1,2,3...QAP!

Matteo Fischetti (joint work with Michele Monaci and Domenico Salvagnin) DEI University of Padova

IPDU, Newcastle, July 2011

QAP definition

- complete directed graph G=(V,A) and n=|V| facilities to be assigned to its nodes
- distance from node i to node j is bij
- required flow from facility u to facility v is auv
- * decision var.s: $x_{iu} = 1$ iff facility *u* is assigned to node *i*, =0 othw.

$$\min \sum_{i} \sum_{u} \sum_{j} \sum_{v} a_{uv} b_{ij} x_{iu} x_{jv}$$
$$\sum_{i} x_{iu} = 1 \quad \forall u$$
$$\sum_{i} x_{iu} = 1 \quad \forall i$$
$$x_{iu} \in \{0, 1\} \quad \forall i, u$$

ESC instances in 3 steps

B. Eschermann and H.J. Wunderlich [EsWu:90]

These examples stem from an application in computer science, from the testing of self-testable sequential circuits. are due to [ClPe:94] (n=16) and [BrClMaPe:96] (n=32).

	name	n	feas	s.sol.	permutation/bound gap
	Esc16a	16	68	(OPT)	(2,14,10,16,5,3,7,8,4,6,12,11,15,13,9,1)
	Esc16b	16	292	(OPT)	(6,3,7,5,13,1,15,2,4,11,9,14,10,12,8,16)
	Esc16c	16	160	(OPT)	(11,14,10,16,12,8,9,3,13,6,5,7,15,2,1,4)
	Esc16d	16	16	(OPT)	(14,2,12,5,6,16,8,10,3,9,13,7,11,15,4,1)
	Esc16e	16	28	(OPT)	(16,7,8,15,9,12,14,10,11,2,6,5,13,4,3,1)
	Esc16f	16	0	(OPT)	(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)
	Esc16g	16	26	(OPT)	(8,11,9,12,15,16,14,10,7,6,2,5,13,4,3,1)
	Esc16h	16	996	(OPT)	(13,9,10,15,3,11,4,16,12,7,8,5,6,2,1,14)
	Esc16i	16	14	(OPT)	(13,9,11,3,7,5,6,2,1,15,4,14,12,10,8,16)
	Esc16j	16	8	(OPT)	(8,3,16,14,2,12,10,6,9,5,13,11,4,7,15,1)
*	Esc32a	32	130	(Ro-TS)	103 (L&P) 20.77 %
*	Esc32b	32	168	(Ro-TS)	132 (L&P) 21.43 %
*	Esc32c	32	642	(SIM-1)	616 (L&P) 4.05 %
*	Esc32d	32	200	(Ro-TS)	191 (L&P) 4.50 %
	Esc32e	32	2	(OPT)	(1,2,5,6,8,16,13,19,9,32,7,22,24,20,4,12,3,
					17,29,21,11,25,27,18,30,31,23,28,14,15,26,10)
	Esc32g	32	6	(OPT)	(14,15,16,12,11,26,30,10,25,8,29,22,31,28,
					13,1,19,9,17,32,24,18,4,2,20,5,21,3,7,6,23,27)
*	Esc32h	32	438	(Ro-TS)	424 (L&P) 3.20 %
	Esc64a	64	116	(SIM-1)	98 (SDP1) 15.52 %
	Esc128	128	64	(GRASP)	2 (GLB) 96.86 %

Step 1: don't break my symmetries!

- Many QAP instances are highly symmetrical (certain facility/node * permutations do not affect solution cost nor feasibility)
- Symmetry is typically viewed as a useful feature in mathematics, but... *
- ... it tricks enumeration (equivalent sol.s visited again and again) *
- Usual recipe in discrete optimization: break it! *
- Instead, we propose a new way to exploit it to reduce problem size and * complexity

Clone definition

Assume wlog $b_{ii} = 0$ for all nodes *i*.

Two facilities f and g are clones iff:

* Afg = Agf

- Afh = Agh for all h <> f,g
- Ahf = Ahg for all h <> f,g

Equivalence relation that **partitions** the set of facilities into clone clusters

Shrinking clones

- All esc instances have such clones (not just "isolated" ones...)
- * We shrink them and update the model accordingly

	32 x 26	32 x 32	000220
removing a		32 x 32	esc32a
We are removing a huge amount of	32 x 25		esc32b
symmetion is	32 x 10	32 x 32	esc32c
any tornhopeless otherwise!!!	32 x 13	32 x 32	esc32d
	32 x 14	32 x 32	esc32h
	64 x 15	64 x 64	esc64a
	128 x 21	128 x 128	esc128

Step 2: B&C design

Main ingredients

- carefully chosen MILP formulation
- Iocally valid cut separation based on Gilmore-Lawler bounds
- custom QAP-specific branching strategy
- custom symmetry detection on matrix b and aggressive orbital branching

Step 2.1: choosing the model

Introducing variables $w_{iu} = (\sum_{i} \sum_{j} a_{uv} b_{ij} x_{jv}) x_{iu}$

we get the basic Kaufman-Broeckx (KB) MILP model

$$\begin{split} \min \sum_{i} \sum_{u} w_{iu} \\ \sum_{i} x_{iu} &= |C_{u}| \quad \forall u \\ \sum_{i} x_{iu} &= 1 \quad \forall i \\ \sum_{u} \sum_{v} \sum_{v} a_{uv} b_{ij} x_{jv} \leq w_{iu} + M_{iu} (1 - x_{iu}) \quad \forall i, u \\ w_{iu} \geq 0 \quad \forall i, u \end{split}$$

Step 2.1: handy MILP

The Kb model is tiny and fast ... but its bound is really bad (always zero at the root)

However we can improve it through the following family of inequalities (Xia and Yuan, 2006)

$$w_{iu} \ge minAP_{iu} x_{iu} \quad \forall i, u$$

where $minAP_{iu}$ is the Gilmore-Lawler term computed by solving a linear assignment problem with $x_{iu} = 1$

This family of cuts strengthen the KB model a lot \rightarrow we separate local versions of them throughout the B&C tree, by using a fast separation procedure

Step 2.2: branching

- * A good branching order is **crucial** for the B&C
- Default strategies are NOT particularly effective on these instances
- Basic idea → we want to branch first on the variables that have a larger range of objective values for the possible assignments
- * We define the branching priority for xiu as

 $(maxAP_{iu} - minAP_{iu})(n+1)^2 + u(n+1) + i$

Step 2.3: orbital branching

- ★ Clone shrinking takes care of (most of) symmetry on matrix a → what about matrix b?
- * On esc instances, also matrix b contains symmetries (but not of clone type) → resort to orbital branching (Ostrowski et al., 2011)
- We compute the appropriate symmetry group directly on matrix b (faster than considering the whole model)
- we could have used *nauty*, but we exploited the particular structure of esc instances and implemented an ad-hoc procedure

Step 2.3: matrix b structure

- bij = HammingDistance(i-1,j-1)-1
- Two operations on binary string preserve the Hamming distance:

- ★ fix facility 11...1 form the beginning → no bit flips left
- * compute orbits and stabilizers from explicit list of bit permutations!

Cplex 12.2 interactive mode (8 threads, Intel Xeon 3.2Ghz, 16GB ram)

Instance	n	m	OPT	time (s)	#nodes
esc16a	16	9	68	0.35	4,133
esc16b	16	$\overline{7}$	292	3.07	71,075
esc16c	16	12	160	130.98	$2,\!652,\!014$
esc16d	16	12	16	0.51	10,796
esc16e	16	8	28	0.05	421
esc16f	16	1	0	0.00	0
esc16g	16	9	26	0.04	450
esc16h	16	5	996	0.23	4,967
esc16i	16	10	14	0.18	3,216
esc16j	16	7	8	0.03	114
esc32c*	<mark>32</mark>	<mark>10</mark>	642	9,643.82	$81,\!650,\!962$
esc32d*	<mark>32</mark>	<mark>13</mark>	<mark>200</mark>	2,973.26	(12,757,770)
esc32e	32	6	2	0.04	70
esc32g	32	$\overline{7}$	6	0.06	597
esc64a*	64	15	<mark>116</mark>	$\frac{509.87}{2}$	1,206,370
tai64c	64	2	$1,\!855,\!928$	$18,\!250.40$	$1,\!216,\!074,\!081$

B&C results

esc32c	616	642	642	1156s
esc32d	191	200	200	473s
esc64a	98	116	116	84s

IBM Cplex 12.2 on Intel Xeon 3.2GHz - 16GB RAM - 8 threads

3 instances solved in half an hour!

A closer look at esc64a

unshrunken	any	hopeless	+∞
shrunken	cplex default	>3.600	>8.000.000
shrunken	cplex tweaked	966	1.750.000
shrunken	cplex twk + ORD	577	1.300.000
shrunken	our B&C	84	142.000

IBM Cplex 12.2 on Intel Xeon 3.2GHz - 16GB RAM - 8 threads

Similar results are obtained on the other esc instances

Whale watching (esc128)

Esc128 128 64 (GRASP) 2 (GLB)

96.86 %

Step 3: flow splitting

- ***** Split matrix a as $a = a_1 + a_2$, with $a_1, a_2 \ge 0$
- Solve QAP(a1,b) and QAP(a2,b) separately
- Lower bound property:

$$opt(QAP(a_1, b)) + opt(QAP(a_2, b)) \le opt(QAP(a, b))$$

- ★ full equivalence if we impose the two solutions coincide (equality) → variable splitting model
- just a relaxation otherwise (lower bound)

Two better than one?

- ★ the two models are still QAPs of the same size as before → why should we want to do this?
- two main reasons:
 - the final bound after a fixed amount of enumeration on a weaker model might be much better than that based on a stronger model (strange but true!)
 - 2. if the two QAPs have a simpler structure they might be much easier to solve than the original instance (in particular, we can actually add symmetry to the model!)

How to split the flow matrix?

- two (independent) strategies
 - select a subset of facilities and zero out all distances in their clique → good strategy when there are (almost) disconnected components in flow support
 - 2. define a_1 as clip(a, [0, 1]) and $a_2 = a a_1 \rightarrow$ improve cost "uniformity"
 - 3. can be applied sequentially to get a "longer" split chain $a = a_1 + a_2 + ... a_k$

Flow splitting for esc32a ...

... and for the big whale (esc128)

FI	ow split	ting resu	lts
esc32a	130	68+60 = 128	6 + 45 = 51s
esc32h	438	340+98 = 438	4 + 7795 = 7799s
esc128	64	48+16 = 64	2 + 7 = 9s (!!!)
BM Cplex 12.2 on Inte	I Xeon 3.2GHz - 16	GB RAM - 8 threads	2 more instances solved and 1 much improved bound!
BM Cplex 12.2 on Inte	el Xeon 3.2GHz - 16	GB RAM - 8 threads	2 more instances solved and 1 mu improved bound

Conclusions & Future work

 We could solve unsolved esc instances in a surprisingly short amount of time, including esc128 (the largest QAPLIB instance ever solved)

TODO list

- develop a B&B algorithm using a variable-splitting model based on flow splitting
- try other QAP classes
- ★ generalize to other classes of difficult MI(N)LPs → Orbital shrinking (F.-Liberti, 2011)

Thank you