# A Decomposition Heuristic for Stochastic Programming

Natashia Boland<sup>+</sup>, Matteo Fischetti<sup>\*</sup>, Michele Monaci<sup>\*</sup>, Martin Savelsbergh<sup>+</sup> +Georgia Institute of Technology, USA \*University of Padova, Italy



ISMP 2015, Pittsburgh, July 2015

## **MIP heuristics**

• We consider a Mixed-Integer convex 0-1 Problem (0-1 MIP, or just MIP)

 $\min f(x)$  $g(x) \le 0$  $x_j \in \{0, 1\} \quad \forall j \in J$ 

where *f* and *g* are convex functions and  $J \subseteq N := \{1, \dots, n\}$ 

 $\rightarrow$  removing integrality leads to an easy-solvable <u>continuous relaxation</u>

- A **black-box** (exact or heuristic) MIP solver is available
- How to use the solver to quickly provide a sequence of improved heuristic solutions (time vs quality tradeoff)?

# Large Neighborhood Search

- Large Neighborhood Search (LNS) paradigm:
  - 1. introduce **invalid constraints** into the MIP model to create a nontrivial sub-MIP "centered" at a given heuristic sol.  $\tilde{x}$  (say)
  - 2. Apply the MIP solver to the sub-MIP for a while...
- Possible implementations:
  - Local branching: add the following linear cut to the MIP

$$\Delta(x, \tilde{x}) = \sum_{j \in J: \, \tilde{x}_j = 0} x_j + \sum_{j \in J: \, \tilde{x}_j = 1} (1 - x_j) \le k$$

- **RINS**: find an optimal solution  $x^*$  of the continuous relaxation, and fix all binary variables such that  $x_j^* = \tilde{x}_j$
- Polish: evolve a population of heuristic sol.s by using RINS to create offsprings, plus mutation etc.

# Why should the subMIP be easier?

- What makes a (sub)MIP easy to solve?
  - 1. fixing many var.s reduces problem size & difficulty
  - 2. additional contr.s limit **branching's** scope
  - 3. something else?
- In Branch-and-Bound methods, the quality of the root-node relaxation is of paramount importance as the method is driven by the relaxation solution found at each node
- Quality in terms of integrality gap ...
- ... but also in term of "**similarity**" of the root node solution to the optimal integer solution (the "more integer" the better...)

## **Relaxation grip**

• Effect of **local branching** constr. for various values of the neighborhood radius *k* on MIPLIB2010 instance *ramos3.mps* (root node relaxation)

| <i>x</i> -range | k = 0  | k = 1  | k=2      | k=3    | k = 4  | k = 5  | k = 10   | k = 20 | k = 30 | k = 50 | k = 99 | $k=+\infty$ |
|-----------------|--------|--------|----------|--------|--------|--------|----------|--------|--------|--------|--------|-------------|
| = 0             | 1920   | 1919   | 1919     | 1919   | 1919   | 1919   | 1920     | 1619   | 1619   | 1606   | 1562   | 672         |
| (0.0, 0.1]      | 0      | 0      | 0        | 0      | 0      | 0      | 0        | 303    | 301    | 302    | 276    | 849         |
| (0.1, 0.2]      | 0      | 1      | 0        | 0      | 0      | 5      | 0        | 0      | 2      | 14     | 73     | 551         |
| (0.2, 0.3]      | 0      | 0      | 0        | 0      | 0      | 0      | 4        | 0      | 0      | 4      | 16     | 108         |
| (0.3, 0.4]      | 0      | 0      | 1        | 0      | 5      | 0      | 0        | 0      | 3      | 2      | 7      | 7           |
| (0.4, 0.5]      | 0      | 0      | 0        | 6      | 0      | 0      | 0        | 8      | 5      | 2      | 17     | 0           |
| (0.5, 0.6]      | 0      | 0      | 0        | 0      | 0      | 0      | <b>2</b> | 5      | 5      | 9      | 18     | 0           |
| (0.6, 0.7]      | 0      | 0      | <b>5</b> | 0      | 1      | 0      | 0        | 0      | 0      | 6      | 40     | 0           |
| (0.7, 0.8]      | 0      | 0      | 0        | 0      | 0      | 0      | 9        | 0      | 3      | 17     | 86     | 0           |
| (0.8, 0.9]      | 0      | 5      | 0        | 0      | 0      | 1      | 0        | 0      | 14     | 81     | 67     | 0           |
| (0.9, 1.0)      | 0      | 0      | 0        | 0      | 0      | 0      | 0        | 249    | 232    | 142    | 24     | 0           |
| = 1             | 267    | 262    | 262      | 262    | 262    | 262    | 252      | 3      | 3      | 2      | 1      | 0           |
| time (sec.s)    | 0.01   | 0.08   | 0.12     | 0.14   | 0.16   | 0.13   | 0.31     | 0.55   | 0.61   | 0.73   | 1.40   | 98.18       |
| # LP-iter.s     | 0      | 827    | 1033     | 1145   | 1214   | 1095   | 1930     | 2897   | 3101   | 3476   | 4971   | 23870       |
| LP-bound        | 267.00 | 266.33 | 265.66   | 265.00 | 264.33 | 263.66 | 260.88   | 255.70 | 250.62 | 240.47 | 215.97 | 145.80      |

# Changing the subMIP objective

- Altering the MIP objective function can have a big impact on
  - time to get the optimal solution of the continuous relax.

working with a simplified/different objective can lead to huge speedups (orders of magnitude)

#### success of the internal heuristics (diving, rounding, ...)

the original objective might interfere with heuristics (no sol. found even for trivial set covering probl.s) and sometimes is reset to zero

#### search path towards the integer optimum

search is trapped in the upper part of the tree (where the lower bounds are better), with frequent divings to grasp far-away (in terms of lower bound) solutions

# **Proximity Search**

• A variant of Local Branching/ Feasibility Pump introduced in

M. Fischetti, M. Monaci, Proximity search for 0-1 mixed-integer convex programming, Journal of Heuristics 20 (6), 709-731, 2014

- We want to be free to work with a modified objective function that has a better "**relaxation grip**" and hopefully allows the black-box solver to quickly improve the incumbent solution
- Step 1. Add an explicit cutoff constraint  $f(x) \le f(\tilde{x}) \theta$
- Step 2. Replace the objective f(x) by the proximity function

$$\Delta(x, \tilde{x}) := \sum_{j \in J: \, \tilde{x}_j = 0} x_j + \sum_{j \in J: \, \tilde{x}_j = 1} (1 - x_j)$$

## **Relaxation grip**

 Effect of the cutoff constr. for various values of parameter θ on MIPLIB2010 instance ramos3 (root node relaxation)

| <i>x</i> -range       | $\theta = 0$ | $\theta = 1$ | $\theta = 2$ | $\theta = 3$ | $\theta = 4$ | $\theta = 5$ | $\theta = 10$ | $\theta = 20$ | $\theta = 30$ | $\theta = 50$ | $\theta = 99$ | $\theta = 121$ |
|-----------------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|----------------|
| = 0                   | 1920         | 1919         | 1919         | 1919         | 1924         | 1920         | 1619          | 1619          | 1600          | 1565          | 1276          | 682            |
| (0.0, 0.1]            | 0            | 0            | 0            | 0            | 0            | 0            | 303           | 297           | 293           | 281           | 420           | 926            |
| $\left(0.1,0.2 ight]$ | 0            | 0            | 0            | 0            | 0            | 4            | 0             | 6             | 26            | <b>65</b>     | 194           | <b>380</b>     |
| (0.2, 0.3]            | 0            | 1            | 0            | 5            | 0            | 0            | 0             | 3             | 7             | 15            | 64            | 169            |
| (0.3, 0.4]            | 0            | 0            | 0            | 0            | 0            | 0            | 0             | 1             | <b>2</b>      | 8             | 75            | 29             |
| (0.4, 0.5]            | 0            | 0            | 6            | 0            | 0            | 0            | 8             | 4             | 3             | 16            | 91            | 0              |
| (0.5, 0.6]            | 0            | 0            | 0            | 0            | 0            | 0            | 5             | 5             | 9             | 19            | 47            | 1              |
| (0.6, 0.7]            | 0            | 0            | 0            | 0            | 0            | 0            | 0             | <b>2</b>      | 9             | 35            | 17            | 0              |
| (0.7, 0.8]            | 0            | 5            | 0            | 1            | 0            | 1            | 0             | 10            | 25            | 88            | 3             | 0              |
| (0.8, 0.9]            | 0            | 0            | 0            | 0            | 0            | 11           | 0             | <b>28</b>     | 101           | <b>68</b>     | 0             | 0              |
| (0.9, 1.0)            | 0            | 0            | 0            | 0            | 0            | 0            | 249           | 209           | 110           | 26            | 0             | 0              |
| = 1                   | 267          | 262          | 262          | 262          | 263          | 251          | 3             | 3             | 2             | 1             | 0             | 0              |
| time (sec.s)          | 0.00         | 0.04         | 0.03         | 0.03         | 0.04         | 0.21         | 0.45          | 0.54          | 0.57          | 0.90          | 4.77          | 30.91          |
| # LP-iter.s           | 0            | 352          | 341          | 357          | 358          | 1180         | 2164          | 2543          | 2637          | 3627          | 6829          | 11508          |
| $\Delta$ -distance    | 0.00         | 1.50         | 3.00         | 4.50         | 6.00         | 7.88         | 17.45         | 37.13         | 56.86         | 96.90         | 208.71        | 292.67         |

## The basic #Proxy heuristic

Proximity Search:

- 1. let  $\tilde{x}$  be the initial heuristic feasible solution to refine; repeat
- 2. explicitly add the *cutoff constraint*  $f(x) \leq f(\tilde{x}) \theta$  to the MIP model;
- 3. replace f(x) by the "proximity" objective function  $\Delta(x, \tilde{x})$ ;
- 4. run the MIP solver on the new model until a termination condition is reached, and let x\* be the best feasible solution found (x\* empty if none);
  if x\* is nonempty and J ⊂ N then

5. refine 
$$x^*$$
 by solving the convex program  
 $x^* := \operatorname{argmin}\{f(x) : g(x) \le 0, x_j = x_j^* \, \forall j \in J\}$ 

#### end

6. recenter  $\Delta(x, \cdot)$  by setting  $\tilde{x} := x^*$ , and/or update  $\theta$ until an overall termination condition is reached;

## **Proximity search with incumbent**

- Basic Proximity Search works without an incumbent (as soon a better integer sol. is found, we cut it off) → powerful internal tools of the black-box solver (including RINS) are never activated
- Easy workaround: **soft** cutoff constraint (slack *z* with BIGM penalty)  $\begin{array}{l} \min \ \Delta(x,\tilde{x}) + Mz \\ f(x) \leq f(\tilde{x}) - \theta + z \end{array}$
- Warm-started the subMIP with the (high-cost but) feasible integer sol.  $\widetilde{x}$

. . .

## **Stochastic Programming 0-1 MILP's**

• A 0-1 MILP with a decomposition structure (**Stochastic Programming**)

$$\min c_0^T y + \sum_{k=1}^K \mu_k$$

$$c_k^T x_k = \mu_k$$

$$A_0 y + A_k x_k \ge b_k \quad k = 1, \dots, K$$

$$y \qquad \in Y$$

$$x_k \qquad \in P_k \qquad k = 1, \dots, K$$

where  $Y = P_0 \cap \{0,1\}^m$  and each set  $P_k$  (k = 0, ..., K) is a polyhedron.

• For fixed y and  $\mu_{K}$ 's, each  $x_{K}$  can be determined by solving an individual MILP  $\rightarrow$  Benders' decomposition (master on y and  $\mu_{K}$ , K slaves on  $x_{K}$ )

# **Computational conjecture**

#### Known drawbacks of Benders decomposition

- Benders can be slow as the master solution has little incentive to be feasible ← lot of Benders cuts needed to "cure" master's natural reluctance to become feasible
- Long sequence of super-optimal infeasible sol.s provided by the master, feasibility eventually reached at the last iteration #BadForHeuristics

### **Our computational conjecture**

Changing the master objective will improve relaxation grip

- → master sol.s almost feasible "by empathy" and not "by cuts"
- $\rightarrow$  faster convergence of Benders' scheme
- → a natural setting for Proximity Search

### **#ProximityBenders**

• Just apply Proximity Search (PS) on top of Benders' decomposition

Given a feasible solution  $(\tilde{y}, \tilde{x}, \tilde{\mu})$ , add the cutoff constraint

$$c_0^T y + \sum_{k=1}^K \mu_k \le U - \theta$$

where  $U = c_0^T \tilde{y} + \sum_{k=1}^K \tilde{\mu}_k$  and  $\theta > 0$  is a given tolerance, and replace the objective function with the Hamming distance

$$\Delta(y,\widetilde{y}) = \sum_{j:\widetilde{y}_j=0} y_j + \sum_{j:\widetilde{y}_j=1} (1-y_j)$$

#### <u>Note:</u> Benders as a black-box <u>inside</u> PS, not vice-versa as in

Rei, W., Cordeau, J.-F., Gendreau, M., and Soriano, P. (2009). Accelerating Benders decomposition by local branching. INFORMS Journal on Computing, 21(2):333–345.

# **Computational experiments**

- Three classes of Stochastic Programs from the literature
  - 1. Stochastic Capacitated Facility Location
  - 2. Stochastic Network Interdiction
  - 3. Stochastic Fixed-Charge Multi-Commodity Network Design
- Extensive computational results on benchmark instances from the literature

#### • Outcome:

- Proximity Benders can be very effective to quickly find high-quality solutions to very large instances of Stochastic Programs
- Very useful when solving the root node LP relaxation is already computationally prohibitive



#### Solution value over time for a hard instance from

Bodur, M., Dash, S., Gunluck, O., and Luedtke, J. (2014). Strengthened Benders cuts for stochastic

integer programs with continuous recourse. Optimization Online 2014-03-4263.



Figure 1: The best known solution value over time for the three heuristics.

ISMP 2015, Pittsburgh, July 2015

# Thank you for your attention

**Full paper** ullet

> N. Boland, M. Fischetti, M. Monaci, M. Savelsbergh, "Proximity Benders: a decomposition heuristic for Stochastic Programs", Technical Report DEI, 2015.



and slides available at

http://www.dei.unipd.it/~fisch/papers/

http://www.dei.unipd.it/~fisch/papers/slides/