
The simpler the better:
Thinning out MIP's by Occam's razor

Matteo Fischetti, University of Padova

CORS/INFORMS 2015, Montreal,
June 2015

1

Occam’s razor
• Occam's razor , or law of parsimony (lex parsimoniae):

a problem-solving principle devised by the English
philosopher William of Ockham (1287–1347).

• Among competing hypotheses, the one with the fewest assumptions
is more likely be true and should be preferred—the fewer
assumptions that are made, the better. assumptions that are made, the better.

• Used as a heuristic guide in the development of theoretical models
(Albert Einstein, Max Planck, Werner Heisenberg, etc.)

• Not to misinterpreted and used as an excuse to address
oversimplified models: “Everything should be kept as simple as
possible, but no simpler” (Albert Einstein)

CORS/INFORMS 2015, Montreal,
June 2015

2

Overfitting and Integer Programming

• Complicated models/algorithms tend to involve many parameters

• Overmodelling : too many param.s � overfitting

• A case study:

Support Vector Machine training by Mixed-Integer Programming

• Fuller details in:

M. Fischetti, "Fast training of Support Vector Machines with
Gaussian kernel", to appear in Discrete Optimization, 2015.

CORS/INFORMS 2015, Montreal,
June 2015

3

SVM training

• Input: a training set of points

• For a generic point we want to estimate its unknown
classification through a function of the type

where is a kernel scalar function that measures the
“similarity” between and , and and
are parameters that one can tune using the training set.

CORS/INFORMS 2015, Montreal,
June 2015

4

Gaussian kernel and its interpretation
• Gaussian kernel depending on parameter

• Telecommunication interpretation of

• Every training point broadcasts its
+1/-1 with power

CORS/INFORMS 2015, Montreal,
June 2015

5

+1/-1 with power

• Signal decays with distance d as

• Receiver seating in x measures total signal

compares it with threshold , and
decides between +1 (total signal larger
than threshold) and -1

How to decide the SVM parameters?
• Parameters , and to be determined in a

preliminary training phase using the training set only

• Parameters are viewed as variables of an optimization model

• SVM classical model for a fixed kernel (i.e. for a given)

• Parameters and C determined in an outer loop (k-fold
validation), they are not part of the HINGE optimization!

CORS/INFORMS 2015, Montreal,
June 2015

6

MIPing SVM training
• Why not using a Mixed-Integer Linear Programming (MILP) model like

or its “leave-one-out ” improved versionor its “leave-one-out ” improved version

whose parameters are determined by minimizing the number of
misclassified points in the training set?

CORS/INFORMS 2015, Montreal,
June 2015

7

(Un)surprising results
• Results on standard

benchmark datasets

• real : “true”
%misclassification
on a separate test
set

• estim :

CORS/INFORMS 2015, Montreal,
June 2015

8

• estim :
%misclassification
on the training set

• t.: computing times
in CPU sec.s
(CPLEX 12.5)

• HINGE with 5-fold
validation

* HINGE could be solved much faster using
specialized codes

Keep it simple!

• How can we cure the huge overfitting of the MILP model?
• Shall we introduce a normalization (convex) term in the objective

function, or add variables to the model, or go to larger kernel space,
or what?

• Why not just simplify the MILP model instead? #OccamRazor
• Overfitting  too many parameters (p+2): let’s reduce them!
• Options LOO_k with just k degrees of freedom (including) • Options LOO_k with just k degrees of freedom (including)

– LOO_1: add constraint

– LOO_2: add constraint

– LOO_3: add constraint

CORS/INFORMS 2015, Montreal,
June 2015

9

Simpler, faster and better
#That’sOccamBaby

• LOO_1: no optimization at all required (besides by an external
bisection method): better than the too sophisticated LOO_MILP!!

• LOO_2: add sorting to determine (very fast, already comparable or
better than HINGE)

• LOO_3: add enumeration of 10 values for in range [0,1]: best
classifier on this (limited) data set

CORS/INFORMS 2015, Montreal,
June 2015

10

(Over)fitting

CORS/INFORMS 2015, Montreal,
June 2015

11

Leave one out!

CORS/INFORMS 2015, Montreal,
June 2015

12

Thinning out MIP models
• The practical difficulty in solving

hard problems sometimes
comes for overmodelling :

Too many vars.s and constr.s just Too many vars.s and constr.s just

stifle your model

(and the cure is not to complicate it even more!)

Let your model breathe!

CORS/INFORMS 2015, Montreal,
June 2015

13

Example 1: QAP
• Quadratic Assignment Problem (QAP): extremely hard to solve
• Unsolved esc* instances from QAPLIB (attempted on constellations

of thousand computers around the world for many CPU years)
• The thin out approach: esc instances are

1. very symmetrical � find a cure and simplify the model through
Orbital Shrinking to actually reduce the size of the instances

2. very large � use slim MILP models with high node throughput
3. decomposable � solve pieces separately3. decomposable � solve pieces separately

• Outcome :
a. all esc* but two instances solved in minutes on a notebook

b. esc128 (by far the largest ever attempted) solved in just seconds

M. Fischetti, M. Monaci, D. Salvagnin, "Three ideas for the Quadratic Assignment
Problem", Operations Research 60 (4), 954-964, 2012.

M. Fischetti, L. Liberti, "Orbital shrinking", Lecture Notes in Computer Science, Vol. 7422,
48-58, 2012.

CORS/INFORMS 2015, Montreal,
June 2015

14

Example 2: Steiner Trees
• Recent DIMACS 11 (2014) challenge on Steiner Tree: various versions

and categories (exact/heuristic/parallel/…) and scores (avg/formula 1/ …)
• Many very hard (unsolved) instances available on STEINLIB
• Standard MILP models use x var.s (arcs) and y var.s (nodes)
• Observation : many hard instances have uniform arc costs
• Thin out : remove x var.s and work on the y-space (Benders’ projection)
• Heuristics based on the blur principle: initially forget about details…
• Outcome:

• Some open instances
solved in a few seconds

• Our codes
(StayNerd, MozartBalls) won most DIMACS categories

M. Fischetti, M. Leitner, I. Ljubic, M. Luipersbeck, M. Monaci, M. Resch, D. Salvagnin, M. Sinnl,
"Thinning out Steiner trees: a node-based model for uniform edge costs", Tech.Rep., 2014

CORS/INFORMS 2015, Montreal,
June 2015

15

Example 3: Facility Location
• Uncapacitated facility location with linear (UFL) and quadratic (qUFL)

costs
• Huge MILP models involving y var.s (selection) and x var.s (assignment)
• Thin out : x var.s suffocate the model, just remove them..
• A perfect fit with Benders decomposition , but … not sexy nowadays as

more complicated schemes are preferred #paperability?
• Outcome :

– Many hard UFL instances solved very quickly
– Seven open instances solved to optimality, 22 best-known improved
– Speedup of 4 orders of magnitude for qUFL up to size 150x150
– Solved qUFL instances up to 2,000x10,000 in 5 min.s (MIQCP’s with

20M SOC constraints and 40M var.s)

M. Fischetti, I. Ljubic, M. Sinnl, "Thinning out facilities: a Benders decomposition approach for
the uncapacitated facility location problem with separable convex costs", TR 2015.

CORS/INFORMS 2015, Montreal,
June 2015

16

Thin out your favorite model
call Benders toll free

Benders decomposition well known

… but not so many MIPeople actually use it

… besides Stochastic Programming guys of
course

CORS/INFORMS 2015, Montreal,
June 2015

17

Benders in a nutshell

CORS/INFORMS 2015, Montreal,
June 2015

18

#BendersToTheBone

CORS/INFORMS 2015, Montreal,
June 2015

19

Original problem (left) vs Benders’ master problem (right)

• The original (‘60s) recipe was to solve the master to optimality by
enumeration (integer y*), to generate B-cuts for y*, and to repeat
� This is what we call “Old Benders ” within our group

���� still the best option for some problems!
• Folklore (Miliotios for TSP?): generate B-cuts for any integer y* that is going

to update the incumbent
• McDaniel & Devine (1977) use of B-cuts to cut (root node) fractional y*’s
• …

Benders after Padberg&Rinaldi

• …
• Everything fits very naturally within modern Branch-and-Cut

– Lazy constraint callback for integer y* (needed for correctness)
– User cut callback for any y* (useful but not mandatory)

• Feasibility cuts � we know how to handle (minimal infeasibility etc.)
• Optimality cuts ���� often a nightmare even after MW improvements

(pareto-optimality) and alike ���� THE TOPIC OF THE PRESENT TALK

CORS/INFORMS 2015, Montreal,
June 2015

20

Benders for convex MINLP

CORS/INFORMS 2015, Montreal,
June 2015

21

• Benders cuts can be generalized to convex MINLP
� Geoffrion via Lagrangian duality
� resulting Generalized Benders cuts still linear

• Potentially very useful to remove nonlinearity from the
master by using kind of “surrogate cone” cuts � hide
nonlinearity where it does not hurt…

Optimality cut geometry

CORS/INFORMS 2015, Montreal,
June 2015

22

Solving the master LP relaxation � minimization of a convex function
w(y) � a very familiar setting for people working with Lagrange duality
(Dantzig-Wolfe decomposition and alike)

Optimality cut generation

Given y*, how to compute the
supporting hyperplane (in blue)?

CORS/INFORMS 2015, Montreal,
June 2015

23

1-2-3 Benders optimality
cut computation

Benders++ cuts
• We have seen that Benders cuts are obtained by solving the original
problem after fixing y=y*, thus voiding the information that y must be
integer

• Full primal optimal sol. (y*,x*) available for generating MIP cuts exploiting
the integrality of y

• However (y*,x*) is not a vertex � no cheap “tableau cuts” (GMI and alike)
available …

CORS/INFORMS 2015, Montreal,
June 2015

24

… while any black-box separation function that receives the original
model and the pair (y*,x*) on input can be used (MIR heuristics, CGLP’s,
half cuts, etc.)

• Generated cuts to be added to the original model (i.e. to the “slave”) in
case they involve the x’s

• Very good results with split cuts for Stochastic Integer Programming
recently reported by Bodur, Dash, Gunluck, Luedtke (2014)

#TheCurseOfKelley

CORS/INFORMS 2015, Montreal,
June 2015

25

Now that you have seen the plot of w(y) , you understand that a main reason for
Benders slow convergence is the use of Kelley’s cutting plane scheme

�Stabilization required as in

Column Generation and
Lagrangian Relaxation

Escaping the #CurseOfKelley
• Root node LP bound very critical � many ships sank here!

• Kelley’s cutting plane can be desperately slow, bundle/interior points methods
required

• For (q)UFL, at the root node we implemented our own “interior point” method
inspired by

• We want to work on the y -space (as any honest bundle would do)

CORS/INFORMS 2015, Montreal,
June 2015

26

• We want to work on the y -space (as any honest bundle would do)

• In-out/analytic center methods work on the (y,w) space � adaptation needed

• As a quick shot, we implemented a very simple
“chase the carrot ” heuristic to determine an
internal path towards the optimal y

• Our very first implementation worked so well that we
did not have an incentive to try and improve it #OccamPrinciple

Our #ChaseTheCarrot dual heuristic

• We (the donkey) start with y=(1,1,…) and optimize the master LP as in Kelley, to
get optimal y* (the carrot on the stick).

CORS/INFORMS 2015, Montreal,
June 2015

27

get optimal y* (the carrot on the stick).

• We move y half-way towards y*. We then separate a point y’ in the segment y-y*
close to y. The generated optimality cut(s) are added to the master LP, which is
reoptimzied to get the new optimal y* (carrot moves).

• Repeat until bound improves, then switch to Kelley for final bound refinement
(cross-over like)

• Warning: adaptations needed if feasibility cuts can be generated…

Effect of the improved cut-loop

• Comparing Kelley cut loop at the root node with Kelley+ (add
epsilon to y*) and with our chase-the-carrot method (inout)

• Koerkel-Ghosh qUFL instance gs250a-1 (250x250, quadratic costs)
• *nc = n. of Benders cuts generated at the end of the root node
• times in logarithmic scale

CORS/INFORMS 2015, Montreal,
June 2015

28

Conclusions
• I wanted to write a very elaborated and convincing conclusion section …

• … so I started with a first version #toolong
• … and then I simplified it and then I simplified it and …

• This is what remains

Be simple (if you can)! #OccamRazor

Thank you for your attention

• Full papers and slides available at
http://www.dei.unipd.it/~fisch/papers/
http://www.dei.unipd.it/~fisch/papers/slides/

CORS/INFORMS 2015, Montreal,
June 2015

29

