
BRANCHstorming
(brainstorming about tree search)

Matteo Fischetti, University of Padova

ISCO 2014, Lisbon, March 2014 1

Tree search (the way we teach it)

• Tree search (or enumerative) methods evangelized in different ways by
different communities

• According to the
Integer Programming Gospel …

In the beginning was the Fractional Point
[John 1:1]

• Apocryphal Gospels however exist that even doubt the existence of the
fractional point (popular in the barbarian AI & CP worlds …)

ISCO 2014, Lisbon, March 2014 2

Role of the fractional point

1. Solve the LP (or convex) relaxation of
your (M)IP and let x* be an optimal solution

2. If x* is integer, jubilate!

3. Otherwise, x* is the devil and you have
to dispel it

ISCO 2014, Lisbon, March 2014 3

to dispel it

4. Try with cutting planes first
(the more violated by x* the better)

5. Then branch on a fractional component of x*

The IP Commandments

ISCO 2014, Lisbon, March 2014 4

The IP verb is spread over the world

ISCO 2014, Lisbon, March 2014 5

Success of IP tree -search paradigm

• The main ingredients of IP tree search deeply studied in the last years

– Powerful preprocessing
– Fast LP solvers
– Better and better cutting planes
– Improved branching strategies– Improved branching strategies
– Extensive propagation/probing
– Improved primal heuristics

• As a result, more and more real-world difficult problems solved to proven
optimality

• Everything well understood and under control !(?)

ISCO 2014, Lisbon, March 2014 6

But… something strange happens
• Different IP solvers may have very different performance on a same

instance!

SOLVER #1 SOLVER #2

Time Nodes Time Nodes
Time

Speedup

glass4 43.08 118,151 12.95 17,725 3.33

neos-1451294 3,590.27 20,258 102.94 521 34.88

neos -1593097 149.94 10,879 16.12 508 9.30

• SOLVER #1: IBM ILOG Cplex 12.2 (default parameters)
• SOLVER #2: IBM ILOG Cplex 12.2 (default parameters)

Deterministic runs on the same PC, only change is t he initial random seed

ISCO 2014, Lisbon, March 2014 7

neos -1593097 149.94 10,879 16.12 508 9.30

neos-1595230 1,855.69 152,951 770.60 89,671 2.41

neos-603073 452.40 36,530 130.75 10,017 3.46

neos-911970 3,588.54 5,099,389 3.29 1,767 1,090.74

ran14x18_1 3,287.59 1.480,624 2.066.70 759,265 1.59

Tree search as a
chaotic system?

• Common observation (Danna, 2008): even when implemented in a
deterministic way, tree search is highly dependent on initial conditions
� small changes can result into completely different trees

• Changes can be related to the external environment (same code compiled • Changes can be related to the external environment (same code compiled
for different hardware or OS’s) …

• … or to the internal problem representation (permutation of rows and col.s)
• … or to the internal parameters (initial random seed)

• In all cases, it is impossible to predict which initial condition will produce the
best performance

• The more sophisticated the code, the more variabili ty is expected!

ISCO 2014, Lisbon, March 2014 8

Erratic performance variability

ISCO 2014, Lisbon, March 2014 9

(courtesy of Andrea Tramontani, IBM ILOG Cplex)

Erratic performance variability

ISCO 2014, Lisbon, March 2014 11

(courtesy of Andrea Tramontani, IBM ILOG Cplex)

Variability as an opportunity

• F. and Monaci (Op. Res. 2014): bet-and-run
1. Run CPLEX k times with different seeds, for just few B&C nodes

2. bet on the winner and let it run up to completion

• Carvajal, Ahmed, Nemhauser, Furman, Goel, Shao (Opt. Online, 2013):
• run k single-thread B&C with different parameters (instead of single B&C • run k single-thread B&C with different parameters (instead of single B&C

with k threads)

• F., Lodi, Monaci, Salvagnin, Tramontani (submitted)
• Concurrent root cut loops ; in the Cplex default since version 12.5

• Powerful way to distribute B&C computation on a cluster of PCs
� Distributed Concurrent Optimization

12ISCO 2014, Lisbon, March 2014

Variability as an issue
• High performance variability helps when a same instance is solved in

parallel � computation ends when the FIRST solver ends its job

• High performance variability is very bad when different parts of the instance
(e.g., subtrees) are solved in parallel � computation ends when the LAST
part is solved

• Number of nodes in a subtree as
a random variable

Heavy tailed distributions �

there is a small but nonzero probability
that the n. of tree nodes explodes!

ISCO 2014, Lisbon, March 2014 13

SelfSplit for tree search
parallelization

• A new framework recently proposed by F., Monaci and Salvagnin (2013)

• Super-easy way to convert a sequential
tree-search code into a parallel one

• Each worker reads the original input data
and receives an additional input pair
(k,K), where K is the total number of workers
and k=1,…,K identifies the current worker

• The same deterministic sequential computation is initially performed by all workers
(sampling phase), without any communication

• When enough open nodes have been generated, each worker applies a
deterministic rule to identify and skip the nodes that belong to the other
workers , with no (or very little) communication among workers.

ISCO 2014, Lisbon, March 2014 14

Role of variability in workload split

• Synthetic
experiments
with 10, 100,
1000 random
subtrees per
worker
(subtree size (subtree size
as a random
variable)

unif = uniform

prt = Pareto
heavy t.

ISCO 2014, Lisbon, March 2014 15

A computational conjecture

• Recursive nature of tree search

� overall tree is a collection of subtrees

� the overall tree-search performace
is averaged over subtrees is averaged over subtrees

� but still there is a large probability that
some subtrees require a vary large computing time just because of
erraticity…

• Computational conjecture : reducing variability inside the tree can help a
lot even a sequential code as “no subtrees explode”

ISCO 2014, Lisbon, March 2014 16

Where does erraticity come from?

• A main source of erraticism in our branch-and-cut (or branch-and-bound)
codes is the emphasis we give to the fractional solution

• Indeed, even if we believe we are good
fellows who respect the IP commandments…

• … we still commit the original sin of
being driven by the fractional point
… and we insist on branching on integer
variables and on adding slack cuts

The reason is that we are truly degenerate (not in the
sense of being immoral, but because of the existence of
equivalent optimal fractional solutions)

ISCO 2014, Lisbon, March 2014 17

Bifurcation points and simplex method

• Fractional points are typically computed by the simplex method
• The simplex method follows a path along the edges of the LP polyhedron

• Degeneracy triggers a random perturbation
in the simplex method � bifurcation point
in the simplex search paths

• Any small change (even the random seed) acting at the bifurcation point will
produce a completely different final solution on the optimal face

• Different fractional solutions lead to different
cuts and heuristics and branching at the root node

• Branching itself acts as a exponential
chaos amplifier � the pinball effect

ISCO 2014, Lisbon, March 2014 18

Don’t trust the fractional point!
• Dual degeneracy is a structural property of the LP relaxation of NP-hard

problems -- if we could exclude dual degeneracy at every step, we could
solve any IP in pseudo-polynomial time by Gomory’s integer cutting planes

• So, at each B&B node the fractional solution we consider
is by no mean THE fractional solution

• … but just a random sample among millions alternatives

• … possibly biased because of the algorithm used to select it (e.g., dual
simplex favors bases not too far from the previous one, hence inducing a
potentially-dangerous correlation)

• Whenever LP bound does not improve after a cut or after branching, we are
in fact adding a nonviolated cut , or we are branching on an integer
variable , w.r.t. a different (equivalent) fractional solution!

ISCO 2014, Lisbon, March 2014 19

Brainstorming
• IP tree search designed around with concept of fractional point

• But we have seen that THE fractional point does not exist…
… as what we get at each node is just a random (biased) sample

• Is it reasonable to take strategic decisions (notab ly: cutting planes &
branching) based on the analysis of a single fracti onal solution?branching) based on the analysis of a single fracti onal solution?

• Our B&C codes are likely to suffer from large overfitting

• Like designing a machine learning tool (say, a Support Vector Machine) with a
training set composed by a single point � would you trust it?

• Research topic: new generation of B&C codes where clouds of fractional
solutions are evaluated in a statistically-sound way (bigdata approach?)

ISCO 2014, Lisbon, March 2014 20

Standard branching rules
Naïve branching: based on the value of the fractional components of the
single fractional point at hand (e.g., closest to 0.5 or alike)

Pseudo-cost branching: based on several fractional points discovered in
previous iterations

Strong branching: based on a global property (lower bound) independent
of the particular fractional point at hand – note however that in case no
bound increase can be obtained in both son nodes, there is no reason not
to branch on a variable that happens to be integer in the single fractional
point at hand

Propagation effects on binding constraints (Patel and Chinneck 2007,
Pryor and Chinneck 2011).

Restart to favor noogoods (Karzan, Nemhauser and Savelsbergh, 2009)

ISCO 2014, Lisbon, March 2014 21

Backdoor branching
• Proposed by F. and Monaci (2013)
• 0-1 MIP

• Backdoor (Dilkina,Gomes and Malitsky, 2009)

• Set-covering model • Set-covering model
for smallest backdoor
(P = LP relaxation)

• Backdoor branching (basic idea): assume z* known
1. Sampling phase : collect a large number of vertices
2. Solve the set covering model on those vertices to get “backdoor” S*
3. Give a large branching priority to the variables in S*

ISCO 2014, Lisbon, March 2014 22

Cloud branching
• Proposed by Berthold and Salvagnin (2012)

• Idea: work with a cloud of equivalent optimal LP sol.s.
The cloud can be computed with reasonable overhead (fixed number of
simplex pivots on the optimal face)

• Use the cloud to define • Use the cloud to define

�

• For a binary problem, contains the var.s that are fractional

• During strong branching , try var.s in first (faster & more robust)

ISCO 2014, Lisbon, March 2014 23

Branching on cuts?

• Most IP solvers branch on a single variable

• Why not branching on a linear disjunction?

• Attractive because of the larger degree of freedom in the choice

• Encouraging computational results from the literature

• However, not implemented in commercial solvers yet: why?

• A main difficulty is related precisely to the increased degree of freedom �

much increased variance in estimating the best disjunction � much larger
overfitting � requires a statistically-sound way to select the di sjunction

ISCO 2014, Lisbon, March 2014 24

Cut filtering

Quality measures typically used to filter the activ e cuts at root node

Cut violation and/or distance cut off w.r.t. to a single fractional point

Being violated also by a ‘nearby point’ � Cplex’s pumpreduce strategy
(T. Achterberg)(T. Achterberg)

Nonzero dual variable (activity) at the final root node LP + density
(Cornuéjols, Margot, Nannicini, and Tjandraatmadja, 2013)

Computational conjecture : perhaps many classes of “potentially strong” cuts
are under-utilized within B&C just because a statistically-sound way to
select them is missing (the more degrees of freedom, the more overtuning
and hence the worse practical results)

ISCO 2014, Lisbon, March 2014 25

Thanks for your attention
SelfSplit paper available at

www.dei.unipd.it/~fisch/papers

slides (also of this talk) available at
www.dei.unipd.it/~fisch/papers/slides

ISCO 2014, Lisbon, March 2014 29

