
SelfSplit
automatic workload distribution

in parallel computation

Matteo Fischetti, Michele Monaci, Domenico Salvagnin

University of Padova

Aussois, January 2014 1

Parallel computation

• Modern PCs /

 notebooks have

 several processing

 units (cores)

 available

• Running a sequential code on 8 cores only uses 12% of the

available power…

• … whereas one would of course aim at using 100% of it

Aussois, January 2014 2

Distributed computation

• Affordable servers offer

 24+ quadcore units (blades)

• Grids of 1000+ computers

 are available worldwide

• No doubt that parallel computing is

 becoming a must for CPU intensive

 applications, including optimization

• However, many optimization codes are still sequential…

Aussois, January 2014 3

Parallelization of a sequential code

• We are given a deterministic sequential source code based on a

divide-and-conquer algorithm (e.g., tree search)

• We want to slightly modify it to exploit a given set of K (say)

processors called workers

• IDEA: just run K times the same sequential code on the K workers

• … but modify the source code so as to just skip some nodes (that

will be processed instead by one of the other workers…)

 “Workload automatically splits itself among the workers”

 Aussois, January 2014 4

SelfSplit

• Each worker reads the original input

 data and receives an additional input

 pair (k,K), where K is the total number

 of workers and k=1,…,K identifies the

 current worker

• The same deterministic computation is initially performed, in parallel, by

all workers (sampling phase), without any communication

• When enough open nodes have been generated, each worker applies

a deterministic rule to identify and solve the nodes that belong to it

(gray subtrees in the figure), without any redundancy. No (or very little)

communication is required in this stage

Aussois, January 2014 5

Vanilla

implementation

Aussois, January 2014 6

Case study: ATSP B&B

Aussois, January 2014 7

Sequential code to parallelize: an old

FORTRAN code of 3000+ lines from

M. Fischetti, P. Toth, “An Additive Bounding

Procedure for the Asymmetric Travelling

Salesman Problem”, Mathematical

Programming A 53, 173-197, 1992.

• Parametrized AP relaxation (no LP)

• Branching on subtours

• Best-bound first

Vanilla SelfSplit: two variants

1. Absolutely no communication among workers (just 8 new lines of

code added to the sequential original code)

2. The value of the overall best incumbent is periodically written/updated

on a single global file; each worker periodically reads it and only uses to

possibly abort its own run (no other use allowed overall method is

still deterministic; 8+46 new lines added)

Results with 8 workers

• Random instances taking 40 to 6,000 sec.s in sequential mode

• Version 2 (incumbent on file), 8 simultaneous runs on the same PC

• Average speedup of 6.48 (geom.mean 5.47) with 8 workers

• Speedup of 7+ for the most difficult instances

Aussois, January 2014 8

Paused-node

implementation

Aussois, January 2014 9

CP application

• Constraint Programming implementation within Gecode (open source)

• NODE_PAUSE(n) == true if the estimated difficulty of node n (variable

domain volume) is ϴ times smaller than that at the root node

• On-the-fly automatic tuning of threshold ϴ (same rule for all instances)

• After sampling, paused nodes are first sorted by increasing estimated

difficulty, and then colors are assigned in round-robin

• Results on feasibility instances

Aussois, January 2014 10

MIP application (B&Cut ATSP)

Sequential code to parallelize: Branch-and-cut FORTRAN code of

about 10,000 lines from

– M. Fischetti, P. Toth, “A Polyhedral Approach to the Asymmetric Traveling Salesman

Problem” Management Science 43, 11, 1520-1536, 1997.

– M. Fischetti, A. Lodi, P. Toth, “Exact Methods for the Asymmetric Traveling Salesman

Problem”, in The Traveling Salesman Problem and its Variations, G. Gutin and A. Punnen

ed.s, Kluwer, 169-206, 2002.

Main Features

– LP solver: CPLEX 12.5.1

– Cuts: SEC, SD, DK, RANK (and pool) separated along the tree

– Dynamic (Lagrangian) pricing of var.s

– Variable fixing

– Primal heuristics

– Etc.
Aussois, January 2014 11

Results with 4 and 8 workers
(on a quadcore hyperthreading CPU)

• Random instances taking 1,000 to 4,000 sec.s in sequential mode

• Paused-node version (with incumbent written on file)

• 11+46 new lines of code added to the original source code

• Average speedup of 3.11 (geom.mean 3.09) with 4 workers

• Average speedup of 4.38 (geom.mean 4.31) with 8 workers

Aussois, January 2014 12

MIP application (CPLEX)

Aussois, January 2014 13

We performed the following experiments

1. We implemented SelfSplit in its paused-node version using

CPLEX callbacks.

2. We selected the instances from MIPLIB 2010 on which CPLEX

consistently needs a large n. of nodes, even when the incumbent is

given on input, and still can be solved within 10,000 sec.s (single-

thread default). This produced a testbed of 32 instances.

3. All experiments have been performed in single thread, by giving

the incumbent on input and disabling all heuristics approximation

of a production implementation involving some limited amount of

communication in which the incumbent is shared among workers.

MIP application (CPLEX)

Aussois, January 2014 14

Experiment n. 1

We compared CPLEX default (with empty callbacks) with SelfSplit_1,

i.e. SelfSplit with input pair (1,1), using 5 random seeds. The

slowdown incurred was just 10-20%, hence Self_Split_1 is

comparable with CPLEX on our testbed

Experiment n. 2

We considered the availability of 16 single-thread machines and

compared two ways to exploit them without communication:

(a) running Rand_16, i.e. SelfSplit_1 with 16 random seeds and

taking the best run for each instance (concurrent mode)

(b) running SelfSplit_16, i.e. SelfSplit with input pairs (1,16),

(2,16),…,(16,16)

MIP application (CPLEX)

Aussois, January 2014 15

Extensions

• SelfSplit can be run with just K' << K workers, with input pairs (1,K), (2,K),

…,(K',K) kind of multistart heuristic that guarantees non-overlapping

explorations

• It can be used to obtain a quick estimate of the sequential computing

time, e.g. by running SelfSplit with (1,1000), …(8,1000) and taking

 sampling_time +

 1000 * (average_computing_time – sampling_time)

• Allows for a pause-and-resume exploration of the tree (useful e.g. in case

of computer failures)

• Applications to High Performance Computing and Cloud Computing?

Aussois, January 2014 16

Thank you for your attention

Aussois, January 2014 17

