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DIMACS#t @ICerm

11th DIMACS Implementation Challenge in Collaboration with ICERM:
Steiner Tree Problems

The 11t DIMACS challenge was on Steiner Tree Problems
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Vienna and Padua together

» A bunch of effective codes initially provided by Vienna’s team =
* All codes re-engineered and re-tuned to improve performance

* New exact and heuristic codes implemented (this talk)

* Initial filter to select the actual code to be run based on the instance type

* Four codes (all based on Cplex 12.6) finally submitted to DIMACS'’s challenge
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DIMACS 11: Competition Results

Challenge results
D Markus Sinny

Detailed final results posted by Gerald Gamrath at OMACS 1 resuts poing amoun:

ed

Gerald Gamrath

Zuse Institute Berlin - Berlin Mathematical School

http://dimacsll.cs.princeton.edu/contest/challenge-results.pdf

Many variants / scores - not a single winner...

... however #MozartBalls ranked first in many categories

3\ Stephen d Maher @sj maher - 5 dic
Sy DIMACS Challenge: results are in. #mozartballs are a clear winner. Winning

most of the variants they entered.
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Steiner Tree Problem

Definition (The prize-collecting Steiner tree problem (PCSTP))

Given an undirected graph G = (V/, E) with a (possibly empty) set of real
terminals T, C V, edge costs ¢ : E — R™ and node revenues

p: Vi RT, the PCSTP is to find a subtree 7 that spans all real
terminals and such that the cost

(M= «+ Y »

ecE[T] igV[T]

IS minimized.

Definition (Potential terminals)

Among the nodes i € V' \ T,, only those with revenues p; > 0 such that at
least one adjacent edge is strictly cheaper than p; are considered as
potential leaves. These nodes are referred to as potential terminals, and
the associated set is denoted by Tp:

To={veV\T,|Huyv}st cp <pv}.
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Hypercube instances

Since the beginning of our study we focused on the (in)famous
hypercube instances introduced by

Isabel Rosseti, Marcus Poggi de Aragao, Celso C. Ribeiro, Eduardo Uchoa, and Renato F.
Werneck. New benchmark instances for the Steiner problem in graphs. In Extended Abstracts of
the 4th Metaheuristics International Conference (MIC’2001), pages 557-561, Porto, 2001.

2.1 Hypercubes (hc)

Graphs in this series are d-dimensional hypercubes, with d € {6,....12}. For each value of d, the
responding graph has 2% nod dd-2971 ed Tl aphs are bipartit d botl titi
corresponding graph has 2% nodes and d edges. These graphs are bipartite, and both partition
subsets have the same cardinality. The vertices in one of such subsets become terminals (| X| = 2d4-1y,

Real terminals only hc6u 64 192 32 NPm 39
A” edges have COSt 1 hc7u 128 448 64 NP? 77
_ hc8u 256 1024 128  NP? 148

Very symmetrical hc9u 512/ 2304 256 NP? 292
o helOul 1024 5120 512 ?? 582

very difficult LPs o hellu 2048 11264, 1024 ??| 1154
very hard even for heuristics | hel2u 4096/ 24576/ 2048 | 2275
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Looking for more effective models

Many hard instances (including hc*u) involve uniform edge costs

For these instances, edge costs can easily be moved to nodes ...

... hence edge variables become redundant (actually, harmful as they add a
lot of symmetry and overload the model with useless cuts)

We better work on the space of node-variables only ...

... and only impose connectivity of the subgraph induced by the selected
nodes, as in

Eduardo Alvarez-Miranda, Ivana Ljubic, and Petra Mutzel. The maximum weight connected
subgraph problem. In Facets of Combinatorial Optimization: Festschrift for Martin Groetschel,

245-270, Springer, 2013.
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Node separators

Definition (Node Separators)

For i,j € V, asubset N C V' \ {i,j} is called (/,j) node separator iff
after eliminating N from V there is no (/,j) path in G.

N is minimal if N\ {/} is not a (i, /) separator, for any i € N.

Let N'(/,) denote the family of all (7, /) separators.
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Model for uniform edge costs

Node-based MIP model

Shift uniform edge costs ¢ into node revenue:

Cy = C — Py, VveV

Let
T=T,UT, P=Y p,

min cuyv + (P —¢)

s.t. y(N) >yi+y —1 Vi,je T,i#j, VN € N(i,j)
VveT,
Vwve V\T,

where y(N) = >y v
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Connectivity cut separation

Data: Infeasible solution defined by a vector y € {0,1}" with §j =y =1

C; being the connected components of Gy containing /, and j &€ C;

Result: A minimal node separator N that violates inequality (2) with
respect to 1, J.
Delete all edges in E[C; U A(C;)] from G
Find the set R; of nodes that can be reached from j
Return N = A(G) N R;
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Basic model

@ Node-degree inequalities:

VA > {y,-, ificT

2y;, otherwise

Lifted version for potential terminals:

2 > ot Y. w2 VieT,

VEA;:c,;i<pi VEA;:C,i>p;

@ 2-Cycle inequalities:

vily, i€eV,je Ty ci<p;
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Branch & Cut code

Built on top of IBM ILOG Cplex 12.6
Initial compact relaxation - basic model (quite tight for some instances)

Very basic implementation with connectivity cuts separated for integer
points only (lazycut callback)

Cplex’s cuts at default level (but 0-1/2 cuts that are set to aggressive)
Cplex’s primal heuristics at default level (local-branching set to on)
More elaborated implementations tried - worse performance

Local branching heuristic using the B&C itself as a black-box solver

> yiz{ieVig =1 - (7)

JEV =1

— Invoked a few times before attempting the exact solution

— used to gather primal information (better and better feasible solutions)
as well as dual information (connectivity cuts) = restart policy
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Exact solver: basic framework

Data: Input graph G, instance of the STP/PCSTP/DCST/MWCS,
iteration and time limits.

Result: A (sub)-optimal solution Sol.

Sinit =InitializationHeuristics()

k =1, CutPool =0, S, =0

Choose Sol from the solution pool Sinjt.

while (k < maxLBiter) and (time limit not exceeded) do

(Sol, CutPool, S),)= LocalBranching(Sol, CutPool, Sy, seed)

Choose Sol from the solution pool Si,it. Change seed.

if Kk mod 10 == 0 then

S0l recomp = Recombine(Sy,)

if cost(Sol ecomp) < cost(Sol) then
| Sol = S0l recomb

end

end
k=k+1

end
Sol = BranchAndCut( CutPool, Sol, TimeLim)

return Sol
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Comparing exact models

Table 4. Uniform STP instances (GAPS and SP datasets). Proven optimal solutions
in boldface. Previous best known solutions given in brackets. Column Time gives the
computing time for proving the optimality (or, the time limit, otherwise). Columns UB
and LB show upper and lower bounds obtained by the (x,y)-model, within the time
limit of two hours, respectively.

y-model (z,y)-model
name V| |E| T OPT Time (s.)| UB LB gap Time (s.)
sl 64 192 32 10 0.03 10 10 0.0% 0.01
s2 106 399 50 73 0.10 73 73 0.0% 1.67
s3 743 2947 344 514 0.29| 514 508 1.19%  7200.00
s4 5202 20783 2402 3601 1.72| 3601 3515 2.39%  7200.00
SO 36415 145635 16808 25210 30.06 | 25210 24448 3.02%  7200.00
wl3c29 783 2262 406 | 507 (508) 0.61 507 507 0.00% 167.17
w23c23 1081 3174 552|689 (694) 196.19| 689 689 0.00% 1114.00
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Benders-like heuristic

@ Steps

© Extract a relaxation of current model

@ Solve relaxation heuristically

© Repair solution through local branching centered at the (infeasible)
solution found

© Add the connectivity cuts generated by local branching to the relaxation

© Repeat
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Benders-like heuristic

Data: Time/iteration limits.

Result: Feasible solution Sol, cut pool CutPool.

Sol = dummy solution of very large cost

CutPool = ()

while (time/iteration limit not exceeded) do

Heuristically solve a relaxation of the current model (including all cuts
in CutPool) and let Sol** be the possible disconnected solution found

Add the local branching constraint (7) centered on Sol* to the
unrelaxed model

(Sol’, CutPool") = BranchAndCut(CutPool, Sol, TimeLim, SolLim)
Remove the local branching constraint from the unrelaxed model
if cost(Sol’) < cost(Sol) then

‘ Sol = Sol’
end
CutPool = CutPool U CutPool’

end
return Sol
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Set covering Is everywhere!

For pure instances (real terminals only) the node model can be interpreted

as a huge set covering problem o
y(N) > yi+y; — 1 withi,j €T, = y(N) > 1

Given the basic model + pool of connectivity cuts, the relaxation in the
Benders-like framework can then be solved by a specialized set-covering
heuristic - we used the CFT heuristic of

Alberto Caprara, Matteo Fischetti, and Paolo Toth. A heuristic method for the set covering
problem. Operations Research, 47(5):730-743, 1999.

For non-uniform instances, blurred version - in the “relaxation”, edge
costs are heuristically split among adjacent nodes (so the node model

applies)

Very fast and effective, in particular, for hc*u instances \Like &
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Set-covering heuristic results

Table 3. Our very preliminary results for unsolved uniform STP instances of the PUC
class

name PreviousBest = NewBest  TURNI time (s.)  Repair time (s.)

bip52u 234 234 60.0 2.14
bip62u 220 219 60.0 0.03
bipa2u 341 338 60.0 0.05
hc9u 292 292 60.00 1.53
hclOu o81 575 60.00 4.52
hellu 1154 1145 1800.00 0.07
hcl2u 2275 2267 60.00 6.68

problem instance best UB Time #threads

STP hellu 1144 474 8
STP hel2u 2256 4817 8
STP hel2p 236158 4411 4
PCSTP hcllu2 751 298 8
PCSTP hcl2u2 1492 632 16
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Thanks for your attention

Full paper

M. Fischetti, M. Leitner, I. Ljubic, M.
Luipersbeck, M. Monaci, M. Resch, D.
Salvagnin, and M. Sinnl, Thinning out
Steiner trees: a node-based model for
uniform edge costs, Technical Report
DEI, University of Padua, 2014.

and slides available at

http://www.dei.unipd.it/~fisch/papers/

http://www.dei.unipd.it/~fisch/papers/slides/
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