the B&C

Default strategies are NOT particularly effective on 

these instances

Basic idea   we want to branch first on the 

variables that have a larger range of objective 

values for the possible assignments

We define the branching priority for xiu as



Step 2.3: orbital branching

Clone shrinking takes care of (most of) 

symmetry on matrix a  what about matrix b?

On esc instances, also matrix b contains 

symmetries (but not of clone type)  resort to 

orbital branching (Ostrowski et al., 2011)

We compute the appropriate symmetry group 

directly on matrix b (faster than considering 

the whole model)

we could have used nauty, but we exploited 

the particular structure of esc instances and 

implemented an ad-hoc procedure



Step 2.3: matrix b structure
bij = HammingDistance(i-1,j-1)-1

Two operations on binary string preserve the 

Hamming distance:

0011

1001

0000

1010

bit flip

0011

1001

1001

1100

bit permutation

fix facility 11...1 form the beginning  no bit flips 

left

compute orbits and stabilizers from explicit list of 

bit permutations!



Cplex 12.2 interactive mode 

(8 threads, Intel Xeon 3.2Ghz, 16GB ram)



B&C results  

esc32c 616 642 642 1156s

esc32d 191 200 200 473s

esc64a 98 116 116 84s

IBM Cplex 12.2 on Intel Xeon 3.2GHz - 16GB RAM - 8 threads



A closer look at esc64a

unshrunken any hopeless +∞

shrunken cplex default >3.600 >8.000.000

shrunken cplex tweaked 966 1.750.000

shrunken cplex twk + ORD 577 1.300.000

shrunken our B&C 84 142.000

IBM Cplex 12.2 on Intel Xeon 3.2GHz - 16GB RAM - 8 threads

Similar results are obtained on the other esc instances



Whale watching (esc128)



Step 3: flow splitting 

Split matrix a as a = a1+a2, with a1,a2≥0

Solve QAP(a1,b) and QAP(a2,b) separately

Lower bound property:

full equivalence if we impose the two solutions 

coincide (equality)  variable splitting model

just a relaxation otherwise (lower bound)



Two better than one?

the two models are still QAPs of the same size as 

before  why should we want to do this?

two main reasons:

1. the final bound after a fixed amount of  

enumeration on a weaker model might be much 

better than that based on a stronger model (strange 

but true!)

2. if the two QAPs have a simpler structure they 

might be much easier to solve than the original 

instance (in particular, we can actually add 

symmetry to the model!)



How to split the flow matrix?

two (independent) strategies

1. select a subset of facilities and zero out all 

distances in their clique  good strategy 

when there are (almost) disconnected 

components in flow support

2. define a1 as clip(a,[0,1]) and a2 = a - a1

improve cost “uniformity” 

3. can be applied sequentially to get a “longer” 

split chain        a = a1 + a2 + ... ak



Flow splitting for esc32a … 



… and for the big whale (esc128)



Flow splitting results

esc32a 130 68+60 = 128 6 + 45 = 51s

esc32h 438 340+98 = 438 4 + 7795 = 7799s

esc128 64 48+16 = 64 2 + 7 = 9s (!!!)

IBM Cplex 12.2 on Intel Xeon 3.2GHz - 16GB RAM - 8 threads



Conclusions & Future work

We could solve unsolved esc instances in a surprisingly short 

amount of time, including esc128 (the largest QAPLIB 

instance ever solved) 

TODO list

develop a B&B algorithm using a variable-splitting model 

based on flow splitting

try other QAP classes 

generalize to other classes of difficult MI(N)LPs  Orbital 

shrinking (F.-Liberti, 2011)



Thank you


