Proximity-driven MIP heuristics with an application to wind farm layout optimization

Matteo Fischetti, University of Padova, Italy

Joint work with Martina Fischetti and Michele Monaci

MIP technology

• Mixed-Integer (Linear) Programming is a powerful technique ...

... that recently became a feasible and appealing tool to solve complex/huge real problems

Advantages of the MIP approach

- Many industrial problems can be modeled as MIPs
- Different constraints can easily be added → what if analysis
- In many cases, off-the-shelf MIP software is able to produce a proven-optimal solution
- In the hardest cases, **MIP-based heuristics** yield very good solutions within acceptable computing times
- MIP-based heuristics can be <u>easier</u> to design and implement than ad-hoc heuristics

A case study: wind farm layout

Given

- a site (offshore or onshore)
- characteristics of the turbines to build
- measurements of the wind in the site

Determine a turbine allocation that **maximizes power production**

Taking into account:

- proximity constraints (no collisions)
- minimum/maximum number of turbines
- wake effects

The problem

• Define a grid of **sites** (candidate points for turbine allocation)

For each site pair (*i*,*j*), let I_{ij} denote the average **interference** (power loss) experienced at point *j* if a turbine is built on site *i* → it depends on average wind speed and direction, nonlinear turbine power curve, etc.

• Assume overall interference is **cumulative** (sum of pairwise interf.s)

Basic (quadratic) model

Let V be the site set, P_i be the max. power production at point i, E_i denote incompatible site pairs, and N_{MIN} and N_{MAX} be input limits on the n. of built turbines

$$\max\sum_{i\in V} P_i x_i - \sum_{i\in V} \sum_{j\in V} I_{ij} x_i x_j \tag{1}$$

s.t.
$$N_{MIN} \le \sum_{i \in V} x_i \le N_{MAX}$$
 (2)

$$x_i + x_j \le 1 \qquad \qquad \forall [i, j] \in E_I \tag{3}$$

$$x_i \in \{0, 1\} \qquad \qquad \forall i \in V \qquad (4)$$

Designing a simple wind-farm heuristic

- Our first heuristic is **not** based on the MIP model → hopefully easy to implement...
- Basic move: Given a feasible solution *x*, we want to see if we can improve it by flipping a single variable *x_j* → 1-opt exchange
- Simple heuristic: for each *j*, compute the objective improvement δ_j when flipping x_i (alone), and find max { δ_i }

$$\sum_{i \in V} P_i x_i - \sum_{i \in V} \sum_{j \in V} I_{ij} x_i x_j$$

where $I_{ij} = +\infty$ for incompatible pairs $[i,j] \in E_i$

• **Complexity:** $O(|V|^2)$ for each max computation

Improving the basic heuristic

• Complexity can be reduced from $O(|V|^2)$ to O(|V|) by using parametric techniques:

1. Initialize in
$$O(|V|^2)$$
 $\delta_j = \begin{cases} P_j - \sum_{i \in V: x_i = 1} (I_{ij} + I_{ji}) & \text{if } x_j = 0 \\ -P_j + \sum_{i \in V: x_i = 1} (I_{ij} + I_{ji}) & \text{if } x_j = 1 \end{cases}$

2. When a certain \mathbf{x}_{j^*} is going to be flipped, incrementally update all $\boldsymbol{\delta}_i$'s in O(|V|) time

$$\delta_{j} = \begin{cases} -\delta_{j} & \text{if } j = j^{*} \\ \delta_{j} - (I_{jj^{*}} + I_{j^{*}j}) & \text{if } j \neq j^{*} \text{ and } x_{j} = x_{j^{*}} \\ \delta_{j} + (I_{jj^{*}} + I_{j^{*}j}) & \text{if } j \neq j^{*} \text{ and } x_{j} \neq x_{j^{*}} \end{cases}$$

... and improving

- 2-opt exchanges can be implemented as well → time consuming, but we can apply it only from time to time, etc.
- Start with a **better initial** solution?
 - 1. Start with the null solution x = 0 #toobad
 - 2. Greedy heuristic **#better**
 - 3. Randomized greedy **#grasp**
 - Smart solutions tend to put more turbines on the border of offshore area #smart
 - 5. ... more and more ideas pop out and require to be implemented, debugged and tested **#curseofbeingtoosmart**

... and improving ...

- Escaping local optimal solutions by using
 - 1. Random restarts
 - 2. Tabu Search
 - 3. Variable Neighborhood Search (VNS)
 - 4. Simulated Annealing
 - 5. Genetic Algorithms
 - 6. Evolutionary Heuristics
 - 7.
- ... our first heuristic is not based on the MIP model → hopefully easy to implement... → are we sure?

MIP heuristics

• Consider a generic Mixed-Integer convex 0-1 Problem (0-1 MIP)

 $\min f(x)$ $g(x) \le 0$ $x_j \in \{0, 1\} \quad \forall j \in J$

where *f* and *g* are convex functions and $\emptyset \subset J \subseteq N := \{1, \dots, n\}$

 \rightarrow removing integrality leads to an easy-solvable <u>continuous relaxation</u>

- A **black-box** (exact or heuristic) MIP solver is available
- How to use the MIP solver to quickly provide a sequence of improved heuristic solutions (time vs quality tradeoff)?

Large Neighborhood Search

- Large Neighborhood Search (LNS) paradigm:
 - 1. introduce **invalid constraints** into the MIP model to create a nontrivial sub-MIP "centered" at a given heuristic sol. \tilde{x} (say)
 - 2. Apply the MIP solver to the sub-MIP for a while...
- Possible implementations:
 - Local branching: add the following linear cut to the MIP

$$\Delta(x, \tilde{x}) = \sum_{j \in J: \, \tilde{x}_j = 0} x_j + \sum_{j \in J: \, \tilde{x}_j = 1} (1 - x_j) \le k$$

- **RINS**: find an optimal solution x^* of the continuous relaxation, and fix all binary variables such that $x_j^* = \tilde{x}_j$
- Polish: evolve a population of heuristic sol.s by using RINS to create offsprings, plus mutation etc.

Proximity search

- We want to work with a modified objective function that hopefully allows the black-box solver to quickly improve the incumbent solution \tilde{x}
- **"Stay close" principle**: we bet on the fact that improved solutions live near the incumbent, hence we **attract** the search within a neighborhood of \tilde{x} (without imposing any artificial neighborhood constraints)
- Step 1. Add an explicit cutoff constraint $f(x) \le f(\tilde{x}) \theta$
- Step 2. Replace the objective f(x) by the proximity function

$$\Delta(x, \tilde{x}) = \sum_{j \in J: \, \tilde{x}_j = 0} x_j + \sum_{j \in J: \, \tilde{x}_j = 1} (1 - x_j) = ||x - \tilde{x}||_J^2$$

Proximity search heuristic

1. run a black-box solver on the original 0-1 MIP, until a "reasonably good" feasible solution \tilde{x} is found;

repeat

- 2. explicitly add the *cutoff constraint* $f(x) \le f(\tilde{x}) \theta$ to the MIP model, where $\theta > 0$ is a given parameter;
- 3. replace the objective function f(x) by a new "proximity" one, say $\Delta(x, \tilde{x})$;
- 4. run the MIP solver on the new model until a termination condition is reached, and let x^* be the best feasible solution found;
- 5. **if** $J \subset N$ **then** refine x^* by solving the convex program $x^* := \operatorname{argmin}\{f(x) : g(x) \le 0, x_j = x_j^* \forall j \in J\};$
- 6. recenter $\Delta(x, \cdot)$ by setting $\tilde{x} := x^*$, and/or update θ until an overall termination condition is reached; return \tilde{x}

A MIP-based heuristic for wind farm

- What you need here is
 - 1. A robust MIP solver
 - 2. An idea of the **size** and difficulty of that practical instances that we want to solve (100 sites? or 1,000? or 10,000?)
 - A sound MIP model that "does not die" for the instances of interest → for heuristics, speed is sometimes more important than polyhedral tightness...
 - An idea about "how to drive the MIP solver" to deliver the solution you want → LNS, local branching, polish, proximity search...

A standard MIP linearization

• Introduce a quadratic n. of var.s $Z_{ij} = X_i X_j$

$$\max \sum_{i \in V} P_i x_i - \sum_{i \in V} \sum_{j \in V, i < j} (I_{ij} + I_{ji}) z_{ij}$$
(1)

s.t.
$$N_{MIN} \le \sum_{i \in V} x_i \le N_{MAX}$$
 (2)

$$x_i + x_j \le 1 \qquad \qquad \forall [i, j] \in E_I \tag{3}$$

$$x_i + x_j - 1 \le z_{ij} \qquad \forall i, j \in V, i < j \qquad (4)$$
$$x_i \in \{0, 1\} \qquad \forall i \in V \qquad (5)$$

$$z_{ij} \in \{0, 1\} \qquad \forall i, j \in V, i < j \tag{6}$$

An alternative MIP linearization

Glover's trick: the objective function

$$\sum_{i \in V} P_i x_i - \sum_{i \in V} (\sum_{j \in V} I_{ij} x_j) x_i \tag{11}$$

is restated as

$$\sum_{i \in V} (P_i x_i - w_i) \tag{12}$$

where

$$w_i := \left(\sum_{j \in V} I_{ij} x_j\right) x_i = \begin{cases} \sum_{j \in V} I_{ij} x_j & \text{if } x_i = 1; \\ 0 & \text{if } x_i = 0. \end{cases}$$

→ the new continuous variable w_i is the product between a continuous term (\sum ...) and a binary variable (x_i) → McCormick linearization

An alternative MIP linearization

A linearized model with linear n. of additional var.s w_i and BIGM constr.s

$$\max z = \sum_{i \in V} (P_i x_i - w_i) \tag{13}$$

s.t.
$$N_{MIN} \le \sum_{i \in V} x_i \le N_{MAX}$$
 (14)

$$x_i + x_j \le 1 \qquad \qquad \forall [i, j] \in E_I \qquad (15)$$

$$\sum_{j \in V} I_{ij} x_j \le w_i + M_i (1 - x_i) \quad \forall i \in V$$
(16)

$$x_i \in \{0, 1\} \qquad \qquad \forall i \in V \qquad (17)$$

$$w_i \ge 0 \qquad \qquad \forall i \in V \qquad (18)$$

Which linearization is better?

-	n = 100		n = 150		n = 200		n = 300		n = 500		n = 1000	
	Mod 2	Mod 4	Mod 2	Mod 4	Mod 2	Mod 4	Mod 2	Mod 4	Mod 2	Mod 4	Mod 2	Mod 4
n. variables	4786	200	9631	300	16403	400	32669	600	92257	1000	381983	2000
n. constraints	4866	280	9608	277	16376	373	32704	635	92173	916	382420	2437
n. nonzeros	14418	5246	28950	10288	49300	17294	99451	35313	279012	96498	1166942	406976
root LP time	0.05	0.01	0.02	0.02	0.04	0.07	20.05	0.07	26.37	0.36	380.91	4.32
root time	78.6	0.29	22.79	0.35	42.38	0.82	299.40	2.63	368.29	3.73	3600	25.97
root bound	61.19	70.12	66.05	66.96	87.55	88.69	73.30	76.88	105.09	108.26	112.40	112.78
root heu.sol.	54.38	53.1	53.46	53.96	63.50	63.84	54.67	56.13	70.24	70.78	65.64	65.64
root cuts	4960	37	1073	23	2173	11	1038	290	1040	15	178	40
final n. nodes	16K	16M	178K	27M	33K	12M	16K	3M	1778	2M	0	129K
final best bound	54.49	54.49	57.47	56.66	78.98	79.16	67.98	68.53	102.68	100.52	112.4	109.96
final best heu.sol	54.49	54.49	54.15	54.36	65.09	66.28	55.66	56.67	70.72	74.19	65.64	71.31
final time	2006.05	1698.70	3600	3600	3600	3600	3600	3600	3600	3600	3600	3600

- Comparison between the linearizations with quadratic n. of var.s/constr.s (Mod 2) and with linear n. of var.s/constr.s (Mod 4) time limit of 3600 sec.s on a PC
 - \rightarrow Mod 4 (linear n. of var.s/constr.s) much better for heuristics

Our overall MIP-based heuristic

- **Step 0**. read input data and compute the overall interference matrix (I_{ij}) ;
- **Step 1**. (optional) apply **ad-hoc heuristics** (1-opt) to get a first incumbent \tilde{x} ;
- Step 2. (optional) apply quick ad-hoc refinement heuristics (few iterations of iterated 1- and 2-opt) to possibly improve x⁻;
- Step 3. if n > 2000, randomly remove points i with x_i = 0 so as to reduce the number of candidate sites to 2000;
- Step 4. build a MIP model for the resulting subproblem and apply proximity search to refine x until the very first improved solution is found (or time limit is reached);
- **Step 5.** if time limit permits, repeat from Step 2.

Computational results

Alternative heuristics implemented in C and run on a quad-core PC (16GB RAM)

- a) proxy: our MIP-based proximity-search heuristic built on top of Cplex 12.5.1
- b) cpx_def: Cplex 12.5.1 in its default setting, starting from the same heuristic solution x used by proxy
- c) cpx_heu: same as cpx_def, with an internal tuning intended to improve heuristic performance (aggressive RINS & Polish)
- d) loc_sea: an ad-hoc local-search procedure not based on any MIP solver

Testbed (real offshore site: Horns Rev 1 in Denmark)

- offshore 3,000 x 3,000 (m) square with 400m minimum turbine separation
- no limit on the number of turbines to build
- Siemens SWT-2.3-93 turbines (rotor diameter 93m)
- pairwise interference computed using Jensen's model, by averaging 250,000+ real-world wind samples from *Horns Rev 1 (Denmark)*

Computational results

Fig. 4 Solution profit over time for 4 sample instances with n = 1,000 (top left and top right), n = 5000 (bottom left), and n = 10,000 (bottom right); the higher the profit the better.

Thanks for your attention

Papers

- M. Fischetti, M. Monaci, "Proximity Search for 0-1 Mixed-Integer Convex Programming", 2013 (accepted in *Journal of Heuristics*)
- M. Fischetti, M. Monaci, "Proximity search heuristics for wind farm optimal layout", 2013 (submitted to *Journal of Heuristics*).
- M. Fischetti, M. Fischetti, M. Monaci, "Proximity search heuristics for Mixed Integer Programs", 2014 (*RAMP 2014* proceedings)

and slides available at www.dei.unipd.it/~fisch