
Self-Splitting Tree Search
in a Parallel Environment
Matteo Fischetti, Michele Monaci, Domenico Salvagni n

University of Padova

IFORS 2014, Barcelona 1

Parallel computation
• Modern PCs /

notebooks have
several processing
units (cores)
available

• Running a sequential code on 8 cores only uses 12% of the
available power…

• … whereas one would of course aim at using 100% of it

IFORS 2014, Barcelona 2

Distributed computation

• Affordable servers offer
24+ quadcore units (blades)

• Grids of 1000+ computers
are available worldwide

• No doubt that parallel computing is
becoming a must for CPU intensive
applications, including optimization

IFORS 2014, Barcelona 3

Parallelization of a sequential code

• We are given a deterministic sequential source code based on a
divide-and-conquer algorithm (e.g., tree search)

• We want to slightly modify it to exploit a given set of K (say)
processors called workers

• IDEA: just run K times the same sequential code on the K workers

• … but modify the source code so as to just skip some nodes (that
will be processed instead by one of the other workers…)

“Workload automatically splits itself among the wor kers”

IFORS 2014, Barcelona 4

The basic idea
• Assume you have K workers available and a sequential tree-search code

• In the source code, locate the place where tree nodes are popped-out from the
node queue

• Add the following statements to your sequential code:
When a sufficient n. of nodes has been generated, just kill some
nodes according to a rule that depends on an additional integer inputnodes according to a rule that depends on an additional integer input
parameter k

• Run the resulting sequential code on the K workers, with input k=1,2,…,K

• Naïve Rule: kill nodes with a certain probability (using k as random seed) �
heuristic as a same node can be killed by all K workers

• SelfSplit : use a rule that guarantees a node be killed in all but one of the K runs

IFORS 2014, Barcelona 5

SelfSplit

• Each worker reads the original input
data and receives an additional input
pair (k,K), where K is the total number
of workers and k=1,…,K identifies the
current worker

• The same deterministic computation is initially performed, in parallel, by
all workers (sampling phase), without any communication

• When enough open nodes have been generated, each worker applies
a deterministic rule to skip the nodes that belong to other workers .
No communication required at this stage

IFORS 2014, Barcelona 6

Vanilla
implementation

IFORS 2014, Barcelona 7

Paused -node
implementation

IFORS 2014, Barcelona 8

Extensions

• SelfSplit can be run with just K' << K workers, with input pairs (1,K), (2,K),
…,(K',K) � kind of multistart heuristic that guarantees non-overlapping
explorations

• It can be used to obtain a quick estimate of the sequential computing
time , e.g. by running SelfSplit with (1,1000), …(8,1000) and taking

sampling_time +
1000 * (average_computing_time – sampling_time)

• Allows for a pause-and-resume exploration of the tree (useful e.g. in case
of computer failures)

• Applications to High Performance Computing and Cloud Computing?

IFORS 2014, Barcelona 9

Related approaches

• The idea of parallelizing without communication is not new…

Laursen, Per S. 1994. Can parallel branch and bound without communication be effective? SIAM
Journal on Optimization 4(2) 288-296.

… but is was apparently ignored by the Mathematical Programming
community

• Recent work for Constraint Programming (CP)

Regin, Jean-Charles, Mohamed Rezgui, Arnaud Malapert. 2013. Embarrassingly parallel search.
Christian Schulte, ed., Principles and Practice of Constraint Programming, Lecture Notes in Computer
Science, vol. 8124. Springer Berlin Heidelberg, 596-610.

Moisan, Thierry, Jonathan Gaudreault, Claude-Guy Quimper. 2013. Parallel discrepancy-based
search. Christian Schulte, ed., Principles and Practice of Constraint Programming, Lecture Notes in
Computer Science, vol. 8124. Springer Berlin Heidelberg, 30-46.

IFORS 2014, Barcelona 10

Our hashtags

• SelfSplit is #easy to implement

• SelfSplit can be the #firstoption
to try

• SelfSplit can in fact be the • SelfSplit can in fact be the
#onlyoption when complicated
(industrial) codes need to be
parallelized� #justforget to
modifying the sources heavily

• SelfSplit can be rather effective
indeed #itworks

IFORS 2014, Barcelona 11

SelfSplit for CP #itworks

IFORS 2014, Barcelona 12

Pure B&B codes #stillworkswell
Sequential code to parallelize : an old
FORTRAN code of 3000+ lines from

M. Fischetti, P. Toth, “An Additive Bounding
Procedure for the Asymmetric Travelling
Salesman Problem”, Mathematical
Programming A 53, 173-197, 1992.

• Parametrized AP relaxation (no LP)
• Branching on subtours

IFORS 2014, Barcelona 13

• Branching on subtours
• Best-bound first

Vanilla SelfSplit : just 8 new lines added to the sequential original code

B&Cut codes #fair
Sequential code to parallelize : B&C FORTRAN code (10K lines) from

– M. Fischetti, P. Toth, “A Polyhedral Approach to the Asymmetric Traveling Salesman
Problem” Management Science 43, 11, 1520-1536, 1997.

– M. Fischetti, A. Lodi, P. Toth, “Exact Methods for the Asymmetric Traveling Salesman
Problem”, in The Traveling Salesman Problem and its Variations, G. Gutin and A. Punnen
ed.s, Kluwer, 169-206, 2002.

Main FeaturesMain Features
– LP solver: CPLEX 12.5.1
– Cuts: SEC, SD, DK, RANK (and pool)

separated along the tree
– Dynamic (Lagrangian) pricing of var.s
– Variable fixing, primal heuristics, etc.

IFORS 2014, Barcelona 14

MIP application (CPLEX)

We performed the following experiments

1. We implemented SelfSplit in its paused-node version using
CPLEX callbacks.

2. We selected the instances from MIPLIB 2010 on which CPLEX
consistently needs a large n. of nodes, even when the incumbent is
given on input, and still can be solved within 10,000 sec.s (single-

IFORS 2014, Barcelona 15

given on input, and still can be solved within 10,000 sec.s (single-
thread default). This produced a testbed of 32 instances .

3. All experiments have been performed in single thread , by giving
the incumbent on input and disabling all heuristics � approximation
of a production implementation involving some limited amount of
communication in which the incumbent is shared among workers.

MIP application (CPLEX)

Experiment n. 1

We compared CPLEX default (with empty callbacks) with SelfSplit_1 ,
i.e. SelfSplit with input pair (1,1), using 5 random seeds. The
slowdown incurred was just 10-20%, hence Self_Split_1 is
comparable with CPLEX on our testbed

Experiment n. 2

IFORS 2014, Barcelona 16

We considered the availability of 16 single-thread machines and
compared two ways to exploit them without communication:

(a) running Rand_16 , i.e. SelfSplit_1 with 16 random seeds and
taking the best run for each instance (concurrent mode)

(b) running SelfSplit_16, i.e. SelfSplit with input pairs (1,16),
(2,16),…,(16,16)

MIP application (CPLEX) #notbad

IFORS 2014, Barcelona 17

Why speedups change so much?
• Empirical rule: the more sophisticated the code, the smaller the speedup

#curseofbeingtoosmart

• Typically explained by the fact that the solver “learns during the run”
important information (cuts, conflicts, etc.) that cannot be shared by the
workers in a no-communication framework

• However SelfSplit learns a lot during its sampling phase: is loss of • However SelfSplit learns a lot during its sampling phase: is loss of
communication the only issue? We believe that performance variability
plays a role here

• Sophisticated tree-search codes behave like chaotic systems (marginal
changes modify the search path and may heavily affect performance)

• Maybe simpler B&B codes preferable when #millioncores will be available?

IFORS 2014, Barcelona 18

Role of variability in workload split

• Synthetic
experiments
with 10, 100,
1000 random
subtrees per
worker
(subtree size (subtree size
as a random
variable)

unif = uniform

prt = Pareto
heavy t.

IFORS 2014, Barcelona 19

Thank you for your attention

IFORS 2014, Barcelona 20

SelfSplit paper available at www.dei.unipd.it/~fisch/papers

Slides (also of this talk) available at www.dei.unipd.it/~fisch/papers/slides

