On the role of randomness in exact tree search methods

Matteo Fischetti, University of Padova (based on joint work with Michele Monaci)

Part I: cutting planes

Cutting planes for MIPs

- Cutting planes are crucial for solving hard MIPs
- Useful to tighten bounds but...
- ... also potentially dangerous (heavier LPs, numerical troubles, etc.)
- Every solver has its own recipe to handle them
- Conservative policies are typically implemented (at least, in the default)

Measuring the power of a single cut

• Too many cuts might hurt ...

... what about a **single** cut?

- The added single cut can be beneficial because of
 - root-node bound improvement
 - better pruning along the enumeration tree
 - but also: improved preprocessing and variable fixing, etc.
- Try to measure what can be achieved by a single cut to be added to the given initial MIP formulation
- ... thus allowing the black-box MIP solver to take full advantage of it

Rules of the game

- We are given a MIP described through an input .LP file

 (MIP) min { z : z = c x, Ax ~ b, x_i integer j ε J }
- We are allowed to generate a **single** valid cut $\alpha \mathbf{x} \ge \alpha_0$
- ... and to append it to the given formulation to obtain
 (MIP++) min { z : α x ≥ α₀, z = c x, Ax ~ b, x_i integer j ε J }
- Don't cheat: CPU time needed to generate the cut must be comparable with CPU time to solve the root-node LP
- Apply a same black-box MIP solver to both MIP and MIP++
- ... and compare computing times to solve both to proven optimality

Testbed

- ✓ We took all the instances in the MIPLIB 2003 and COR@L libraries and solved them through IBM ILOG Cplex 12.2 (default setting, no upper cutoff, single-thread mode) on an Intel i5-750 CPU running at 2.67GHz.
- ✓ We disregarded the instances that turned out to be too "easy" → can be solved within just 10,000 nodes or 100 CPU seconds on our PC
- ✓ Final testbed containing 38 hard instances

Computational setting

- MIP black-box solver: IBM ILOG Cplex 12.2 (single thread) with default parameters; 3,600 CPU sec.s time limit on a PC.
- To reduce side-effects due to heuristics:
 - Optimal solution value as input cutoff
 - No internal heuristics (useless because of the above)
- Comparison among **10** different methods:
 - Method **#0**: Cplex default (no cut added)
 - Methods **#1-9**: nine variants to generate a single cut

Computational results

	Avg. sec.s	Avg. nodes	Time ratio	Node ratio
Default (no cut)	533,00	64499,09	1,00	1,00
Method #1	397,50	37194,89	0,75	0,58
Method #2	419,22	44399,47	0,79	0,69
Method #3	468,87	48971,72	0,88	0,76
Method #4	491,77	46348,39	0,92	0,72
Method #5	582,42	58223,10	1,09	0,90
Method #6	425,38	43492,35	0,80	0,67
Method #7	457,95	46067,74	0,86	0,71
Method #8	446,89	44481,75	0,84	0,69
Method #9	419,57	41549,07	0,79	0,64

Cases with large speedup

	NO	CUT	METHO		
	Time	Nodes	Time	Nodes	Time Speedup
glass4	43,08	118.151	12,95	17.725	3,33
neos-1451294	3.590,27	20.258	102,94	521	34,88
neos-1593097	149,94	10.879	16,12	508	9,30
neos-1595230	1.855,69	152.951	770,6	89.671	2,41
neos-603073	452,4	36.530	130,75	10.017	3,46
neos-911970	3.588,54	5.099.389	3,29	1.767	1.090,74
ran14x18_1	3.287,59	1.480.624	2.066,70	759.265	1,59

Conclusions

- 1. We have proposed a new cut-generation procedure
- 2. ... to generate **just one cut** to be appended to the initial formulation
- 3. Computational results on a testbed of 38 hard MIPs from the literature have been presented
- 4. ... showing that an **average speedup of 25%** can be achieved w.r.t. Cplex
- A key ingredient of our method is not to overload the LP by adding too many cuts → single cut mode

Can you just describe the 10 methods?

- Method # 0 is the default (no cut added)
- All other methods add a single cut obtained as follows (assume $x \ge 0$)
 - Step 1. Choose a variable permutation

$$x_{\pi(1)}, \cdots, x_{\pi(n)}$$

- Step 2. Obtain a single valid inequality through lifting as

$$\sum_{i=1}^{n} \alpha_{\pi(i)} x_{\pi(i)} \ge \alpha_0$$

How about variable permutations?

- Nine different policies for the nine methods:
 - **Seed =** 1. Pseudo random sequence
 - 2. Pseudo random sequence
 - 3. Pseudo random sequence
 - 4. Pseudo random sequence
 - 5. Pseudo random sequence
 - 6. Pseudo random sequence
 - 7. Pseudo random sequence
 - 8. Pseudo random sequence
 - 9. Pseudo random sequence

How about lifting?

To have a fast lifting, we specialize •

to

•

•

to

$$\sum_{i=1}^{n} \alpha_{\pi(i)} x_{\pi(i)} \ge \alpha_{0}$$

$$\sum_{i=1}^{n} 1 \cdot x_{\pi(i)} \ge \alpha_{0}$$
and finally to

$$\sum_{i=1}^{n} 1 \cdot x_{\pi(i)} \ge -1$$

14

Where is the trick?

- The additional cut is of course **redundant** and hence removed
- Minor changes (including var. order in the LP file) ...change initial conditions (col. sequence etc.)

- Tree search is very sensitive to initial conditions
 ...as branching acts as a chaotic amplifier → the pinball effect
- (Some degree of) erraticism is intrinsic in tree-search nature ...
- ... you cannot avoid it (important for experiment design)
- ... and you better try to turn it to your advantage
 - ... though you will never have a complete control of it

Parallel independent runs

• Experiments with *k* independent runs with randomly-perturbed initial conditions (Cplex 12.2 default, single thread)

# executions	# uns	# n	odes	# LP iter.		
k		geom. mean	aritm. mean	geom. mean	aritm. mean	
1	11	13,207	$320,\!138$	2,212,849	$9,\!882,\!765$	
2	7	7,781	$266,\!811$	1,444,085	$8,\!104,\!845$	
3	5	6,344	$254,\!196$	1,170,356	$7,\!118,\!396$	
5	5	$5,\!601$	238,561	1,090,606	$6,\!574,\!864$	
10	4	4,445	$217,\!472$	864,700	$5,\!890,\!291$	
25	2	3,060	$175,\!976$	680,443	$5,\!648,\!135$	
50	1	$2,\!192$	159,203	$494,\!159$	4,660,565	
100	0	1,880	$149,\!399$	$424,\!593$	3,731,679	

Table 1: Reduction in the number of nodes by exploiting randomness (58 instances)

A nice surprise

- Incidentally, during these experiments we were able to solve to proven optimality, for the first time, the very hard MIPLIB 2010 instance buildingenergy
- One of our parallel runs (k=2) converged after 10,899 nodes and 2,839 CPU seconds of a IBM power7 workstation → integer solution of value 33,285.4433 → optimal within default tolerances
- We then reran Cpx12.2 (now with 8 threads) with optimality tolerance zero and initial upper bound of 33,285.4433 → 0-tolerance optimal solution of value 33,283.8532 found after 623,861 additional nodes and 7,817 CPU sec.s

Cplex vs Cplex

- 20 runs of Cplex 12.2 (default, 1 thread) with scrambled rows&col.s
- 99 instances from MIPLIB 2010 (Primal and Benchmark)

Part II: Exploiting erraticism

- A simple **bet-and-run** scheme
 - Make KTOT independent short runs with randomized initial conditions, and abort them after MAX_NODES nodes
 - Take statistics at the end of each short run (total depth and n. of open nodes, best bound, remaining gap, etc.)
 - Based on the above statistics, choose the most promising run (say the k-th one)
 - "Bet on" run k, i.e., restore exactly the initial conditions of the k-th run and reapply the solver from scratch (without node limit)

Discussion

- Similar approaches already used for solving very hard problems (notably, QAPs etc.), by trying different parameter configurations and estimating the final tree size in a clever way
- The underlying "philosophy" is that a **BEST parameter configuration** exists somewhere and could be found if we were clever enough
- Instead, we do not pretend to find a best-possible tuning of solver's param.s (whatever this means)
- ... our order of business here is to play with **randomness** only
- We apply a very quick-and-dirty selection criterion for the run to bet on
- ... as we know that no criterion can be perfect → what we are looking for is just a **positive correlation** with the a-posteriori best run

Some experiments

IBM ILOG Cplex 12.2 (single thread, default without dynamic search)

Time limit: 10,000 CPU sec.s on a PC i5-750@2.67GHz

Large testbed with 492 instances taken from:

- The COR@L library [2]. We considered all the 372 instances in the library, and removed two instances, namely neos-1417043 which is just an LP model, and neos-578379 which cannot be downloaded in a correct format, plus three instances (neos-1346382, neos-933364 and neos-641591) that were duplicated in the library; thus we got 367 problems.
- The recent MIPLIB 2010 library of instances [11]. We considered all the 166 in the library that belong to classes benchmark and tree, plus all the instances that were marked as hard.

Outcome (5 short runs, 5 nodes each)

Best time range	Algorithm	# opt.	Time	%incr	# Nodes	%incr	T_{last}	%incr
	Cplex 12.2	52	0.2	0.0	5	0.0		
]0-1]	bet-and-run	52	0.3	39.8	5	3.1	0.2	-4.0
	best	52	0.2	-4.7	5	-6.6		
	Cplex 12.2	76	3.8	0.0	48	0.0		
]1-10]	bet-and-run	76	5.3	39.6	39	-17.7	3.2	-15.7
	best	76	3.2	-17.0	32	-32.6		
	Cplex 12.2	82	40.2	0.0	983	0.0		
]10-100]	bet-and-run	83	51.4	28.0	782	-20.4	32.9	-18.0
	\mathbf{best}	83	31.5	-21.5	680	-30.8		
	Cplex 12.2	60	402.1	0.0	7,105	0.0		
]100-1,000]	bet-and-run	60	515.1	28.1	6,760	-4.8	354.8	-11.8
	\mathbf{best}	61	310.6	-22.8	5,225	-26.5		
]1,000-10,000]	Cplex 12.2	43	5,214.4	0.0	210,764	0.0		
	bet-and-run	46	4,473.4	-14.2	179,427	-14.9	4,167.0	-20.1
	best	50	$3,\!198.3$	-38.7	$134,\!354$	-36.3		

Table 2: Results on all the 492 instances in our testbed (geometric means)

Validation

The previous table shows a 15% speedup for hard cases in class]1,000-10,000]

Validation on 10 copies of each hard instance (random rows&col.s scrambling)

Best time range	Algorithm	# opt.	Time	%incr	# Nodes	%incr	$T_{\rm last}$	%incr
	Cplex 12.2	6	31.7	0.0	$20,\!126$	0.0		
]10-100]	bet-and-run	5	111.2	250.6	$69,\!648$	246.1	106.2	234.8
	\mathbf{best}	6	31.7	0.0	$20,\!126$	0.0		
]100-1,000]	Cplex 12.2	58	1,001.1	0.0	10,527	0.0		
	bet-and-run	58	$1,\!249.8$	24.9	8,785	-16.6	917.8	-8.3
	best	62	553.7	-44.7	$5,\!247$	-50.2		
]1,000-10,000]	Cplex 12.2	299	4,928.5	0.0	427,650	0.0		
	bet-and-run	312	4,301.6	-12.7	$348,\!238$	-18.6	4,100.6	-16.8
	\mathbf{best}	330	$3,\!278.4$	-33.5	$285,\!220$	-33.3		
< 10,000	Cplex 12.2	363	$6,\!298.5$	0.0	413,615	0.0		
	bet-and-run	375	5,996.2	-4.8	$355,\!430$	-14.1	5,572.1	-11.5
	\mathbf{best}	398	4,408.6	-30.0	$285,\!435$	-31.0		

Table 3: Results on 10 copies for 48 hard instances (geometric mean)

Conclusions

- Erraticism is just a consequence of the exponential nature of tree search, that acts as a chaotic amplifier, so it is (to some extent) unavoidable → you have to cope with it somehow!
- Tests are biased if "we test our method on the training set"
- The more parameters, the easier to make overtuning → power-often effect
- Removing "instances that are easy for our competitor" is not fair
- When comparing methods A and B, the instance classification must be the same if A and B swap → blind wrt the name of the method

Conclusions

- High-sensitivity to initial conditions is generally viewed as a drawback of tree search methods, but it can be a **plus**
- We have proposed a **bet-and-run** approach to actually turn erraticism to one's advantage
- Computational results on a large MIP testbed show the potential of this simple approach... though more extensive tests are needed
- More clever selection on the run to bet on → possible with a better classification method (support vector machine & alike)?
- Hot topic: exploiting randomness in a massive parallel setting...

Thanks for your attention

EURO XXV, Vilnius, July 2012