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Part I: cutting planes 
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Cutting planes for MIPs 

• Cutting planes are crucial for 

solving hard MIPs 

 

• Useful to tighten bounds but… 

• … also potentially dangerous 

(heavier LPs, numerical troubles, 

etc.) 

 

• Every solver has its own recipe 

to handle them  

 

• Conservative policies are 

typically implemented (at least, 

in the default) 
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Measuring the power of a single cut 

• Too many cuts might hurt … 

 … what about a single cut? 

 

• The added single cut can be beneficial because of 

– root-node bound improvement 

– better pruning along the enumeration tree 

– but also: improved preprocessing and variable fixing, etc. 

 

• Try to measure what can be achieved by a single cut to be 

added to the given initial MIP formulation 

• … thus allowing the black-box MIP solver to take full advantage of it 
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Rules of the game 

• We are given a MIP described through an input .LP file   

      (MIP)    min { z :                   z = c x,   Ax ~ b,   xj integer  j ε J } 

   

• We are allowed to generate a single valid cut  α x ≥ α0  

 

• … and to append it to the given formulation to obtain 

 (MIP++)  min { z :  α x ≥ α0 ,  z = c x,   Ax ~ b,    xj integer  j ε J } 

 

• Don’t cheat: CPU time needed to generate the cut must be 

comparable with CPU time to solve the root-node LP 

 

• Apply a same black-box MIP solver to both MIP and MIP++ 

• … and compare computing times to solve both to proven optimality 
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Testbed  

 

 We took all the instances in the MIPLIB 2003 and COR@L libraries 

and solved them through IBM ILOG Cplex 12.2 (default setting, no 

upper cutoff, single-thread mode) on an Intel i5-750 CPU running at 

2.67GHz. 

  

 We disregarded the instances that turned out to be too “easy"  can 

be solved within just 10,000 nodes or 100 CPU seconds on our PC  

 

 Final testbed containing 38 hard instances 
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Computational setting 
 

• MIP black-box solver: IBM ILOG Cplex 12.2 (single thread) with 

default parameters; 3,600 CPU sec.s time limit on a PC. 

 

• To reduce side-effects due to heuristics: 

– Optimal solution value as input cutoff 

– No internal heuristics (useless because of the above) 

 

• Comparison among 10 different methods: 

 - Method       #0:  Cplex default (no cut added) 

 - Methods  #1-9:  nine variants to generate a single cut 
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Computational results 

Avg. sec.s Avg.  nodes Time ratio Node ratio 

Default (no cut) 533,00 64499,09 1,00 1,00 

Method #1 397,50 37194,89 0,75 0,58 

Method #2 419,22 44399,47 0,79 0,69 

Method #3 468,87 48971,72 0,88 0,76 

Method #4 491,77 46348,39 0,92 0,72 

Method #5 582,42 58223,10 1,09 0,90 

Method #6 425,38 43492,35 0,80 0,67 

Method #7 457,95 46067,74 0,86 0,71 

Method #8 446,89 44481,75 0,84 0,69 

Method #9 419,57 41549,07 0,79 0,64 
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Cases with large speedup 

NO CUT 

 

METHOD #1 

 

Time Nodes Time Nodes 

Time 

Speedup 

glass4 43,08 118.151 12,95 17.725 3,33 

neos-1451294 3.590,27 20.258 102,94 521 34,88 

neos-1593097 149,94 10.879 16,12 508 9,30 

neos-1595230 1.855,69 152.951 770,6 89.671 2,41 

neos-603073 452,4 36.530 130,75 10.017 3,46 

neos-911970 3.588,54 5.099.389 3,29 1.767 1.090,74 

ran14x18_1 3.287,59 1.480.624 2.066,70 759.265 1,59 
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Conclusions 

1. We have proposed a new cut-generation procedure  

2. … to generate just one cut to be appended to the initial 

formulation 

 

3. Computational results on a testbed of 38 hard MIPs from the 

literature have been presented 

4. … showing that an average speedup of 25% can be achieved 

w.r.t. Cplex  

 

5. A key ingredient of our method is not to overload the LP by adding 

too many cuts  single cut mode 
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Can you just describe the 10 

methods? 

• Method # 0 is the default (no cut added) 

 

• All other methods add a single cut obtained as follows (assume x ≥ 0) 

 

– Step 1. Choose a variable permutation  

 

 

– Step 2. Obtain a single valid inequality through lifting as 
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How about variable permutations? 

• Nine different policies for the nine methods: 

1.Pseudo random sequence   

2.Pseudo random sequence   

3.Pseudo random sequence  

4.Pseudo random sequence   

5.Pseudo random sequence   

6.Pseudo random sequence   

7.Pseudo random sequence   

8.Pseudo random sequence   

9.Pseudo random sequence   
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How about lifting?  

• To have a fast lifting, we specialize 

 

 

 

 

• to 

 

 

 

• and finally to 
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Where is the trick? 

 

•  The additional cut is of course redundant and 

  hence removed 

 

• Minor changes (including var. order in the LP file)  

 …change initial conditions (col. sequence etc.) 

 

• Tree search is very sensitive to initial conditions  

 …as branching acts as a chaotic amplifier  the pinball effect 

 

• (Some degree of) erraticism is intrinsic in tree-search nature … 

• … you cannot avoid it (important for experiment design) 

• … and you better try to turn it to your advantage 

• … though you will never have a complete control of it 
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Parallel independent runs 

• Experiments with k independent runs with randomly-perturbed initial 

conditions (Cplex 12.2 default, single thread) 
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A nice surprise 

• Incidentally, during these experiments we were able to solve to 

proven optimality, for the first time, the very hard MIPLIB 2010 

instance buildingenergy 

 

• One of our parallel runs (k=2) converged after 10,899 nodes and 

2,839 CPU seconds of a IBM power7 workstation  integer solution 

of value 33,285.4433  optimal within default tolerances 

 

• We then reran Cpx12.2 (now with 8 threads) with optimality 

tolerance zero and initial upper bound of 33,285.4433  0-tolerance 

optimal solution of value 33,283.8532 found after 623,861 additional 

nodes and 7,817 CPU sec.s 
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Cplex vs Cplex 
• 20 runs of Cplex 12.2 (default, 1 thread) with scrambled rows&col.s 

• 99 instances from MIPLIB 2010  (Primal and Benchmark) 
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Part II: Exploiting erraticism 

• A simple bet-and-run scheme 

 

– Make KTOT independent short runs with randomized initial 

conditions, and abort them after MAX_NODES nodes 

 

– Take statistics at the end of each short run (total depth and n. of 

open nodes,  best bound, remaining gap, etc.) 

 

– Based on the above statistics, choose the most promising run 

(say the k-th one)  

 

– “Bet on” run k, i.e., restore exactly the initial conditions of the k-th 

run and reapply the solver from scratch (without node limit) 
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Discussion  

• Similar approaches already used for solving very hard problems 

(notably, QAPs etc.), by trying different parameter configurations and 

estimating the final tree size in a clever way 

 

• The underlying “philosophy” is that a BEST parameter configuration 

exists somewhere and could be found if we were clever enough  

 

• Instead, we do not pretend to find a best-possible tuning of solver’s 

param.s (whatever this means) 

• … our order of business here is to play with randomness only 

 

• We apply a very quick-and-dirty selection criterion for the run to bet 

on  

• … as we know that no criterion can be perfect  what we are looking 

for is just a positive correlation with the a-posteriori best run  
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Some experiments 
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IBM ILOG Cplex 12.2 (single thread, default without dynamic search) 

 

Time limit: 10,000 CPU sec.s  on a PC i5-750@2.67GHz 

 

Large testbed with 492 instances taken from:  



Outcome (5 short runs, 5 nodes each) 
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Validation 
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The previous table shows a 15% speedup for hard cases in class ]1,000-10,000]  

 

Validation on 10 copies of each hard instance (random rows&col.s scrambling) 



Conclusions 
 

• Erraticism is just a consequence of the exponential nature of tree 

search, that acts as a chaotic amplifier, so it is (to some extent) 

unavoidable  you have to cope with it somehow! 

 

• Tests are biased if  “we test our method on the training set” 

 

• The more parameters, the easier to make overtuning  power-of-

ten effect 

 

• Removing  “instances that are easy for our competitor” is not fair 

 

• When comparing methods A and B, the instance classification must 

be the same if A and B swap  blind wrt the name of the method 
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Conclusions  

• High-sensitivity to initial conditions is generally viewed as a 

drawback of tree search methods, but it can be a plus  

 

• We  have proposed a bet-and-run approach to actually turn 

erraticism to one's advantage 

 

• Computational results on a large MIP testbed show the potential of 

this simple approach… though more extensive tests are needed  

 

• More clever selection on the run to bet on  possible with a better 

classification method (support vector machine & alike)?  

 

• Hot topic: exploiting randomness in a massive parallel setting… 
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Thanks for your attention 
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