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MIP heuristics 

• We consider a Mixed-Integer convex 0-1 Problem (0-1 MIP, or just MIP) 

 

 

 

 

 where f and g are convex functions and  

  removing integrality leads to an easy-solvable continuous relaxation 

 

• A black-box (exact or heuristic) MIP solver is available 

 

• How to use the solver to quickly provide a sequence of improved 

heuristic solutions (time vs quality tradeoff)? 
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Large Neighborhood Search  

• Large Neighborhood Search (LNS) paradigm: 

1. introduce invalid constraints into the MIP model to create a 

nontrivial sub-MIP “centered” at a given heuristic sol.     (say) 

2. Apply the MIP solver to the sub-MIP for a while… 

 

• Possible implementations: 

– Local branching: add the following linear cut to the MIP  

 

 

– RINS: find an optimal solution       of the continuous relaxation, 

and fix all binary variables such that  

– Polish:  evolve a population of heuristic sol.s by using RINS to 

create offsprings, plus mutation etc. 
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Why should the subMIP be easier?  

• What makes a (sub)MIP easy to solve? 

 

1. fixing many var.s reduces problem size & difficulty 

2. additional contr.s limit branching’s scope 

3. something else? 

 

• In Branch-and-Bound methods, the quality of the root-node 

relaxation is of paramount importance as the method is driven by 

the relaxation solution found at each node 

 

• Quality in terms of integrality gap … 

• … but also in term of “similarity” of the root node solution to the 

optimal integer solution (the “more integer” the better…) 
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Relaxation grip 

• Effect of local branching constr. for various values of the neighborhood 

radius k on MIPLIB2010 instance ramos3.mps (root node relaxation)             

 

Rome, July 2013 5 



No Neighborhood Search 

• We investigate a different approach to get improved relaxation grip 

 … where no (risky) invalid constraints are added to the MIP model 

 … but the objective function is altered somehow to improve grip  

 

A naïve question: what is the role of the MIP objective function? 

 

1. Obviously, it defines the criterion to select an “optimal” solution 

 

But also 

 

2.  It shapes the search path towards the optimum, as well all the 

internal heuristics   
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The objective function role 

• Altering the objective function can have a big impact in  

 

 time to get the optimal solution of the continuous relax. 

 working with a simplified/different objective can lead to huge 

speedups (orders of magnitude) 

 

 success of the internal heuristics (diving, rounding, …) 

 the original objective might interfere with heuristics (no sol. found 

even for trivial set covering probl.s) and sometimes is reset to zero 

 

 search path towards the integer optimum 

 search is trapped in the upper part of the tree (where the lower 

bounds are better), with frequent divings to grasp far-away (in 

terms of lower bound) solutions 
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Proximity search 

• We want to be free to work with a modified objective function that has a 

better heuristic “grip” and hopefully allows the black-box solver to 

quickly improve the incumbent solution  

 

• “Stay close” principle: we bet on the fact that improved solutions live 

in a close neighborhood (in terms of Hamming distance) of the 

incumbent, and we want to attract the search within that neighborhood  

 

• Step 1. Add an explicit cutoff constraint   

 

• Step 2. Replace the objective           by the proximity function  
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A path following heuristic 
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Relaxation grip 

• Effect of the cutoff constr. for various values of parameter θ on MIPLIB2010 

instance ramos3 (root node relaxation)             
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Related approaches  

• Exploiting locality in optimization is of course not a new idea 

– Augmented Lagrangian 

– Primal-proximal heuristic for discrete opt. (Daniilidis & Lemarechal ‘05) 

– Can be seen as dual version of local branching 

– Feasibility Pump can be viewed as a proximal method (Boland et al. ‘12) 

– …  

 

• However we observe that (as far as we know): 

– the approach was never analyzed computationally in previous papers 

– the method was not previously embedded in any MIP solver 

– the method has PROs and CONs that deserve investigation 
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Possible implementations 

• The way a computational idea is actually implemented (not just 

coded) matters  

 

• Computational experience shows how  

 difficult is to evaluate the real impact of  

 a new idea, mainly when hybrid versions  

 are considered and several parameters need  

 be tuned  the so-called Frankenstein effect 

 

• Stay clean: in our analysis, we deliberately avoided considering 

hybrid versions of proximity search (mixing objective 

functions, using RINS-like fixing, etc.), though we guess they 

can be more successful than the basic version we analyzed 

 

 

 

Rome, July 2013 12 



Proximity search without recentering 

 Each time a feasible solution x* is found  

• record it  

• update the right-hand side of the cutoff constraint (this makes 

x* infeasible, so the solver incumbent is never defined) 

• continue without changing the objective function   

 

PROs:  

• a single tree is explored, that eventually proves the optimality of the 

incumbent (modulo the theta-tolerance)  

CONs:   

• callbacks need to be implanted in the solver (gray-box)  some 

features can be turned off automatically 

• the proximity function remains “centered” on the first solution  
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Proximity search with recentering 

As soon as a feasible solution x* (say) is found, abort the solver and  

• Update the right-hand side of the cutoff constraint 

• Redefine the objective function as  

• Re-run the solver from scratch 

 

CONs:  

• several overlapping trees are explored (wasting computing time) 

• the root node is solved several times  time-consuming cuts should 

be turned off, or computed at once and stored? 

 

PROs:   

• Easily coded (no callbacks) 

• proximity function automatically “recentered” on the incumbent 
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Proximity search with incumbent 

• Both methods above work without an incumbent (as soon a better 

integer sol. is found, we cut it off)  powerful internal tools of the 

black-box solver (including RINS) are never activated 

 

• Easy workaround: soft cutoff constraint (slack z with BIGM penalty) 

   min  

 

                                   … 

 

• Hence any subMIP can be warm-started with the (high-cost but) 

feasible integer sol.  
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Faster than the LP relaxation? 
Example: very hard set-covering instance ramos3, initial solution of value 267 

Cplex (default): 

– initial LP relaxation: 43 sec.s, root node took 98 sec.s  

– first improved sol. at node 10, after 1,163 sec.s: value 255, distance=470 

Proximity search without recentering: 

– initial LP relaxation: 0.03 sec.s 

– end of root node, after 0.11 sec.s: sol. value 265, distance=3 

– value 241 after 156 sec.s (200 nodes) 

Proximity search with recentering: 

– most calls require no branching at all  

– value 261 after 1 sec., value 237 after 75 sec.s. 

Proximity search with incumbent: 

– value 232 after 131 sec.s, value 229 after 596 sec.s. 
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Computational tests 

 

• We do not expect proximity search will work well in all cases… 

… because its primal nature can lead to a sequence of slightly-

improved feasible solutions [cfr. Primal vs. Dual simplex] 

  

 Three classes of 0-1 MIPs have been considered: 

 

– 49 hard set covering from the literature (MIPLIB 2010, railways) 

– 21 hard network design instances (SNDlib) 

– 60 MIPs with convex-quadratic constraints (classification 

instances related to SVM with ramp loss) 
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Compared  heuristics 

• Proximity search vs. Cplex in different variants (all based on IBM 

ILOG Cplex 12.4) 

 

 

 

 

 

 

 

 

 

• All runs on an Intel i5-750 CPU running at 2.67GHz (single-thread 

mode) 
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Some plots 

Rome, July 2013 19 



Comparision metric 

• Trade-off between computing time and heuristic solution quality 

 

• We used the primal integral measure recently proposed by 

 

 

 where the history of the incumbent updates is plotted over time until 

a certain timelimit, and the relative-gap integral P(t) till time t is taken 

as performance measure (the smaller the better) 
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Cumulative figures 
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Primal integrals after 5, 10, …, 1200 sec.s (the lower the better)  
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Pairwise comparisons 
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Probability of being 1% better than the competitor (the higher the better) 



Conclusions 

 

• The objective function has a strong impact in search and can be 

used to improve the heuristic behavior of a black-box solver 

 

• Even in a proof-of-concept implementation, proximity search proved 

quite successful in quickly improving the initial heuristic solution 

 

• Proximity search has a primal nature, and is likely to be effective 

when improved solutions exist which are not too far (in terms of 

binary variables to be flipped) from the current one 

 

• Worth to be implemented in open-source/commercial MIP solvers?  

Already available in COIN-OR CBC and in GLPK 4.51 … 
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