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Big Data 
• Big data is a broad term for 

data sets so large and complex 
that traditional data processing 
applications are inadequate

• Multimodal (incomplete) data 
from any kind of sources
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from any kind of sources
(physical/social systems etc.) 

• Not just a matter of size …

• We (OR/Mathematical Optimization people) are already proud if 
we can solve problems with few MB’s of perfectly clean input 
data... #TooBigForUs?  



Big Data in the realm of Analytics
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#WeArePrescriptive 

It turns out that

Prescriptive Analytics 
~=

(large scale)
Mathematical OptimizationMathematical Optimization

we are 
no longer old-fashioned 

but actually have a LOT to say 
about Big Data
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But … are we “scalable enough”?
• Prescriptive Analytics calls for scalable methods to deal 
with larger and larger problems 

• Operations Research / Mathematical Optimization models 
and algorithms can be inherently rather sophisticated

• Challenge: improve scalability of OR heuristic and exact 
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• Challenge: improve scalability of OR heuristic and exact 
methods

• Simplicity is one of keys to scalability � focus (as much as 
possible) on simple models and solution schemes 

• Warning: simple does not mean trivial ...



Occam’s razor
• Occam's razor , or law of parsimony (lex parsimoniae): 

a problem-solving principle devised by the English 
philosopher William of Ockham (1287–1347). 

• Among competing hypotheses, the one with the fewest assumptions is more 
likely be true and should be preferred—the fewer assumptions that are 
made, the better. 

• The simpler (the model, the algorithm) the better

• Used as a heuristic guide in the development of theoretical models in 
physics (Albert Einstein, Max Planck, Werner Heisenberg, etc.)

• Not to misinterpreted and used as an excuse to address oversimplified 
models: “Everything should be kept as simple as possible, bu t no 
simpler ” (Albert Einstein)
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Thinning out optimization models

• The practical difficulty in solving hard problems 
sometimes comes for overmodelling : 

Too many vars.s and constr.s just 
suffocate the model 

(and the cure is not to complicate it even more!)

Let your model breathe!Let your model breathe!

• Simpler and more effective models can sometimes be obtained by:
1. Choosing a model that better fits the instances of interest
2. Removing variables that play a little role for the problem class 

of interest
3. Using decomposition to break the problem into smaller pieces
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Example 1: QAP
• Quadratic Assignment Problem (QAP): extremely hard to solve

• Unsolved esc* instances from QAPLIB (attempted on constellations of thousand 
computers around the world for many CPU years, with no success)

• The thin out approach: esc instances are
• very large � use slim MILP models with high node throughput
• decomposable � solve pieces separately
• very symmetrical � find a cure and simplify the model through Orbital • very symmetrical � find a cure and simplify the model through Orbital 

Shrinking  to actually reduce the size of the instances

Fischetti, L. Liberti, "Orbital shrinking", Lecture Notes in Computer Science, Vol. 7422, 48-58, 2012.

• Outcome :
a. all esc* but two instances solved in minutes on a notebook
b. esc128 (by far the largest QAP ever attempted) solved in just seconds

M. Fischetti, M. Monaci, D. Salvagnin, "Three ideas for the Quadratic Assignment Problem", 
Operations Research 60 (4), 954-964, 2012.
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Example 2: Steiner Trees 
• Recent  DIMACS 11 (2014) challenge on Steiner Tree Problems: various versions and 

categories (exact/heuristic/parallel/…) and scores (avg/formula 1/ …)

• Standard MILP models use x var.s (arcs) and y var.s (nodes)

• Many very hard (unsolved) instances available on STEINLIB
• Observation : many hard instances have uniform arc costs

• Thin out : remove x var.s and work on the y-space (kind of Benders’ projection)• Thin out : remove x var.s and work on the y-space (kind of Benders’ projection)
• Heuristics based on the blur principle: initially forget about details…

• Vienna-Padua team � MozartBalls code  
• Outcome:

• Some open instances solved in a few seconds
• MozartBalls ranked first in most DIMACS categories

M. Fischetti, M. Leitner, I. Ljubic, M. Luipersbeck, M. Monaci, M. Resch, D. Salvagnin, M. Sinnl, "Thinning out 
Steiner trees: a node-based model for uniform edge costs", Tech.Rep., 2014
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Example 3: facility location
• Uncapacitated facility location with linear (UFL) and quadratic (qUFL) costs

• Huge MILP models involving y var.s (selection) and x var.s (assignment)

• Thin out : assignment var.s x suffocate the model, just remove them…

• A perfect fit with Benders decomposition (more later!)

• Outcome :
– Many hard UFL instances solved in just seconds on a notebook 
– Seven open instances solved to optimality, 22 best-known improved
– Speedup of 4 orders of magnitude for qUFL up to size 150x150
– Solved qUFL instances up to 2,000 locations and 10,000 clients in just 5 minutes  

(MIQCP’s with 20M SOC constraints and 40M var.s)

M. Fischetti, I. Ljubic, M. Sinnl, "Thinning out facilities: a Benders decomposition approach for the 
uncapacitated facility location problem with separable convex costs", TR 2015.
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Thin out your favorite model 
call Benders toll free

Benders decomposition well known
… but not so many MIPeople actually use it

We will next give a brief tutorial on Modern Bender s

hoping to convince 
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hoping to convince 
young researchers 
to test it…

…and not to be #TooBoring



Benders in a nutshell
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Modern Benders
Consider the original convex MINLP

and assume for the sake of simplicity
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Working on the y -space (projection)
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Original MINLP in the (x,y) space    � Master probl em in the y space

Warning : projection changes the objective function shape! 



Life of  P(H)I

• Solving Benders’ master problem calls 
for the minimization of a nonlinear function 
(even if you start from a linear problem!)

• Branch-and-cut MINLP solvers generate a 
sequence of linear cuts to approximate this 
function from below (outer-approximation )
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Benders cut computation
• Benders (for linear) and Geoffrion (general convex) told us how to 

compute a (sub)gradient to be used in the cut derivation, by using 
the optimal primal-dual solution (x*,u*) available after computing

• This formula is problem -specific and perhaps #scaring
• By rewriting• By rewriting

we obtain a much simpler recipe to derive the same Benders cut:  

OR 2015, Vienna, Sept. 2015 16



#TheCurseOfKelley 
• Master problem is typically solved by a cutting plane method where primal 
(fractional) solutions y* and Benders cuts are generated on the fly

• A main reason for Benders’ slow convergence is the use of Kelley’s cutting 
plane recipe “Always cut the optimal solution of the previous master”

• In the first iterations, the master can contain too few constraints (sometimes, 
only variable bounds) � zig-zagging in the y space (lower bound stalling)
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only variable bounds) � zig-zagging in the y space (lower bound stalling)

�Stabilization required as in

Column Generation and 
Lagrangian Relaxation

e.g. through bundle methods



Escaping the #CurseOfKelley
• Root node LP bound very critical � many ships sank here! 

• Kelley’s cutting plane can be desperately slow, 
bundle/interior points methods required

• Stabilization using “interior points”

• For facility location problems, we implemented a very simple 
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• For facility location problems, we implemented a very simple 
“chase the carrot ” heuristic to determine an 
internal path towards the optimal y

• Our very first implementation worked so well that we 
did not have an incentive to try and improve it     #OccamPrinciple



Our #ChaseTheCarrot heuristic

• We (the donkey) start with y = (1,1,…,1) and optimize the master LP as in Kelley, 
to get optimal y* (the carrot on the stick).
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to get optimal y* (the carrot on the stick).

• We move y half-way towards y*. We then separate a point y’ in the segment y-y* 
close to y. The generated Benders cut is added to the master LP, which is 
reoptimizied to get the new optimal y* (carrot moves).

• Repeat until bound improves, then switch to Kelley for final bound refinement 
(kind of cross-over)

• Warning: adaptations needed if feasibility Benders cuts can be generated… 



Effect of the improved cut-loop

• Comparing Kelley cut loop at the root node with Kelley+ (add 
epsilon to y*) and with our chase-the-carrot method (inout )

• Koerkel-Ghosh qUFL instance gs250a-1 (250x250, quadratic costs)
• *nc = n. of Benders cuts generated at the end of the root node
• times in logarithmic scale

OR 2015, Vienna, Sept. 2015 20



Conclusions

• Operations Research (OPS! Prescriptive Analytics ) can play an 
important role in the Datazoic era …
… giving us an incentive to design simpler 
and more scalable solvers
… possibly based on clever decomposition

• Benders is a good boy, if you do not
mistreat him!mistreat him!

Thanks for your attention!

Slides available at
http://www.dei.unipd.it/~fisch/papers/slides/

(not too) Big Data and OR as good friends

OR 2015, Vienna, Sept. 2015 21


