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Occam’s razor

Occam's razor , or law of parsimony (lex parsimoniae): 5
a problem-solving principle devised by the English
philosopher William of Ockham (1287-1347).

Among competing hypotheses, the one with the fewest assumptions
IS more likely be true and should be preferred—the fewer
assumptions that are made, the better.

Used as a heuristic guide in the development of theoretical models
(Albert Einstein, Max Planck, Werner Heisenberg, etc.)

Not to misinterpreted and used as an excuse to address
oversimplified models: “Everything should be kept as simple as
possible, but no simpler” (Albert Einstein)
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Overfitting and Integer Programming

 Complicated models/algorithms tend to involve many parameters
 Overmodelling :too many param.s - overfitting
A case study:

Support Vector Machine training by Mixed-Integer Programming
* Fuller details in:

M. Fischetti, "Fast training of Support Vector Machines with
Gaussian kernel", to appear in Discrete Optimization, 2015.
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SVM training

Input: a training set of points

(371,3/1); r(mpayp) with z; € R" and Yi € {_19+1}

For a generic pointz € R™ we want to estimate its unknown
classification ¥, € {—1, 41} through a function of the type

y(@) = sign(>" cwwikK (,7:) + Bo)

i=1
where K(x,x;) is a kernel scalar function that measures the
“similarity” between X and x; ,and oy, --- ,, = 0 and Bo

are parameters that one can tune using the training set.
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Gaussian kernel and its interpretation

 Gaussian kernel depending on parameter v > 0

K(z,z;) = e lz==l’

p
+ Telecommunication interpretation of y(z) := sign(} oK (z,2;) + o)

1=1

» Every training poinl x; broadcasts its
+1/-1 with power o

o2
'+ Signal decays with distance d as € 7d

"« Receiver seating in x measures total signal

p

3 1 aiyie_'}’nx_wﬂp
1=

compares it with threshold — /3y and
decides between +1 (total signal larger
than threshold) and -1
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How to decide the SVM parameters?

Parameters a1, -+ ,a, > 0, By and 7> 0 to be determined in a
preliminary training phase using the training set only

Parameters are viewed as variables of an optimization model

SVM classical model for a fixed kernel (i.e. for a giveny > 0)

(HINGE) minggoe 52 51 251 iy K (i, 35) + C 38 &
Ui (Do i K (g, 23) +Bo) > 1 =& Vj=1,---,p

a; >0, Vj=1,--+-,p

§=20,Vy=1,---,p

Parameters 7Y > O and C determined in an outer loop (k-fold
validation), they are not part of the HINGE optimization!
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MIPIng SVM training

 Why not using a Mixed-Integer Linear Programming (MILP) model like
(NAIVE) MiNg g, > + 9 by Zj

D J=1
yi(Dor 1 asyi K (2, ) + Bo) > e—Mz; Vj=1,---,p
OSOKZS 1, VZ:L , P

z€{0,1}, Vi=1,---,p

or its “leave-one-out” improved version

(LOO_MILP) ming g, » % D im1 %
yj(zi:i# a;yi K (25, 2;) + Bo) 2 € = Mz; Vj=1,---,p
0<o <1, Vi=1,---,p
z € {0,1}, Vi=1,--- |p

whose parameters are determined by minimizing the number of
misclassified points in the training set?
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(Un)surprising results

Results on standard

benchmark datasets

real: “true”

% misclassification
on a separate test
set

estim :
%misclassification
on the training set
t.. computing times
in CPU sec.s
(CPLEX 12.5)

HINGE with 5-fold
validation

Australian
Breast
Bupa
German
Heart
lonosphere
Pima
Sonar
Wdbc
Wpbc

Average

HINGE %miscl. LOO_MILP %miscl.

(p+2 freedom deg.s)
real t.| estim real t.
18.2 728.3 2.5 22.7 4351
3.2 627.5 0.0 6.2 41.4
32.7 88.2 44 39.1 4296
28.0 2453.2 19.8 29.2 462.8
23.0 47.9 1.3 23.2 1419
6.3 123.5 0.0 6.4 5.4
25.7 1231.0 11.8 28.2 4504
18.0 25.2 0.0 15.6 6.3
45 6464 0.0 4.8 8.7
23.7 29.0 2.1 32.7 1845
183 600.0 4.2 208 216.6

* HINGE could be solved much faster using

specialized codes
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Keep It simple!

How can we cure the huge overfitting of the MILP model?

Shall we introduce a normalization (convex) term in the objective
function, or add variables to the model, or go to larger kernel space,
or what?

Why not just simplify the MILP model instead? #OccamRazor
Overfitting € too many parameters (p+2): let’s reduce them!
Options LOO_k with just k degrees of freedom (including ~y )

— LOO_1:add constraint oq =az =---=a, =1 and [y =10
— LOO 2:addconstraint @1 = a2 =---=ap =1, [y Iree
| o at >0, Vi:y,=+1 B, free
— LOO_3: add constraint &; = a= >0, Vi:iy=—1" 0
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Australian
Breast
Bupa
German
Heart
lonosphere
Pima
Sonar
Wdbc
Wpbc

Average

Simpler, faster and better
#That'sOccamBaby

HINGE %miscl.

LOO_MILP %miscl.

LOO_1 %miscl.

LOO_2 %miscl.

LOO_3 %miscl.

(p+2 freedom deg.s) (1 freedom deg.) (2 freedom deg.s) (3 freedom deg.s)
real t.| estim real t.| estim real t.| estim real t. estim real t.
18.2 7283 2.5 227 4351 16.0 16.3 0.4 14.7 15.3 0.8 14.6 15.7 10.6
3.2 627.5 0.0 6.2 414 3.2 3.6 0.4 3.0 4.0 0.8 24 3.5 9.8
32.7 88.2 4.4 39.1 4296 36.7 38.7 0.0 34.0 39.0 0.1 33.2 39.6 1.7
28.0 2453.2 19.8 29.2 462.8 27.2 26.5 1.0 26.6 26.5 2.2 24 1 25.7 22.9
23.0 47.9 1.3 23.2 1419 17.9 19.1 0.0 171 19.1 0.1 16.5 18.8 1.0
6.3 123.5 0.0 6.4 54 19.7 23.4 0.0 4.9 6.7 0.1 4.2 6.3 1.8
25.7 1231.0 11.8 28.2 4504 25.2 25.6 0.6 244 25.8 1.2 23.4 25.7 14.8
18.0 25.2 0.0 15.6 6.3 16.5 17.0 0.0 15.9 17.9 0.0 12.9 11.4 0.6
45 646.4 0.0 4.8 8.7 5.2 5.7 0.2 4.7 5.3 0.5 3.6 4.6 6.9
23.7 29.0 2.1 32.7 1845 22.7 21.6 0.0 22.3 22.7 0.0 21.0 23.1 0.6
18.3  600.0 4.2 208 216.6 19.0 19.7 0.3 16.8 18.2 0.6 15.6 17.5 7.1

« LOO_1: no optimization at all required (besides 7y by an external
bisection method): better than the too sophisticated LOO_MILP!!

« LOO_2:add sorting to determine By (very fast, already comparable or
better than HINGE)

« LOO_3:add enumeration of 10 values for at

classifier on this (limited) data set
CORS/INFORMS 2015, Montreal,

June 2015
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(Over)fitting
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Figure 2: Optimal model values (“loo estimate”, in dashed blue) and “true
misclassification” rate on the test set (in red) as a function of «y, for instance
Australian.
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Leave one out!
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Wrong LOO_2
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Figure 3: Wrong LOO_2 optimal value with total instead of net signal (dashed
blue) and “true” misclassification rate on the test set (red) as a function of

v, for instance Australian.
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Thinning out MIP models

The practical difficulty in solving
hard problems sometimes

comes for overmodelling :

Too many vars.s and constr.s just

stifle your model

(and the cure is not to complicate it even more!)

Let your model breathe!

CORS/INFORMS 2015, Montreal,
June 2015
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Example 1: QAP

* Quadratic Assignment Problem (QAP): extremely hard to solve

* Unsolved esc* instances from QAPLIB (attempted on constellations
of thousand computers around the world for many CPU years)

* The thin out approach: esc instances are

1. very symmetrical - find a cure and simplify the model through
Orbital Shrinking to actually reduce the size of the instances

2. very large = use slim MILP models with high node throughput
3. decomposable - solve pieces separately
e QOutcome :

a. all esc* but two instances solved in minutes on a notebook
b. esc128 (by far the largest ever attempted) solved in just seconds

M. Fischetti, M. Monaci, D. Salvagnin, "Three ideas for the Quadratic Assignment
Problem", Operations Research 60 (4), 954-964, 2012.

M. Fischetti, L. Liberti, "Orbital shrinking", Lecture Notes in Computer Science, Vol. 7422,
48-58, 2012.
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Example 2: Steiner Trees

Recent DIMACS 11 (2014) challenge on Steiner Tree: various versions
and categories (exact/heuristic/parallel/...) and scores (avg/formula 1/ ...)

Many very hard (unsolved) instances available on STEINLIB
Standard MILP models use x var.s (arcs) and y var.s (nodes)
Observation : many hard instances have uniform arc costs
Thin out : remove x var.s and work on the y-space (Benders’ projection)
Heuristics based on the blur principle: initially forget about details...
Outcome:
e Some open instances
solved in a few seconds - 5 *“ B2 @y o
e Our codes
(StayNerd, MozartBalls) won most DIMACS categories

‘: “J Sl;?;’;end Maher
sl Off;'S Challenge. resute
tof the Variantg they er*rpdre "
tered,

M. Fischetti, M. Leitner, I. Ljubic, M. Luipersbeck, M. Monaci, M. Resch, D. Salvagnin, M. Sinnl,
“Thinning out Steiner trees: a node-based model for uniform edge costs", Tech.Rep., 2014
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Example 3: Facility Location

Uncapacitated facility location  with linear (UFL) and quadratic (QUFL)
costs

Huge MILP models involving y var.s (selection) and x var.s (assignment)
Thin out : x var.s suffocate the model, just remove them..

A perfect fit with Benders decomposition , but ... not sexy nowadays as
more complicated schemes are preferred #paperability?

Outcome :
— Many hard UFL instances solved very quickly
— Seven open instances solved to optimality, 22 best-known improved
— Speedup of 4 orders of magnitude for gUFL up to size 150x150

— Solved qUFL instances up to 2,000x10,000 in 5 min.s (MIQCP’s with
20M SOC constraints and 40M var.s)

M. Fischetti, I. Ljubic, M. Sinnl, "Thinning out facilities: a Benders decomposition approach for
the uncapacitated facility location problem with separable convex costs", TR 2015.
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/Thln out your favorite model
call Benders toll free

. Benders decomposition well known

.. b
ut not so many MIPeople actually use it
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#BendersToTheBone

Original problem (left) vs Benders’ master problem (right)

CORS/INFORMS 2015, Montreal,
June 2015
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Benders after Padberg&Rinaldi

The original (‘60s) recipe was to solve the master to optimality by
enumeration (integer y*), to generate B-cuts for y*, and to repeat

-> This is what we call “Old Benders ” within our group
-> still the best option for some problems!

Folklore (Miliotios for TSP?): generate B-cuts for any integer y* that is going

to update the incumbent
McDaniel & Devine (1977) use of B-cuts to cut (root node) fractional y*'s

Everything fits very naturally within modern Branch-and-Cut
— Lazy constraint callback for integer y* (needed for correctness)
— User cut callback for any y* (useful but not mandatory)

Feasibility cuts - we know how to handle (minimal infeasibility etc.)

Optimality cuts -> often a nightmare even after MW improvements
(pareto-optimality) and alike - THE TOPIC OF THE PRESENT TALK

CORS/INFORMS 2015, Montreal,
June 2015
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Benders for convex MINLP

» Benders cuts can be generalized to convex MINLP
- Geoffrion via Lagrangian duality
—> resulting Generalized Benders cuts still linear

» Potentially very useful to remove nonlinearity from the
master by using kind of “surrogate cone” cuts - hide
nonlinearity where it does not hurt...

CORS/INFORMS 2015, Montreal,
June 2015

The IMA Volumes in Mathema

Jon Lee
Sven Leyffer Editors
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Optimality cut geometry
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Solving the master LP relaxation - minimization of a convex function
w(y) = a very familiar setting for people working with Lagrange duality
(Dantzig-Wolfe decomposition and alike)
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Optimality cut generation
N 6(\)% j¥ ,cwpe‘:tz’ WHU

and  he ostocidded ch@z’z_o’ulc
w oz w(y*)+ s (=5

! ”

/3\; solve a0
Given y*, how to compute the o f(’wj
supporting hyperplane (in blue)? g 9(x,9) <u
¥ sy P
1-2-3 Benders optimality L obvrieme Wncde.s /G
cut Computation i—* “";‘f’;.‘;ﬂs: Vb“’/"')- l

1) solve the original convex problem with new var. bounds y* <y < y*
2) take opt_val and reduced costs r;’s
3) write w > opt val + . 1;(y; —y;)
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Benders++ cuts

* We have seen that Benders cuts are obtained by solving the original
problem after fixing y=y*, thus voiding the information that y must be
integer

 Full primal optimal sol. (y*,x*) available for generating MIP cuts exploiting
the integrality of y

* However (y*,x*) is not a vertex = no cheap “tableau cuts” (GMI and alike)
available ...

... While any black-box separation function that receives the original
model and the pair (y*,x*) on input can be used (MIR heuristics, CGLP’s,
half cuts, etc.)

» Generated cuts to be added to the original model (i.e. to the “slave”) in
case they involve the x’s

 Very good results with split cuts for Stochastic Integer Programming
recently reported by Bodur, Dash, Gunluck, Luedtke (2014)
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#TheCurseOfKelley
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Now that you have seen the plot of w(y), you understand that a main reason for
Benders slow convergence is the use of Kelley’s cutting plane scheme

—> Stabilization required as in

Column Generation and
Lagrangian Relaxation

CORS/INFORMS 2015, Montreal, 25
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Escaping the #CurseOfKeIIey

* Root node LP bound very critical - many ships sank here!

» Kelley’s cutting plane can be desperately slow, bundle/interior points methods
required

* For (Q)UFL, at the root node we implemented our own “interior point” method
inspired by  (Ben-Ameur and Neto 2007, Fischetti and Salvagnin 2010, Naoum-Sawaya and Elhedhli 2013).

* We want to work on the y -space (as any honest bundle would do)
* In-out/analytic center methods work on the (y,w) space - adaptation needed
» As a quick shot, we implemented a very simple

“chase the carrot ” heuristic to determine an
internal path towards the optimal y ‘

o
 Our very first implementation worked so well that we é
did not have an incentive to try and improve it #OccamPrinciple ﬂ
CORS/INFORMS 2015, Montreal, | 26

June 2015



Our #ChaseTheCarrot dual heuristic

» We (the donkey) start with y=(1,1,...) and optimize the master LP as in Kelley, to
get optimal y* (the carrot on the stick).

* We move y half-way towards y*. We then separate a point y’ in the segment y-y*
close to y. The generated optimality cut(s) are added to the master LP, which is
reoptimzied to get the new optimal y* (carrot moves).

* Repeat until bound improves, then switch to Kelley for final bound refinement
(cross-over like)

» Warning: adaptations needed if feasibility cuts can be generated...

CORS/INFORMS 2015, Montreal, 27
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Effect of the improved cut-loop
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Comparing Kelley cut loop at the root node with Kelley+ (add
epsilon to y*) and with our chase-the-carrot method (inout )

Koerkel-Ghosh qUFL instance gs250a-1 (250x250, quadratic costs)
*nc = n. of Benders cuts generated at the end of the root node

times in logarithmic scale
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Conclusions

| wanted to write a very elaborated and convincing conclusion section ...

... SO | started with a first version  #toolong
... and then | simplified it and then | simplified itand ...

This is what remains

Be simple (if you can)! #OccamRazor
Thank you for your attention

Full papers and slides available at
http://www.dei.unipd.it/~fisch/papers/
http://www.dei.unipd.it/~fisch/papers/slides/
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