Proximity search

Matteo Fischetti, Michele Monaci
University of Padova

SIGHTLINE

PROXIMITY
READERS

ONE PAIR OF GLASSES
THREE FOCAL DISTANCES

Rome, July 2013

MIP heuristics

We consider a Mixed-Integer convex 0-1 Problem (0-1 MIP, or just MIP)
min f(x)
glx) <0
r; €4{0,1} VjeJ
where f and g are convex functionsand @ C JC N :={1,---,n}
—> removing integrality leads to an easy-solvable continuous relaxation

A black-box (exact or heuristic) MIP solver is available

How to use the solver to quickly provide a sequence of improved
heuristic solutions (time vs quality tradeoff)?

Rome, July 2013 2

Large Neighborhood Search

 Large Neighborhood Search (LNS) paradigm:

1. introduce invalid constraints into the MIP model to create a
nontrivial sub-MIP “centered” at a given heuristic sol. (say)

2. Apply the MIP solver to the sub-MIP for a while...

« Possible implementations:
— Local branching: add the following linear cut to the MIP

Alx,x) = Z T; + Z (1—xz;) <k

jeJ: ;=0 jEJ ij=1
— RINS: find an optimal solution € of the continuous relaxation,
and fix all binary variables such that +} = ,

— Polish: evolve a population of heuristic sol.s by using RINS to
create offsprings, plus mutation etc.

Rome, July 2013

Why should the subMIP be easier?

What makes a (sub)MIP easy to solve?

1. fixing many var.s reduces problem size & difficulty
2. additional contr.s limit branching’s scope
3. something else?

In Branch-and-Bound methods, the quality of the root-node
relaxation is of paramount importance as the method is driven by
the relaxation solution found at each node

Quality in terms of integrality gap ...

... but also in term of “similarity” of the root node solution to the
optimal integer solution (the “more integer” the better...)

Rome, July 2013

Relaxation grip

« Effect of local branching constr. for various values of the neighborhood
radius k on MIPLIB2010 instance ramos3.mps (root node relaxation)

T-range k=0 k=1 k=2 k=3 k=4 k=5 k=10 k=20 k=30 k=50 k=99 k=+4oco
=0 1920 1919 1919 1919 1919 1919 1920 1619 1619 1606 1562 672
(0.0,0.1] 0 0 0 0 0 0 0 303 301 302 276 849
(0.1,0.2] 0 1 0 0 0 5 0 0 2 14 73 551
(0.2,0.3] 0 0 0 0 0 0 4 0 0 4 16 108
(0.3,0.4] 0 0 1 0 5 0 0 0 3 2 T 7
(0.4,0.5] 0 0 0 6 0 0 0 8 5 2 17 0
(0.5,0.6] 0 0 0 0 0 0 2 5 5 9 18 0
(0.6,0.7] 0 0 5 0 1 0 0 0 0 6 40 0
(0.7,0.8] 0 0 0 0 0 0 9 0 3 17 B6 0
(0.8,0.9] 0 5 0 0 0 1 0 0 14 81 67 0
(0.9,1.0) 0 0 0 0 0 0 0 249 232 142 24 0
=1 267 262 262 262 262 262 252 3 3 2 1 0
time (sec.s) 0.01 0.08 0.12 0.14 0.16 0.13 0.31 0.55 0.61 0.73 1.40 08.18
LP-iter.s 0 827 1033 1145 1214 1095 1930 2897 3101 3476 4971 23870
LP-bound 267.00 266.33 265.66 265.00 264.33 263.66 260.88 255.70 250.62 24047 215.97 145.80
Table 2 Relaxation grip induced by local branching for various values of the right-hand-side parameter k.

Rome, July 2013 5

No Neighborhood Search

 We investigate a different approach to get improved relaxation grip
... where no (risky) invalid constraints are added to the MIP model
... but the objective function is altered somehow to improve grip
A naive question: what is the role of the MIP objective function?
1. Obviously, it defines the criterion to select an “optimal” solution

But also

2. It shapes the search path towards the optimum, as well all the
Internal heuristics

Rome, July 2013 6

The objective function role

« Altering the objective function can have a big impact in

» timeto get the optimal solution of the continuous relax.

working with a simplified/different objective can lead to huge
speedups (orders of magnitude)

» success of the internal heuristics (diving, rounding, ...)

the original objective might interfere with heuristics (no sol. found
even for trivial set covering probl.s) and sometimes is reset to zero

» search path towards the integer optimum

search is trapped in the upper part of the tree (where the lower
bounds are better), with frequent divings to grasp far-away (in
terms of lower bound) solutions

Rome, July 2013 7

Proximity search

We want to be free to work with a modified objective function that has a
better heuristic “grip” and hopefully allows the black-box solver to
quickly improve the incumbent solution

“Stay close” principle: we bet on the fact that improved solutions live
In a close neighborhood (in terms of Hamming distance) of the
Incumbent, and we want to attract the search within that neighborhood

Step 1. Add an explicit cutoff constraint f(z) < f(z) —6

Step 2. Replace the objective /(%) by the proximity function
Alz,2)= > x4+ Y (1—z;)=z—1|5

geJ xi=0 JeJ 175=1

Rome, July 2013 8

o

A path following heuristic

. run a black-box solver on the original 0-1 MIP, until a “reasonably good” feasible

solution & is found:

repeat
explicitly add the cutoff constraint f(x) < f(&) — 6 to the MIP model,
where 6 > 0 is a given parameter;
replace the objective function f(z) by a new “proximity” one, say A(x, I);
run the MIP solver on the new model until a termination condition is
reached, and let ™ be the best feasible solution found:
if J C N then refine ™ by solving the convex program
" = argmin{ f(x) : g(x) <0, 2; =27 Vj € J}:

recenter A(x,-) by setting & := =™, and/or update 0
until an overall termanation condition is reached:
return

Rome, July 2013

Relaxation grip

« Effect of the cutoff constr. for various values of parameter 6 on MIPLIB2010
instance ramos3 (root node relaxation)

r-range =0 0=1 =2 #=3 0=4 8=5 =10 =20 #=30 H=50 6=99 #=121
=0 1920 1919 1919 1919 1924 1920 1619 1619 1600 1565 1276 682
(0.0,0.1] 0 0 0 0 0 0 303 297 203 281 420 0926
(0.1,0.2] 0 0 0 0 0 4 0 6 26 65 194 380
(0.2,0.3] 0 1 0 5 0 0 0 3 7 15 64 169
(0.3,04] 0 0 0 0 0 0 0 1 2 8 75 29
(0.4,0.5] 0 0 6 0 0 0 8 4 3 16 a1 0
(0.5,0.6] 0 0 0 0 0 0 5 5 9 19 47 1
(0.6,0.7] 0 0 0 0 0 0 0 2 9 35 17 0
(0.7,0.8] 0 5 0 1 0 1 0 10 25 B8 3 0
(0.8,0.9] 0 0 0 0 0 11 0 28 101 it} 0 0
(0.9,1.0) 0 0 0 0 0 0 249 209 110 26 0 0
=1 267 262 262 262 263 251 3 3 2 1 0 0
time (sec.s) | 0.00 004 003 003 0.04 021 0.45 0.54 0.57 0.90 4.77T 30.91
LP-iter.s 0 352 341 357 358 1180 2164 2543 2637 3627 6820 11508
A-distance 0.00 1.50 3.00 450 6.00 788 1745 3713 5686 9690 208.71 292.67
Table 1 Relaxation grip induced by proximity search for various values of the cutoff parameter 6.

Rome, July 2013 10

Related approaches

Exploiting locality in optimization is of course not a new idea

— Augmented Lagrangian

— Primal-proximal heuristic for discrete opt. (Daniilidis & Lemarechal ‘05)
— Can be seen as dual version of local branching

— Feasibility Pump can be viewed as a proximal method (Boland et al. “12)

However we observe that (as far as we know):

— the approach was never analyzed computationally in previous papers
— the method was not previously embedded in any MIP solver

— the method has PROs and CONs that deserve investigation

Rome, July 2013 11

Possible implementations

The way a computational idea is actually implemented (not just
coded) matters

Computational experience shows how

difficult is to evaluate the real impact of

a new idea, mainly when hybrid versions

are considered and several parameters need
be tuned - the so-called Frankenstein effect

Stay clean: in our analysis, we deliberately avoided considering
hybrid versions of proximity search (mixing objective
functions, using RINS-like fixing, etc.), though we guess they
can be more successful than the basic version we analyzed

Rome, July 2013 12

Proximity search without recentering

Each time a feasible solution x* is found

 record it
 update the right-hand side of the cutoff constraint (this makes
x* infeasible, so the solver incumbent is never defined)

 continue without changing the objective function

PROs:
« asingle tree is explored, that eventually proves the optimality of the
incumbent (modulo the theta-tolerance)
CONs:

« callbacks need to be implanted in the solver (gray-box) = some
features can be turned off automatically

« the proximity function remains “centered” on the first solution

Rome, July 2013 13

Proximity search with recentering

As soon as a feasible solution x* (say) is found, abort the solver and
« Update the right-hand side of the cutoff constraint
 Redefine the objective function as A(z,z*)

* Re-run the solver from scratch

CONs:
« several overlapping trees are explored (wasting computing time)

» the root node is solved several times - time-consuming cuts should
be turned off, or computed at once and stored?

PROs:
» Easily coded (no callbacks)
« proximity function automatically “recentered” on the incumbent

Rome, July 2013 14

Proximity search with incumbent

Both methods above work without an incumbent (as soon a better
Integer sol. is found, we cut it off) = powerful internal tools of the
black-box solver (including RINS) are never activated

Easy workaround: soft cutoff constraint (slack z with BIGM penalty)

min A(zr,7)+ M=
fx) < () —0+2

Hence any subMIP can be warm-started with the (high-cost but)
feasible integer sol.

Rome, July 2013 15

Faster than the LP relaxation?

Example: very hard set-covering instance ramos3, initial solution of value 267
Cplex (default):

— Initial LP relaxation: 43 sec.s, root node took 98 sec.s

— first improved sol. at node 10, after 1,163 sec.s: value 255, distance=470
Proximity search without recentering:

— initial LP relaxation: 0.03 sec.s

— end of root node, after 0.11 sec.s: sol. value 265, distance=3

— value 241 after 156 sec.s (200 nodes)
Proximity search with recentering:

— most calls require no branching at all

— value 261 after 1 sec., value 237 after 75 sec.s.
Proximity search with incumbent:

— value 232 after 131 sec.s, value 229 after 596 sec.s.

Rome, July 2013 16

Computational tests

We do not expect proximity search will work well in all cases...

... because its primal nature can lead to a sequence of slightly-
Improved feasible solutions [cfr. Primal vs. Dual simplex]

Three classes of 0-1 MIPs have been considered:

— 49 hard set covering from the literature (MIPLIB 2010, railways)
— 21 hard network design instances (SNDIib)

— 60 MIPs with convex-quadratic constraints (classification
Instances related to SVM with ramp loss)

Rome, July 2013 17

Compared heuristics

Proximity search vs. Cplex in different variants (all based on IBM
ILOG Cplex 12.4)

proxy_norec
cplex_def
cplex_heu
cplex_no_cuts
cplex_gui div
proxy_incum
Proxy_rec
locBra orig

locBra_aggr
cplex_polish

All runs on an Intel i5-750 CPU running at 2.67GHz (single-thread
mode)

Rome, July 2013

18

Some plots

—— OO _NCUM "“1 —— 0Ky _iNCLUM
164 AR cp|e;(_def 184 + AR R cp|e_j§_def
1634 1821
1801
1621
178 1+
1611
| 176 1+ th
180T 174+ }
-
1594 1721+
b rerrarr e ETI,
1 1 1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 3 Solution updatings for set covering instances neos-1616732 (left) and scpnrgé (right) over time; the
lower the better.

Rome, July 2013 19

Comparision metric

Trade-off between computing time and heuristic solution quality

We used the primal integral measure recently proposed by

T. Achterberg, T. Berthold, and G. Hendel. Rounding and propagation heuristics
for mixed integer programming. Technical report, ZIB 11-29, 2011.

where the history of the incumbent updates is plotted over time until
a certain timelimit, and the relative-gap integral P(t) till time t is taken
as performance measure (the smaller the better)

60
& 40
]

20

0

0 5 10 15 20 25

Thime(sec. |

Rome, July 2013 20

Cumulative figures

Set covering instances

5 10 30 60 120 300 600 1200
proxy_norec 0.132 0.215 0452 0.703 1.090 1.886 2.851 4.247
cplex_def 0.178 0310 0698 1.121 1.753 2880 4.108 5.775
cplex_heu 0.174 0305 0.703 1.113 1.671 2.697 3.774 5.086
cplexno_cuts 0.176 0305 0.694 1138 1.760 2.865 3.949 5.301
cplex_gui_div 0.175 0297 0.651 1.031 1.594 2605 3.565 4.750
proxy_incum 0.124 0.195 0374 0.550 0.797 1232 1.600 1.97
proxy._rec 0.122 0.198 0400 0.599 0.858 1.335 1.749 2.182
locBra_orig 0.170 0.278 0551 0.803 1.122 1.722 2304 2.900
locBra_aggr 0.121 0.192 0376 0.561 0.773 1.157 1.533 1.97
cplex_polish 0.181 0.298 0596 0.876 1.251 1.895 2498 3.252

Primal integrals after 5, 10, ..., 1200 sec.s (the lower the better)
Rome, July 2013 21

Network design instances

5 10 30 60 120 300 600 1200
pProxy.-norec 0.088 0.138 0.272 0.406 (0.608 1.029 1.442 1.952
cplex_def 0.104 0.178 0.412 0.652 0.919 1.347 1.784 2.238
cplex_heu 0.105 0.177 0.374 0.542 (0.768 1.157 1.437 1.749
cplex_no_cuts 0.104 0.172 0.365 0.567 ().858 1.415 2.056 2.926
cplex_gui div 0.102 0.172 0.366 0.539 0.739 1.064 1.438 1.927
proxy_incum 0.084 0.129 0.233 0.317 0.411 0.529 0.629 0.742
pProxy._rec 0.091 0.147 0.288 0.424 0.501 0.841 1.035 1.262
locBra_ orig 0.099 0.160 0.340 0.536 (0.793 1.149 1.395 1.633
locBra_aggr 0.096 0.156 0.308 0.447 0.613 0.912 1.204 1.459
cplex_polish 0.107 0.186 0.419 0.658 0.979 1.422 1.634 1.853
Classification instances
5 10 30 60 120 300 600 1200
Proxy_norec 0.142 0.229 0.489 0.788 1.268 2.368 3.825 6.182
cplex_def 0.212 0.376 0.935 1.660 2.983 6.447 11.492 19.687
cplex_heu 0.214 0.379 0.956 1.723 3.123 6.850 12.453 21.834
cplex_no_cuts 0.194 0.340 0.841 1.480 2.607 5.516 9.685 15.908
cplex_gui_div 0.193 0.330 0.780 1.360 2.393 5.028 8.738 14.505
proxy-incum 0.104 0.146 0.240 0.313 0.406 (0.580 0.772 1.045
proxy_rec 0.107 0.153 0.260 0.359 0.492 0.754 1.058 1.486
locBra orig 0.144 0.216 0.402 0.576 0.781 1.094 1.382 1.744
locBra_aggr 0.134 0.206 0.389 0.569 0.836 1.423 2.166 3.305
cplex_polish 0.209 0.339 0.664 0.960 1.365 2.140 2.961 4.030

Rome, July 2013

22

Pairwise comparisons

0.6

proxy_incum
mmsssasamssmme cplex_heu

[
o1
[geues® g eanenns, srrnssnssnnsnnnsminand? Y
;}' FLit - -
I
o b]]]]]]
0 200 400 600 200 1000 1200
06
[—— DIOXY_NCUM
5 sssrisnsssents DIOKY_TEC
05
04 f
03 -
02 =
:."."'.z'. . -
[s T TR vovwenpwwwmarnnr L Lt L bt b bttt Sl
0 1 ! 1 L 1 1 1
(1] 200 400 600 800 1000 1200

Probability of being 1% better than the competitor (the higher the better)

0.6

0.5

0.1

06

0.5

0.4

— OXY_iNCUM

verswrransrses Cplex_polish

[‘,"' 4 » R s - R - -
i
]
ST W T NN RO ST TR ST T S S N S ST I S |
0 200 400 600 800 1000 1200

—— 1 rOXY_iNCUM
sersssssssnnis |ocBra_ong

Rome, July 2013

23

Conclusions

The objective function has a strong impact in search and can be
used to improve the heuristic behavior of a black-box solver

Even in a proof-of-concept implementation, proximity search proved
guite successful in quickly improving the initial heuristic solution

Proximity search has a primal nature, and is likely to be effective
when improved solutions exist which are not too far (in terms of
binary variables to be flipped) from the current one

Worth to be implemented in open-source/commercial MIP solvers?
Already available in COIN-OR CBC and in GLPK 4.51 ...

Rome, July 2013 24

