# Simplified Benders cuts for Facility Location

Matteo Fischetti, University of Padova

based on joint work with Ivana Ljubic (ESSEC, Paris) and Markus Sinnl (ISOR, Vienna)



### **Apology of Benders**

#### Everybody talks about Benders decomposition...

- ... but not so many MIPeople actually use it
- ... because of its slow-convergence reputation...

|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                             | Create account. Log in                                                          |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------|
|                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Read                                                                      | Edit View histo                                             | y Search Q                                                                      |
| WIKIPEDIA<br>De Tree Eacyclopedia<br>Main 1969<br>Conterts<br>Feedard content<br>Current events | Acticle Tel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ws the solution of very<br>is named after Jacqui<br>w generation* in cont | r largo tinear prog<br>es F. Benders.<br>Irast, Danizig-Vic | namming problems that have a special<br>life decomposition uses " <i>column</i> |
| Random article<br>Donate to Wikipedia<br>Wikipedia store                                        | Generatuon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                           |                                                             |                                                                                 |
| Interaction<br>Help<br>About Wikipedia<br>Community portal                                      | References [edit]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . Numerische Mathem<br>Ia, New York: Dover F                              | natik 4(3): 238–2:<br>Publications, pp.                     | 요.<br>해나523, MR 1888251 년.                                                      |
| Recent changes<br>Contact page                                                                  | Genders, J. F. (opt.: Contraction Theory for Large Systems (optimization Theory for Large Systems (optimization Lasson, Leon S. (2008). Optimization Theory for Large Systems (optimization contraction).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           |                                                             |                                                                                 |
| Weat links here<br>Related changes<br>Upload Fle<br>Special pages                               | Calegories: Mathematica upunces and the second seco | he Terms of Use and Privac                                                | ay Policy. Wikipedia®                                       | e a registered trademark of the Wikimedia Poundation.                           |
| Page information<br>Wikidata iten<br>Cite this page                                             | Texi is analable under the Critative Comments Attribution-Satebase Learning of the Critative Comments Attribution-Satebase Learning of the Comments of the Com |                                                                           |                                                             |                                                                                 |
| Create a book                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                             |                                                                                 |



### **Benders: why and how**

- Benders decomposition is aimed at solving an optimization problem living in the (x,y) space by working on the y subspace only (master problem)
- As such, it is just a **projection** tool whose application requires some assumptions (essentially, convexity on the x-space)
- Projection is achieved by means of cuts in the y-space → the (in)famous Benders' feasibility and optimality cuts obtained by solving a certain "slave subproblem"



• Mixed results reported in practice: it can work very well or very bad

## **Benders after Padberg & Rinaldi**

- Typical application in MILP: y integer (master var.s), x continuous.
- The original ('60s) recipe was to solve the master to optimality by enumeration (integer y\*), to generate B-cuts for y\*, and to repeat
   → This is what we call "old Benders" within our group
   → still the best option for some problems!
- Folklore (Miliotios for TSP?): generate B-cuts for any integer y\* that is going to update the incumbent within a single branching tree
- McDaniel & Devine (1977) use of B-cuts to cut (root node) fractional y\*'s
- Fits well within modern Branch-and-Cut #JustAnotherFamilyOfCuts
  - Lazy constraint callback for integer y\* (needed for correctness)
  - **User cut** callback for any y\* (useful but not mandatory)

### A successful application: UFL

- Uncapacitated Facility Location (a.k.a. Simple Plant Location)
- One of the basic OR problems, deeply studied in the 70-80' by pioneers like Balas, Geoffrion, Magnanti, Cornuejols, Nemhauser, Wolsey, …

$$\begin{split} \min \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} \\ \text{s.t.} \sum_{i \in I} x_{ij} = 1 & \forall j \in J \\ x_{ij} \leq y_i & \forall i \in I, j \in J \\ x_{ij} \geq 0 & \forall i \in I, j \in J \\ y_i \in \{0, 1\} & \forall i \in I \end{split}$$

### **UFL (linear costs) MIP model**

| $\min \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij}$ |                            |
|-----------------------------------------------------------------------------|----------------------------|
| s.t. $\sum_{i \in I} x_{ij} = 1$                                            | $\forall j \in J$          |
| $x_{ij} \leq y_i$                                                           | $\forall i \in I, j \in J$ |
| $x_{ij} \ge 0$                                                              | $\forall i \in I, j \in J$ |
| $y_i \in \{0,1\}$                                                           | $\forall i \in I$          |

- Can be viewed as a 2-stage Stochastic Program: pay to open facilities in the first stage, get a second-stage cost correction by each client (scenario) → x's are just "recourse var.s"
- **Benders decomposition**: very natural, potentially very useful, addressed in the early days but apparently forgotten nowadays
- **Best exact solver** from literature: Lagrangian optimization (Posta, Ferland, Michelon, 2014)

### **Quadratic UFL (quadratic costs)**

- Just change objective to  $\min \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij}^2$
- Applications in energy systems with power losses (dispersion → electrical currents' square) and finance applications (variance)
- Embarrassingly tight **perspective** reform. (Gunluk, Linderoth, 2012)

$$\begin{split} \min \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} c_{ij} z_{ij} \\ \text{s.t.} \sum_{i \in I} x_{ij} = 1 & \forall j \in J \\ x_{ij} \leq y_i & \forall i \in I, j \in J \\ x_{ij}^2 \leq z_{ij} y_i & \forall i \in I, j \in J \\ x_{ij} \geq 0 & \forall i \in I, j \in J \\ z_{ij} \geq 0 & \forall i \in I, j \in J \\ y_i \in \{0, 1\} & \forall i \in I \end{split}$$

### An effective branch-and-cut code

- Benders cuts embedded within Cplex's B&C through callbacks
- **Specialized** slave solver (LP/QCP) for Benders cut generation:
  - faster
  - numerically more accurate
- **Specialized** UFL heuristics



• A basic version of this code is just a homework assignment for my students in Padua (computer science engineers)

### **Computational results (linear case)**

- Many hard instances from UFLLIB solved in just sec.s
- Some instances solved to proven optimality for the first time

|           | Freviously uns |                      | istances surv | eu to optimality usin | g our app     |           | lear costs). |
|-----------|----------------|----------------------|---------------|-----------------------|---------------|-----------|--------------|
| inst.     | bestknown      | $\operatorname{opt}$ | t[s]          | rootbound             | $t_{root}[s]$ | $g_r[\%]$ | nodes        |
| ga250a-3  | 257985         | 257953               | 493.49        | 257554.773407         | 12.77         | 0.15      | 200184       |
| ga250a-5  | 258225         | 258190               | 585.93        | 257790.245068         | 9.65          | 0.15      | 229446       |
| ga500c-5  | 621313         | 621313               | 9226.86       | 601500.282332         | 12.31         | 3.19      | 195191       |
| gs500c-3  | 621204         | 621204               | 11448.19      | 601980.526816         | 13.44         | 3.09      | 194657       |
| gs500c-5  | 623180         | 623180               | 26828.91      | 603115.401650         | 14.20         | 3.22      | 270147       |
| 2500 - 10 | 3101800        | 3099907              | 824.76        | 3097480.189279        | 104.67        | 0.08      | 1362         |
| 3000-100  | 1602335        | 1602154              | 225.25        | 1601733.816607        | 82.67         | 0.03      | 441          |

Table 1Previously unsolved UFL instances solved to optimality using our approach (linear costs).

• Many best-known solution values strictly **improved** (22 out of 50) or matched (22 more).

### **Computational results (quadratic case)**

|                  | Our slim model |      |           |               |       | Our fat model |           |               |       | Perspective reformulation |           |               |       |
|------------------|----------------|------|-----------|---------------|-------|---------------|-----------|---------------|-------|---------------------------|-----------|---------------|-------|
| $\boldsymbol{n}$ | m              | t[s] | $g_r[\%]$ | $t_{root}[s]$ | nodes | t[s]          | $g_r[\%]$ | $t_{root}[s]$ | nodes | t[s]                      | $g_r[\%]$ | $t_{root}[s]$ | nodes |
| 50               | 50             | 0.04 | 0.14      | 0.03          | 1.6   | 0.05          | 0.13      | 0.03          | 1.6   | 39.89                     | 0.07      | 29.08         | 4.2   |
| 50               | 100            | 0.06 | 0.13      | 0.04          | 2.6   | 0.10          | 0.11      | 0.06          | 2.7   | 105.77                    | 0.14      | 63.18         | 7.6   |
| 50               | 200            | 0.11 | 0.13      | 0.08          | 6.7   | 0.29          | 0.12      | 0.16          | 7.5   | 195.47                    | 0.13      | 90.43         | 10.0  |
| 80               | 30             | 0.05 | 0.22      | 0.03          | 1.7   | 0.05          | 0.16      | 0.03          | 1.1   | 72.42                     | 0.29      | 41.44         | 6.0   |
| 80               | 50             | 0.08 | 0.36      | 0.05          | 5.7   | 0.07          | 0.34      | 0.04          | 5.5   | 137.80                    | 0.40      | 61.77         | 10.9  |
| 80               | 100            | 0.10 | 0.21      | 0.08          | 5.9   | 0.14          | 0.21      | 0.08          | 5.3   | 279.94                    | 0.25      | 120.10        | 8.0   |
| 80               | 200            | 0.14 | 0.13      | 0.11          | 5.2   | 0.27          | 0.14      | 0.16          | 6.4   | 622.38                    | 0.15      | 202.79        | 11.5  |
| 100              | 100            | 0.23 | 0.21      | 0.19          | 6.6   | 0.16          | 0.20      | 0.10          | 6.0   | 563.33                    | 0.25      | 208.60        | 13.0  |
| 150              | 150            | 0.24 | 0.17      | 0.19          | 7.8   | 0.32          | 0.16      | 0.20          | 9.0   | 2526.73                   | 0.17      | 869.19        | 11.9  |
| 200              | 200            | 0.33 | 0.06      | 0.28          | 6.7   | 0.45          | 0.06      | 0.32          | 4.1   |                           |           |               |       |
| 250              | 250            | 0.46 | 0.05      | 0.42          | 4.3   | 0.71          | 0.04      | 0.60          | 4.1   |                           |           |               |       |

Table 3Comparing our slim and fat models with the perspective reformulation (Günlük and Linderoth<br/>2012), on a set of randomly generated qUFL instances proposed in Günlük et al. (2007), Günlük and<br/>Linderoth (2012). Perspective reformulation hits memory limit for  $n, m \ge 200$ .

#### Up to **10,000 speedup** for medium-size instances (150x150)

Much larger instances (250x250) solved in less than 1 sec.

### **Computational results (quadratic case)**

|      | Our slim model |        |            |               |         |         | Our fat model |               |         |  |
|------|----------------|--------|------------|---------------|---------|---------|---------------|---------------|---------|--|
| n    | m              | t[s]   | $g_r [\%]$ | $t_{root}[s]$ | nodes   | t[s]    | $g_r[\%]$     | $t_{root}[s]$ | nodes   |  |
| 500  | 500            | 1.39   | 0.03       | 1.31          | 16.2    | 3.30    | 0.03          | 2.82          | 9.5     |  |
| 500  | 1000           | 3.02   | 0.03       | 2.75          | 54.7    | 8.90    | 0.03          | 7.81          | 20.8    |  |
| 500  | 5000           | 11.59  | 0.01       | 10.41         | 87.2    | 132.89  | 0.02          | 127.27        | 32.4    |  |
| 500  | 10000          | 36.98  | 0.01       | 22.09         | 558.2   | 673.93  | 0.02          | 646.97        | 106.5   |  |
| 1000 | 500            | 3.80   | 0.04       | 3.32          | 76.0    | 4.60    | 0.04          | 3.86          | 26.1    |  |
| 1000 | 1000           | 5.78   | 0.03       | 5.25          | 65.3    | 15.18   | 0.03          | 13.74         | 28.2    |  |
| 1000 | 5000           | 20.70  | 0.01       | 19.32         | 44.3    | 193.76  | 0.02          | 181.87        | 180.3   |  |
| 1000 | 10000          | 64.01  | 0.01       | 34.74         | 603.0   | 799.02  | 0.02          | 748.56        | 399.8   |  |
| 2000 | 500            | 6.73   | 0.03       | 6.10          | 66.7    | 8.95    | 0.03          | 7.83          | 29.8    |  |
| 2000 | 1000           | 14.86  | 0.02       | 12.72         | 194.4   | 35.41   | 0.02          | 32.65         | 65.9    |  |
| 2000 | 5000           | 115.09 | 0.01       | 42.07         | 1649.0  | 405.85  | 0.02          | 361.69        | 629.3   |  |
| 2000 | 10000          | 309.36 | 0.01       | 76.88         | 10735.8 | 2646.69 | 0.03          | 1246.60       | 13114.0 |  |

Table 4Comparing the performance of slim versus fat model on a larger set of benchmark<br/>instances for qUFL generated as in Günlük et al. (2007), Günlük and Linderoth (2012).

Huge instances (2,000x10,000) solved in 5 minutes

#### **MIQCP's with 20M SOC constraints and 40M var.s**

### **Capacitated Facility Location**

Each facility can support only a limited set of customers (capacity constraint)

$$\begin{split} \min \sum_{j \in J} f_j y_j + \sum_{i \in I} \sum_{j \in J} d_i c_{ij} x_{ij} \\ \text{s.t.} \quad \sum_{j \in J} x_{ij} = 1 & \forall i \in I \\ & x_{ij} \leq y_j & \forall i \in I, j \in J \\ & \sum_{i \in I} d_i x_{ij} \leq s_j y_j & \forall j \in J \\ & x_{ij} \geq 0 & \forall i \in I, j \in J \\ & y_j \in \{0, 1\} & \forall j \in J \end{split}$$

### **Computational tapas**



(a) Computing times at the root node.

(b) Relative gaps to the best known upper bounds.

Figure 1: GK instances: Comparing the performance of Benders and IBM ILOG Cplex 12.6.1 at the root node, and after a timelimit of 3600 seconds.

### **Benders in a nutshell**

CLASSICAL BENDERS ('601) C FEAS 4'S Benders' cats for conver pr. (beophion)  $g(x,y) \leq 0 \qquad ( < BenDers' cuts y A: torue:$  $h(y) \leq 0 \qquad (min f(x,y)) = 0 \qquad g(x,y) \leq 0 \qquad g(x,y) \leq 0 \qquad g(x,y) \leq 0 \qquad g(x,y) \leq 0 \qquad g' \leq y \leq y^{*}$ min  $\{w: w \geq \beta_{i}^{i} + \beta_{j}^{i} y, i \geq 3, ..., n\} \qquad (a ortimal value: w(y^{*})) = 0 \qquad (y' \leq y' \leq y') \qquad (b ortimal value: w(y^{*})) = 0 \qquad (y' \leq y' \leq y') \qquad (y' \leq y') \qquad (y' \leq y') \qquad (y' \leq y') = 0 \qquad (y' \leq y') \qquad (y' = y') \qquad (y$ How to solve -> BUNDLE METHODS -> IN-OUT (SPECIALIZED)

### **Modern Benders**

Consider the original **convex** MINLP  $\min f(x, y)$  $g(x, y) \le 0$  $Ay \le b$ y integer

and assume for the sake of simplicity

 $S := \{y : Ay \le b\}$  nonempty and bounded

 $X(y):=\{x:g(x,y)\leq 0\}$  nonempty, closed and bounded for all  $y\in S$ 

so the convex function

$$\Phi(y) := \min_{x \in X(y)} f(x, y)$$

is well-defined for all  $y \in S$ .

### Working on the y-space (projection)

$$\begin{array}{ll} \min_{y,x} f(x,y) = \min_{y} \min_{x} f(x,y) & \Phi(y) \coloneqq \min_{x} f(x,y') & \min_{y} \Phi(y) \\ g(x,y) \leq 0 & g(x,y') \leq 0 & Ay \leq b \\ Ay \leq b & (Ay' \leq b) & y \text{ integer} \\ y \text{ integer} & y' = y \end{array}$$

**Original** MINLP in the (x,y) space  $\rightarrow$ 

Master problem in the y space

Warning: projection changes the objective function shape!





# Life of P(H)I

- Solving Benders' master problem calls for the minimization of a nonlinear function (even if you start from a linear problem!)
- Branch-and-cut MINLP solvers generate a sequence of linear cuts to approximate this function from below (outer-approximation)







$$w \ge \Phi(y) \ge \Phi(y^*) + \xi(y^*)^T (y - y^*)$$

### **Benders cut computation**

• **Benders** (for linear) and **Geoffrion** (general convex) told us how to compute a **(sub)gradient** to be used in the cut derivation, by using the optimal primal-dual solution  $(x^*, u^*)$  available after computing  $\Phi(y^*)$ 

$$\xi(y^*) = \nabla_y f(x^*, y^*) + u^* \nabla_y g(x^*, y^*)$$

- This formula is **problem-specific** and perhaps **#scaring**
- By rewriting

$$\Phi(y^*) = \min\{f(x, \mathbf{q}) \mid g(x, \mathbf{q}) \le 0, \, y^* \le \mathbf{q} \le y^*\}$$

we obtain a much **simpler recipe** to derive the same Benders cut:

- 1) solve the original convex problem with new var. bounds  $y^* \leq y \leq y^*$
- 2) take  $opt\_val$  and reduced costs  $r_j$ 's
- 3) write  $w \ge opt_val + \sum_j r_j(y_j y_j^*)$

### **#TheCurseOfKelley**

• Master problem is typically solved by a **cutting plane method** where primal (fractional) solutions *y*<sup>\*</sup> and Benders cuts are generated on the fly

- A main reason for Benders' slow convergence is the use of **Kelley's** cutting plane recipe "**Always cut the optimal solution of the previous master**"
- In the first iterations, the master can contain too few constraints (sometimes, only variable bounds)  $\rightarrow$  **zig-zagging** in the *y* space (lower bound stalling)

→ Stabilization required as in

**Column Generation** and **Lagrangian Relaxation** 

e.g. through bundle methods



## **Escaping the #CurseOfKelley**

- Root node LP bound **very critical**  $\rightarrow$  many ships sank here!
- Kelley's cutting plane can be desperately slow, bundle/interior points methods required
- Stabilization using "interior points"

(Ben-Ameur and Neto 2007, Fischetti and Salvagnin 2010, Naoum-Sawaya and Elhedhli 2013).

- For facility location problems, we implemented a very simple "chase the carrot" heuristic to determine an internal path towards the optimal y
- Our very first implementation worked so well that we did not have an incentive to try and improve it...

### **Our #ChaseTheCarrot heuristic**



• We (the donkey) start with y = (1, 1, ..., 1) and optimize the master LP as in Kelley, to get optimal  $y^*$  (the carrot on the stick).

• We move y half-way towards y\*. We then separate a point y' in the segment y-y\* close to y. The generated Benders cut is added to the master LP, which is reoptimizied to get the new optimal y\* (carrot moves).

• Repeat until bound improves, then switch to Kelley for final bound refinement (kind of cross-over)

• Warning: adaptations needed if feasibility Benders cuts can be generated...

### Effect of the improved cut-loop



- Comparing Kelley cut loop at the root node with Kelley+ (add epsilon to y\*) and with our chase-the-carrot method (inout)
- Koerkel-Ghosh **qUFL** instance gs250a-1 (250x250, quadratic costs)
- \*nc = n. of Benders cuts generated at the end of the root node
- times in logarithmic scale

### Thanks for your attention

- Full papers
  - M. Fischetti, I. Ljubic, M. Sinnl, "Thinning out facilities: a Benders decomposition approach for the uncapacitated facility location problem with separable convex costs", Tech. Rep. UniPD, 2015.
  - M. Fischetti, I. Ljubic, M. Sinnl, "Benders decomposition without separability: a computational study for capacitated facility location problems", Tech. Rep. UniPD, 2015.

and slides available at

http://www.dei.unipd.it/~fisch/papers/ http://www.dei.unipd.it/~fisch/papers/slides/