Self-Splitting Tree Search
In a Parallel Environment

Matteo Fischetti, Michele Monaci, Domenico Salvagni n
University of Padova

search

DEnU[mance shalegies

uamllehzalmn . i ; Ime

= = slmnla

w £ 2 gl Mt

s &2 = cu
y a> = 5 ik
Speell)s e = APt

Noe = varables

bl

seque

k

distibuted «

ol imolemented
= 0008},
g £ £ £
results wﬂm
Table Programming
speedup WU |'
*E' version

£ wim

ATSP) enler £
branch-and-bound

plon
=
x4
524
=

compiaion

IFORS 2014, Barcelona

Parallel computation

Modern PCs / -

& Gestione attivita Windows 0
File Opzioni Visualizza ?
Applicazioni | Processi | Senvizi Prestazioni |Rets |Utenti
Ukiizzo CPU Cronalogia utiizza CPU ‘
| . Memoria Cronclogia utiizza memoria fisica
.
units (cores
Totale 9999 Handle
[6663 Thread 876
52
= L 576 Tempoattvita 3:11:24:00
mmmmmmmm) 3/19
Memoria del kernel (MB)
Di paging 394
Non di paging 97 “r Monitoraggio risorse.

Running a seguential code on 8 cores only uses 12% of the
available power...

IFORS 2014, Barcelona

Distributed computation

 Affordable servers offer
24+ quadcore units (blades)

e Grids of 1000+ computers
are available worldwide

* No doubt that parallel computing is
becoming a must for CPU intensive
applications, including optimization

IFORS 2014, Barcelona

Parallelization of a sequential code

We are given a deterministic sequential source code based on a
divide-and-conquer algorithm (e.g., tree search)

We want to slightly modify it to exploit a given set of K (say)
processors called workers

IDEA: just run K times the same sequential code on the K workers

... but modify the source code so as to just skip some nodes (that
will be processed instead by one of the other workers...)

“Workload automatically splits itself among the wor kers”

IFORS 2014, Barcelona 4

The basic idea

Assume you have K workers available and a sequential tree-search code

In the source code, locate the place where tree nodes are popped-out from the
node queue

Add the following statements to your sequential code:

When a sufficient n. of nodes has been generated, just kill some
nodes according to a rule that depends on an additional integer input

parameter k

Run the resulting sequential code on the K workers, with input k=1,2,...,K

Naive Rule: kill nodes with a certain probability (using k as random seed) 2>
heuristic as a same node can be killed by all K workers

SelfSplit : use a rule that guarantees a node be killed in all but one of the K runs
IFORS 2014, Barcelona 5

SelfSplit

(1.K) (2.,K) (K,K)
 Each worker reads the original input / \
data and receives an additional input @
pair (k,K), where K is the total number
of workers and k=1,...,K identifies the \ \ /

current worker

O Final Output

 The same deterministic computation is initially performed, in parallel, by
all workers (sampling phase), without any communication

 When enough open nodes have been generated, each worker applies
a deterministic rule to skip the nodes that belong to other workers
No communication required at this stage

IFORS 2014, Barcelona 6

. Two integer parameters (k, K') are added to the original input

Vanilla

(1,K)

i

(2,K)

Implementation

A global flag ON_SAMPLING is introduced and initialized to true.
The flag becomes false when there are enough open nodes in the branch-
and-bound tree.

Each time a node n is created, it is deterministically assigned a color
c(n) which is a pseudo-random integer in {1,---, K'} during the sam-
pling phase, and ¢(n) = k otherwise.

Whenever the modified algorithm is about to process a node n, condi-
tion

(not ON_SAMPLING) and (c¢(n)# k)
is evaluated. If the condition evaluates to true, node n is just dis-
carded, as it corresponds to a subproblem assigned to a different
worker; otherwise, the processing of node n continues as usual and
no modified action takes place.

IFORS 2014, Barcelona

N

W

/

Final Output

!_b_

ﬂ

Paused -node oo/ S

Implementation

~N\ 7

As before, input parameters (£, ') are added.) Final output

. Whenever the modified algorithm is about to process a node n, a
boolean function NODE_PAUSE(n) is called: if true is returned,
node n is just paused and the next node is considered.

. When there are no nodes left to process, the sampling phase ends.
All paused nodes, if any, are assigned a color ¢(n) between 1 and A,
according to a deterministic rule.

All nodes n with color ¢(n) # k are just discarded. The remaining
nodes are processed (in any order and possibly in a nondeterministic
way) till completion.

IFORS 2014, Barcelona

Extensions

SelfSplit can be run with just K' << K workers, with input pairs (1,K), (2,K),
...,(K",K) = kind of multistart heuristic that guarantees non-overlapping
explorations

It can be used to obtain a quick estimate of the sequential computing
time, e.g. by running SelfSplit with (1,1000), ...(8,1000) and taking

sampling_time +
1000 * (average computing_time — sampling_time)

Allows for a pause-and-resume exploration of the tree (useful e.g. in case
of computer failures)

Applications to High Performance Computing and Cloud Computing?

IFORS 2014, Barcelona

Related approaches

The idea of parallelizing without communication is not new...

Laursen, Per S. 1994. Can parallel branch and bound without communication be effective? SIAM
Journal on Optimization 4(2) 288-296.

... but is was apparently ignored by the Mathematical Programming
community

Recent work for Constraint Programming (CP)

Regin, Jean-Charles, Mohamed Rezgui, Arnaud Malapert. 2013. Embarrassingly parallel search.
Christian Schulte, ed., Principles and Practice of Constraint Programming, Lecture Notes in Computer
Science, vol. 8124. Springer Berlin Heidelberg, 596-610.

Moisan, Thierry, Jonathan Gaudreault, Claude-Guy Quimper. 2013. Parallel discrepancy-based
search. Christian Schulte, ed., Principles and Practice of Constraint Programming, Lecture Notes in
Computer Science, vol. 8124. Springer Berlin Heidelberg, 30-46.

IFORS 2014, Barcelona 10

Our hashtags

SelfSplit is #easy to implement

SelfSplit can be the #firstoption
to try

SelfSplit can in fact be the
#onlyoption when complicated
(industrial) codes need to be
parallelized-> #justforget to
modifying the sources heavily

SelfSplit can be rather effective
indeed #itworks

IFORS 2014, Barcelona

SelfSplit

tree search parallelization

Mattes Fisehetti
Iichele Monaci

Pomsenico Salvagnin

PEl = University of Padova

workers L
branchand-sound e | L e [;[]dE oy
MILP - delenmiistic "+« =giyen .. communication YV
s - Ll experiments '
nlr ﬂiaul‘ilhmm-ems“” L different _amwunmmum“%m.g_ sy matt en
w70 vl e performance (e Soer ingtances. :
- - o bEgln phase d ‘‘‘‘‘‘‘‘‘‘‘ sequential o™
=l speed
“ m;ﬂﬂdE - oy e SPEELLD
Y

Self-3pli

11

SelfSplit for CP #itworks

time (s) speedup
instance K=1 K =4 K =16 K =64
golomb_12 41.5 3.84 14.31 41.50
golomb_13 1,195.8 4.00 15.67 57.49
golomb_14 19,051.9 3.97 15.71 61.34
partition_16 30.0 3.75 13.64 46.15
partition_18 354.8 3.90 14.78 54.58
partition_20 4.116.4 3.86 15.64 59.40
ortholatin b 29.3 3.89 13.95 36.63
sports_10 98.7 3.91 14.51 44.86
hamming 7.4 10 32.3 3.85 14.04 40.38
hamming 7_3_6 2,402.4 3.91 15.44 H9.76

Table 1

IFORS 2014, Barcelona

Speedups for the Constraint Programming solver Gecode.

12

Pure B&B codes #stillworkswell

Sequential code to parallelize :an old
FORTRAN code of 3000+ lines from

S PARENT

D EO
M. Fischetti, P. Toth, “An Additive Bounding [|NTEGER CALL
Procedure for the Asymmetric Travelling 8 TAMP!
Salesman Problem”, Mathematical
Programming A 53, 173-197, 1992.

LEN cc

» Parametrized AP relaxation (no LP)
* Branching on subtours
» Best-bound first

Vanilla SelfSplit : just 8 new lines added to the sequential original code

time (sec) time speedup
K=1 K =4 K =16 K =32 K =64
1,504 7.76 13.37 21.56 30.59

Table 3 Parallelization of a sequential ATSP branch-and-bound code.

IFORS 2014, Barcelona 13

B&Cut codes #fair

Sequential code to parallelize : B&C FORTRAN code (10K lines) from

M. Fischetti, P. Toth, “A Polyhedral Approach to the Asymmetric Traveling Salesman
Problem” Management Science 43, 11, 1520-1536, 1997.

M. Fischetti, A. Lodi, P. Toth, “Exact Methods for the Asymmetric Traveling Salesman
Problem”, in The Traveling Salesman Problem and its Variations, G. Gutin and A. Punnen
ed.s, Kluwer, 169-206, 2002.

Main Features G OTO

COUNT MMFI.AG JDVC nCST & C L verTEx weugr V21T

LP solver: CPLEX 12.5.1 . RETURNSECOND g NPJ= s SR
AEEINTEGER ORD e 0 ST SR

Cuts: SEC, SD, DK, RANK (and pool) mYNZEM%RSCT)AOTTEEMNS.DN TOTAssRCNODOB NE

separated along the tree CONT'NUELLCOMMON iCALLE

Dynamic (Lagrangian) pricing of var.s
Variable fixing, primal heuristics, etc.

time (sec) time speedup
K=1 K =4 K =16 K =32 K =64
2,465 6.74 10.89 14.54 17.91

IFORS 2014, Barcelona

14

MIP application (CPLEX)

We performed the following experiments

1. We implemented SelfSplit in its paused-node version using
CPLEX callbacks.

2. We selected the instances from MIPLIB 2010 on which CPLEX
consistently needs a large n. of nodes, even when the incumbent is
given on input, and still can be solved within 10,000 sec.s (single-
thread default). This produced a testbed of 32 instances

3. All experiments have been performed in single thread , by giving
the incumbent on input and disabling all heuristics - approximation
of a production implementation involving some limited amount of
communication in which the incumbent is shared among workers.

IFORS 2014, Barcelona 15

MIP application (CPLEX)

Experiment n. 1

We compared CPLEX default (with empty callbacks) with SelfSplit_1 ,
l.e. SelfSplit with input pair (1,1), using 5 random seeds. The
slowdown incurred was just 10-20%, hence Self Split 1 is
comparable with CPLEX on our testbed

Experiment n. 2

We considered the availability of 16 single-thread machines and
compared two ways to exploit them without communication:

(a) running Rand_16, i.e. SelfSplit_1 with 16 random seeds and
taking the best run for each instance (concurrent mode)

(b) running SelfSplit_16, i.e. SelfSplit with input pairs (1,16),
(2,16),...,(16,16)

IFORS 2014, Barcelona

16

MIP application (CPLEX) #notbad

SelfSplit_1 SelfSplit_16 Rand_16
time opt Time opt speedup Time opt speedup

beasleyC3 10,000.01 0 10,000.00 0 1.00 1,601.28 1 6.25
csched007 10,000.01 0 1,445.56 1 6.92 2,166.22 1 462
csched010 5,471.81 1 475.61 1 11.50 1,183.64 1 462
danoint 2,679.58 1 234.82 1 10.99 1,767.17 1 1.46
enlight16 272.44 1 10.35 1 26.32 154 .53 1 1.76
iis-bupa-cov 10,000.01 0 1,762.88 1 5.67 10,000.01 0 1.00
k16x240 3,526.51 1 365.03 1 9.66 3,528.51 1 1.00
mesched 4,744 .56 1 371.82 1 12.76 3,735.38 1 1.27
mik-250-1-100-1 1,131.14 1 1,543.85 1 0.73 1,129.12 1 1.00
momentum- 8,730.25 1 2,224.69 1 3.92 3,476.15 1 2.51
neos-1426662 5591.18 1 2,980.37 1 1.88 590.31 1 9.47
neos-1442657 839.15 1 83.95 1 7.61 180.05 1 3.65
neos-1616732 2,792.79 1 549.99 1 5.08 1,410.80 1 1.08
neos-1620770 10,000.01 0 208.04 1 48.07 1,356.77 1 7.37
neos-942830 1,626.58 1 3,662.14 1 0.44 258.65 1 6.29
neos15 5,096.19 1 3,081.10 1 1.65 5,094 .56 1 1.00
neos16 10,000.01 0 127.86 1 78.21 2,041.42 1 4.90
neos858960 2,043.96 1 173.69 1 11.77 794.92 1 257
newdano 10,000.01 0 1,406.58 1 7.11 9,820.67 1 1.02
nobel-eu-DBE 10,000.01 0 7.677.27 1 1.32 5641.82 1 1.77
noswot 14714 1 17.39 1 8.46 23.99 1 6.13
ns1766074 89.45 1 10.30 1 8.68 85.88 1 1.04
ns208172¢9 §,588.38 1 10,000.00 0 0.66 6,588.38 1 1.00
nus0-pr9 10,000.01 0 3,248.67 1 3.08 5,088.17 1 1.97
pg5_34 9,416.21 1 826.22 1 11.40 9,407.77 1 1.00
pigeon-10 42167 1 65.18 1 6.47 395.48 1 1.07
ran14x18 3,163.16 1 236.98 1 13.35 2,438.44 1 1.30
ran14x18-disj-8 1,709.97 1 201.25 1 8.50 1,709.75 1 1.00
reblock166 10,000.02 0 10,000.00 0 1.00 10,000.01 0 1.00
rmine6 10,000.01 0 1,716.65 1 5.83 4,763.89 1 210
rococcB10-011000 10,000.01 0 5,002.32 1 1.6 10,000.01 0 1.00
timtab1 1,675.12 1 171.30 1 9.78 868.85 1 1.83
sum 21 29 29

avg 10.37 2.69
geomean 5.29 2.01

IFORS 2014, Barcelona

Why speedups change so much?

Empirical rule: the more sophisticated the code, the smaller the speedup
#curseofbeingtoosmart

Typically explained by the fact that the solver “learns during the run”
important information (cuts, conflicts, etc.) that cannot be shared by the
workers in a no-communication framework

However SelfSplit learns a lot during its sampling phase: is loss of
communication the only issue? We believe that performance variability
plays a role here

Sophisticated tree-search codes behave like chaotic systems (marginal
changes modify the search path and may heavily affect performance)

Maybe simpler B&B codes preferable when #millioncores will be available?

IFORS 2014, Barcelona 18

Role of variability in workload split

| Speedup Pistributions for K = 64
* Synthetic

experiments

with 10, 100, 64— ‘ —
1000 random é % : =
subtrees per - T CoL
worker a8 a H
(subtree size L .

as a random

: H

|

16}]

|

|

. . |

unif = uniform +

variable)
prt = Pareto 1|0 1(IJO IOIOO 1‘0 1(|)0 IOIOO ZLIO 190 1q00 1‘0 1?0 1(1:00

Speedup Distribution

0
unif100k-200k unifl00k-1M prt3 prt2
heavy t.

IFORS 2014, Barcelona

Thank you for your attention

diectiveness
different .
1ahel instance
ot
e code—
T solver ™ ; m;mp;mzm o
— among ref “"”h ddﬁtel}'mm‘m“ “““ : I]_Od m"gm
™ jtemize S
perfoﬂnance bl by 1ADE worker i b et SXperiments ==
- istrbution parallelization ArI}\tD‘DE multlcolumn mdﬂ lage Speedup subpmhlems ¢ !
55 fibed aigxm\iﬂ‘mjblmmwm ential ', begm nUmbEP time variahlity CIte ok s ity e cnmmumcatlon ltEITl pres MTfﬁg

sampling

workers

SelfSplit paper available at www.dei.unipd.it/~fisch/papers

Slides (also of this talk) available at www.dei.unipd.it/~fisch/papers/slides

IFORS 2014, Barcelona

