
1,2,3...QAP!
Matteo Fischetti

(joint work with Michele Monaci and Domenico Salvagnin)

DEI University of Padova

IPDU, Newcastle, July 2011

QAP definition
complete directed graph G=(V,A) and n=|V| facilities to be

assigned to its nodes

distance from node i to node j is bij

required flow from facility u to facility v is auv

decision var.s: xiu =1 iff facility u is assigned to node i, =0 othw.

ESC instances in 3 steps

Step 1: don’t break my symmetries!
Many QAP instances are highly symmetrical (certain facility/node

permutations do not affect solution cost nor feasibility)

Symmetry is typically viewed as a useful feature in mathematics, but…

… it tricks enumeration (equivalent sol.s visited again and again)

Usual recipe in discrete optimization: break it!

Instead, we propose a new way to exploit it to reduce problem size and

complexity

Clone definition

afg = agf

afh = agh for all h <> f,g

ahf = ahg for all h <> f,g

Assume wlog bii = 0 for all nodes i.

Two facilities f and g are clones iff:

Equivalence relation that partitions the set of facilities

into clone clusters

Shrinking clones

All esc instances have such clones

(not just “isolated” ones…)

We shrink them and update the model

accordingly

esc32a 32 x 32 32 x 26

esc32b 32 x 32 32 x 25

esc32c 32 x 32 32 x 10

esc32d 32 x 32 32 x 13

esc32h 32 x 32 32 x 14

esc64a 64 x 64 64 x 15

esc128 128 x 128 128 x 21

Step 2: B&C design

Main ingredients

carefully chosen MILP formulation

locally valid cut separation based on

Gilmore-Lawler bounds

custom QAP-specific branching strategy

custom symmetry detection on matrix b

and aggressive orbital branching

Step 2.1: choosing the model

Introducing variables

we get the basic Kaufman-Broeckx (KB) MILP model

Step 2.1: handy MILP

The Kb model is tiny and fast ... but its bound is really

bad (always zero at the root)

However we can improve it through the following

family of inequalities (Xia and Yuan, 2006)

where minAPiu is the Gilmore-Lawler term computed by

solving a linear assignment problem with xiu = 1

This family of cuts strengthen the KB model a lot  we

separate local versions of them throughout the B&C

tree, by using a fast separation procedure

Step 2.2: branching
A good branching order is crucial for the B&C

Default strategies are NOT particularly effective on

these instances

Basic idea  we want to branch first on the

variables that have a larger range of objective

values for the possible assignments

We define the branching priority for xiu as

Step 2.3: orbital branching

Clone shrinking takes care of (most of)

symmetry on matrix a  what about matrix b?

On esc instances, also matrix b contains

symmetries (but not of clone type)  resort to

orbital branching (Ostrowski et al., 2011)

We compute the appropriate symmetry group

directly on matrix b (faster than considering

the whole model)

we could have used nauty, but we exploited

the particular structure of esc instances and

implemented an ad-hoc procedure

Step 2.3: matrix b structure
bij = HammingDistance(i-1,j-1)-1

Two operations on binary string preserve the

Hamming distance:

0011

1001

0000

1010

bit flip

0011

1001

1001

1100

bit permutation

fix facility 11...1 form the beginning  no bit flips

left

compute orbits and stabilizers from explicit list of

bit permutations!

Cplex 12.2 interactive mode

(8 threads, Intel Xeon 3.2Ghz, 16GB ram)

B&C results

esc32c 616 642 642 1156s

esc32d 191 200 200 473s

esc64a 98 116 116 84s

IBM Cplex 12.2 on Intel Xeon 3.2GHz - 16GB RAM - 8 threads

A closer look at esc64a

unshrunken any hopeless +∞

shrunken cplex default >3.600 >8.000.000

shrunken cplex tweaked 966 1.750.000

shrunken cplex twk + ORD 577 1.300.000

shrunken our B&C 84 142.000

IBM Cplex 12.2 on Intel Xeon 3.2GHz - 16GB RAM - 8 threads

Similar results are obtained on the other esc instances

Whale watching (esc128)

Step 3: flow splitting

Split matrix a as a = a1+a2, with a1,a2≥0

Solve QAP(a1,b) and QAP(a2,b) separately

Lower bound property:

full equivalence if we impose the two solutions

coincide (equality)  variable splitting model

just a relaxation otherwise (lower bound)

Two better than one?

the two models are still QAPs of the same size as

before  why should we want to do this?

two main reasons:

1. the final bound after a fixed amount of

enumeration on a weaker model might be much

better than that based on a stronger model (strange

but true!)

2. if the two QAPs have a simpler structure they

might be much easier to solve than the original

instance (in particular, we can actually add

symmetry to the model!)

How to split the flow matrix?

two (independent) strategies

1. select a subset of facilities and zero out all

distances in their clique  good strategy

when there are (almost) disconnected

components in flow support

2. define a1 as clip(a,[0,1]) and a2 = a - a1

improve cost “uniformity”

3. can be applied sequentially to get a “longer”

split chain a = a1 + a2 + ... ak

Flow splitting for esc32a …

… and for the big whale (esc128)

Flow splitting results

esc32a 130 68+60 = 128 6 + 45 = 51s

esc32h 438 340+98 = 438 4 + 7795 = 7799s

esc128 64 48+16 = 64 2 + 7 = 9s (!!!)

IBM Cplex 12.2 on Intel Xeon 3.2GHz - 16GB RAM - 8 threads

Conclusions & Future work

We could solve unsolved esc instances in a surprisingly short

amount of time, including esc128 (the largest QAPLIB

instance ever solved)

TODO list

develop a B&B algorithm using a variable-splitting model

based on flow splitting

try other QAP classes

generalize to other classes of difficult MI(N)LPs  Orbital

shrinking (F.-Liberti, 2011)

Thank you

