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Parallel computation 

• Modern PCs /  

 notebooks have  

 several processing  

 units (cores)  

 available 

 

• Running a sequential code on 8 cores only uses 12% of the 

available power… 

 

 

• … whereas one would of course aim at using 100% of it  
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Distributed computation 

 

• Affordable servers offer  

 24+ quadcore units (blades) 

 

• Grids of 1000+ computers  

 are available worldwide 

 

• No doubt that parallel computing is  

 becoming a must for CPU intensive  

 applications, including optimization  

 

• However, many optimization codes are still sequential… 
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Parallelization of a sequential code 

• We are given a deterministic sequential source code based on a 

divide-and-conquer algorithm (e.g., tree search) 

 

• We want to slightly modify it to exploit a given set of K (say) 

processors called workers 

 

• IDEA: just run K times the same sequential code on the K workers  

 

• … but modify the source code so as to just skip some nodes (that 

will be processed instead by one of the other workers…) 

 

         “Workload automatically splits itself among the workers”  
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SelfSplit            

• Each worker reads the original input  

 data and receives an additional input  

 pair (k,K), where K is the total number  

 of workers and k=1,…,K identifies the  

 current worker 

 

• The same deterministic computation is initially performed, in parallel, by 

all workers (sampling phase), without any communication 

 

• When enough open nodes have been generated, each worker applies 

a deterministic rule to identify and solve the nodes that belong to it 

(gray subtrees in the figure), without any redundancy. No (or very little) 

communication is required in this stage 
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Vanilla  

implementation 
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Case study: ATSP B&B  
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Sequential code to parallelize: an old 

FORTRAN code of 3000+ lines from 

 
M. Fischetti,  P. Toth, “An Additive Bounding 

Procedure for the Asymmetric Travelling 

Salesman Problem”, Mathematical 

Programming A 53, 173-197, 1992. 

 

• Parametrized AP relaxation (no LP) 

• Branching on subtours 

• Best-bound first 

 

 

 

Vanilla SelfSplit: two variants 

  

1. Absolutely no communication among workers (just 8 new lines of 

code added to the sequential original code) 

 

2. The value of the overall best incumbent is periodically written/updated 

on a single global file; each worker periodically reads it and only uses to 

possibly abort its own run (no other use allowed  overall method is 

still deterministic; 8+46 new lines added) 



Results with 8 workers 

 

 

 

 

 

 

 

 

• Random instances taking 40 to 6,000 sec.s in sequential mode 

• Version 2 (incumbent on file), 8 simultaneous runs on the same PC 

• Average speedup of 6.48 (geom.mean 5.47) with 8 workers  

• Speedup of 7+ for the most difficult instances 
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Paused-node  

implementation 
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CP application 

• Constraint Programming implementation within Gecode (open source) 

• NODE_PAUSE(n) == true if the estimated difficulty of node n (variable 

domain volume) is ϴ times smaller than that at the root node  

• On-the-fly automatic tuning of threshold ϴ (same rule for all instances)  

• After sampling, paused nodes are first sorted by increasing estimated 

difficulty, and then colors are assigned in round-robin  

• Results on feasibility instances   
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MIP application (B&Cut ATSP) 

Sequential code to parallelize: Branch-and-cut FORTRAN code of 

about 10,000 lines from 

 
– M. Fischetti, P. Toth, “A Polyhedral Approach to the Asymmetric Traveling Salesman 

Problem” Management Science 43, 11, 1520-1536, 1997. 

 

– M. Fischetti, A. Lodi,  P. Toth, “Exact Methods for the Asymmetric Traveling Salesman 

Problem”, in The Traveling Salesman Problem and its Variations, G. Gutin and A. Punnen 

ed.s, Kluwer, 169-206, 2002. 

 

Main Features 

– LP solver: CPLEX 12.5.1 

– Cuts: SEC, SD, DK, RANK (and pool) separated along the tree 

– Dynamic (Lagrangian) pricing of var.s 

– Variable fixing 

– Primal heuristics  

– Etc. 
Aussois, January 2014 11 



Results with 4 and 8 workers  
(on a quadcore hyperthreading CPU) 

• Random instances taking 1,000 to 4,000 sec.s in sequential mode 

• Paused-node version (with incumbent written on file) 

• 11+46 new lines of code added to the original source code 

• Average speedup of 3.11 (geom.mean 3.09) with 4 workers 

• Average speedup of 4.38 (geom.mean 4.31) with 8 workers 
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MIP application (CPLEX) 
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We performed the following experiments 

 

1. We implemented SelfSplit in its paused-node version using 

CPLEX  callbacks.  

 

2. We selected the instances from MIPLIB 2010 on which CPLEX 

consistently needs a large n. of nodes, even when the incumbent is 

given on input, and still can be solved within 10,000 sec.s (single-

thread default). This produced a testbed of 32 instances. 

 

3. All experiments have been performed in single thread, by giving 

the incumbent on input  and disabling all heuristics  approximation 

of a production implementation involving some limited amount of 

communication in which the incumbent is shared among workers. 

 



MIP application (CPLEX) 
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Experiment n. 1  

 

We compared CPLEX default (with empty callbacks) with SelfSplit_1, 

i.e. SelfSplit with input pair (1,1), using 5 random seeds. The 

slowdown incurred was just 10-20%, hence Self_Split_1 is 

comparable with CPLEX on our testbed 

 

Experiment n. 2  

 

We considered the availability of 16 single-thread machines and 

compared two ways to exploit them without communication:  

 

(a) running Rand_16, i.e. SelfSplit_1 with 16 random seeds and 

taking the best run for each instance (concurrent mode) 

 

(b) running SelfSplit_16, i.e. SelfSplit with input pairs (1,16), 

(2,16),…,(16,16)  

 

 

 

 



MIP application (CPLEX) 
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Extensions 

• SelfSplit can be run with just K' << K workers, with input pairs (1,K), (2,K), 

…,(K',K)  kind of multistart heuristic that guarantees non-overlapping 

explorations 

 

• It can be used to obtain a quick estimate of the sequential computing 

time, e.g. by running SelfSplit with (1,1000), …(8,1000) and taking  

 sampling_time +  

 1000 * (average_computing_time – sampling_time) 

 

• Allows for a pause-and-resume exploration of the tree (useful e.g. in case 

of computer failures) 

 

• Applications to High Performance Computing and Cloud Computing? 
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Thank you for your attention 

Aussois, January 2014 17 


