
On the role of randomness

in exact tree search methods

EURO XXV, Vilnius, July 2012 1

Matteo Fischetti, University of Padova

(based on joint work with Michele Monaci)

Part I: cutting planes

2

Cutting planes for MIPs

• Cutting planes are crucial for

solving hard MIPs

• Useful to tighten bounds but…

• … also potentially dangerous

(heavier LPs, numerical troubles,

etc.)

• Every solver has its own recipe

to handle them

• Conservative policies are

typically implemented (at least,

in the default)

3

Measuring the power of a single cut

• Too many cuts might hurt …

 … what about a single cut?

• The added single cut can be beneficial because of

– root-node bound improvement

– better pruning along the enumeration tree

– but also: improved preprocessing and variable fixing, etc.

• Try to measure what can be achieved by a single cut to be

added to the given initial MIP formulation

• … thus allowing the black-box MIP solver to take full advantage of it

4

Rules of the game

• We are given a MIP described through an input .LP file

 (MIP) min { z : z = c x, Ax ~ b, xj integer j ε J }

• We are allowed to generate a single valid cut α x ≥ α0

• … and to append it to the given formulation to obtain

 (MIP++) min { z : α x ≥ α0 , z = c x, Ax ~ b, xj integer j ε J }

• Don’t cheat: CPU time needed to generate the cut must be

comparable with CPU time to solve the root-node LP

• Apply a same black-box MIP solver to both MIP and MIP++

• … and compare computing times to solve both to proven optimality

5

Testbed

 We took all the instances in the MIPLIB 2003 and COR@L libraries

and solved them through IBM ILOG Cplex 12.2 (default setting, no

upper cutoff, single-thread mode) on an Intel i5-750 CPU running at

2.67GHz.

 We disregarded the instances that turned out to be too “easy" can

be solved within just 10,000 nodes or 100 CPU seconds on our PC

 Final testbed containing 38 hard instances

6

Computational setting

• MIP black-box solver: IBM ILOG Cplex 12.2 (single thread) with

default parameters; 3,600 CPU sec.s time limit on a PC.

• To reduce side-effects due to heuristics:

– Optimal solution value as input cutoff

– No internal heuristics (useless because of the above)

• Comparison among 10 different methods:

 - Method #0: Cplex default (no cut added)

 - Methods #1-9: nine variants to generate a single cut

7

Computational results

Avg. sec.s Avg. nodes Time ratio Node ratio

Default (no cut) 533,00 64499,09 1,00 1,00

Method #1 397,50 37194,89 0,75 0,58

Method #2 419,22 44399,47 0,79 0,69

Method #3 468,87 48971,72 0,88 0,76

Method #4 491,77 46348,39 0,92 0,72

Method #5 582,42 58223,10 1,09 0,90

Method #6 425,38 43492,35 0,80 0,67

Method #7 457,95 46067,74 0,86 0,71

Method #8 446,89 44481,75 0,84 0,69

Method #9 419,57 41549,07 0,79 0,64

8

Cases with large speedup

NO CUT

METHOD #1

Time Nodes Time Nodes

Time

Speedup

glass4 43,08 118.151 12,95 17.725 3,33

neos-1451294 3.590,27 20.258 102,94 521 34,88

neos-1593097 149,94 10.879 16,12 508 9,30

neos-1595230 1.855,69 152.951 770,6 89.671 2,41

neos-603073 452,4 36.530 130,75 10.017 3,46

neos-911970 3.588,54 5.099.389 3,29 1.767 1.090,74

ran14x18_1 3.287,59 1.480.624 2.066,70 759.265 1,59

9

Conclusions

1. We have proposed a new cut-generation procedure

2. … to generate just one cut to be appended to the initial

formulation

3. Computational results on a testbed of 38 hard MIPs from the

literature have been presented

4. … showing that an average speedup of 25% can be achieved

w.r.t. Cplex

5. A key ingredient of our method is not to overload the LP by adding

too many cuts single cut mode

11

Can you just describe the 10

methods?

• Method # 0 is the default (no cut added)

• All other methods add a single cut obtained as follows (assume x ≥ 0)

– Step 1. Choose a variable permutation

– Step 2. Obtain a single valid inequality through lifting as

12

How about variable permutations?

• Nine different policies for the nine methods:

1.Pseudo random sequence

2.Pseudo random sequence

3.Pseudo random sequence

4.Pseudo random sequence

5.Pseudo random sequence

6.Pseudo random sequence

7.Pseudo random sequence

8.Pseudo random sequence

9.Pseudo random sequence

13

Seed =

How about lifting?

• To have a fast lifting, we specialize

• to

• and finally to

14

Where is the trick?

• The additional cut is of course redundant and

 hence removed

• Minor changes (including var. order in the LP file)

 …change initial conditions (col. sequence etc.)

• Tree search is very sensitive to initial conditions

 …as branching acts as a chaotic amplifier the pinball effect

• (Some degree of) erraticism is intrinsic in tree-search nature …

• … you cannot avoid it (important for experiment design)

• … and you better try to turn it to your advantage

• … though you will never have a complete control of it

15

Parallel independent runs

• Experiments with k independent runs with randomly-perturbed initial

conditions (Cplex 12.2 default, single thread)

16

A nice surprise

• Incidentally, during these experiments we were able to solve to

proven optimality, for the first time, the very hard MIPLIB 2010

instance buildingenergy

• One of our parallel runs (k=2) converged after 10,899 nodes and

2,839 CPU seconds of a IBM power7 workstation integer solution

of value 33,285.4433 optimal within default tolerances

• We then reran Cpx12.2 (now with 8 threads) with optimality

tolerance zero and initial upper bound of 33,285.4433 0-tolerance

optimal solution of value 33,283.8532 found after 623,861 additional

nodes and 7,817 CPU sec.s

17

Cplex vs Cplex
• 20 runs of Cplex 12.2 (default, 1 thread) with scrambled rows&col.s

• 99 instances from MIPLIB 2010 (Primal and Benchmark)

Chile, March 2012 18

Part II: Exploiting erraticism

• A simple bet-and-run scheme

– Make KTOT independent short runs with randomized initial

conditions, and abort them after MAX_NODES nodes

– Take statistics at the end of each short run (total depth and n. of

open nodes, best bound, remaining gap, etc.)

– Based on the above statistics, choose the most promising run

(say the k-th one)

– “Bet on” run k, i.e., restore exactly the initial conditions of the k-th

run and reapply the solver from scratch (without node limit)

 20

Discussion

• Similar approaches already used for solving very hard problems

(notably, QAPs etc.), by trying different parameter configurations and

estimating the final tree size in a clever way

• The underlying “philosophy” is that a BEST parameter configuration

exists somewhere and could be found if we were clever enough

• Instead, we do not pretend to find a best-possible tuning of solver’s

param.s (whatever this means)

• … our order of business here is to play with randomness only

• We apply a very quick-and-dirty selection criterion for the run to bet

on

• … as we know that no criterion can be perfect what we are looking

for is just a positive correlation with the a-posteriori best run

21

Some experiments

22

IBM ILOG Cplex 12.2 (single thread, default without dynamic search)

Time limit: 10,000 CPU sec.s on a PC i5-750@2.67GHz

Large testbed with 492 instances taken from:

Outcome (5 short runs, 5 nodes each)

23

Validation

24

The previous table shows a 15% speedup for hard cases in class]1,000-10,000]

Validation on 10 copies of each hard instance (random rows&col.s scrambling)

Conclusions

• Erraticism is just a consequence of the exponential nature of tree

search, that acts as a chaotic amplifier, so it is (to some extent)

unavoidable you have to cope with it somehow!

• Tests are biased if “we test our method on the training set”

• The more parameters, the easier to make overtuning power-of-

ten effect

• Removing “instances that are easy for our competitor” is not fair

• When comparing methods A and B, the instance classification must

be the same if A and B swap blind wrt the name of the method

25

Conclusions

• High-sensitivity to initial conditions is generally viewed as a

drawback of tree search methods, but it can be a plus

• We have proposed a bet-and-run approach to actually turn

erraticism to one's advantage

• Computational results on a large MIP testbed show the potential of

this simple approach… though more extensive tests are needed

• More clever selection on the run to bet on possible with a better

classification method (support vector machine & alike)?

• Hot topic: exploiting randomness in a massive parallel setting…

26

Thanks for your attention

EURO XXV, Vilnius, July 2012 27

