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• The original Benders decomposition from the ‘60s uses two distinct 
ingredients for solving a Mixed-Integer Linear Program (MILP):
1) A search strategy where a relaxed (NP-hard) MILP on a variable subspace

is solved exactly (i.e., to integrality ) by a black-box solver, and then is 
iteratively tightened by means of additional “Benders” linear cuts 

2) The technicality of how to actually compute those cuts (Farkas’ projection)
– Papers proposing “a new Benders-like scheme” typically refer to 1)
– Students scared by “Benders implementations”  typically refer to 2)

What do you actually mean by 
“Benders decomposition”?

– Students scared by “Benders implementations”  typically refer to 2)

Later developments in the ‘70s:
– Folklore (Miliotios for TSP?): generate Benders cuts within a single B&B tree 

to cut any infeasible integer solution that is going to update the incumbent 
– McDaniel & Devine (1977): use Benders cuts to cut  fractional sol.s as well 

(root node only)

• Everything fits very naturally within a modern Branch-and-Cut (B&C) framework.
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B&C for Mixed -Integer Programming
• We will focus on the MIP

where f and g are convex functions 

• Non-convexity only comes from integrality requirement on y, so it can 
be handled by a branch-and-bound scheme (possibly using on-the-
fly cutting planes) � Branch and Cut (B&C) solution schemefly cutting planes) � Branch and Cut (B&C) solution scheme

• B&C was proposed by Padberg and Rinaldi in the ’90s
(i.e., well after Benders seminal work) and is nowadays 
the method of choice for solving MIP

• This talk: rephrase Benders in “modern slang”  #BendersIsEasy 
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Modern B&C implementation

• Modern commercial B&C solvers such as  IBM ILOG Cplex, Gurobi etc. 
can be fully customized by using callback functions 

• Callback functions are just entry points 
in the B&C code where an advanced user 
(you!) can add his/her customizations(you!) can add his/her customizations

• Most-used callbacks (using Cplex’s jargon)

– Lazy constraint : add “lazy constr.s” that should be part of the original model
– User cut : add additional contr.s that hopefully help enforcing feasibility/integrality
– Heuristic: try to improve the incumbent (primal solution) as soon as possible
– Branch: modify the branching strategy

– … 

Lunteren Conference on the Mathematics of Operations Research, January 17, 2017 4



Lazy constraint callback

• Automatically invoked when a solution is going to update the 
incumbent (meaning it is integer and feasible w.r.t. current model)

• This is the last checkpoint where we can discard a 
solution for whatever reason (e.g., because it violates  
a constraint that is not part of the current model)

• To avoid be bothered by this solution again and again, we can/should 
return a violated constraint (cut) that is added (globally or locally) to 
the current model

• Cut generation is often simplified by the 
fact that the solution to be cut is known 
to be integer (e.g., SECs for TSP)
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User cut callback
• Automatically invoked at every B&B node when the current solution 

is not integer (say: just before branching)

• A violated cut can possibly be returned, to be added (locally or 
globally) to the current model � often leads to an improved 
convergence to integer solutions

• If no cut is returned, branching occurs as usual • If no cut is returned, branching occurs as usual 

• Cut generation can be hard as the point is not integer (heuristic 
approaches can be used)

• User cuts are not mandatory for B&C correctness � being too 
clever on them can actually slow-down the solver because of the 
overhead in generating and using them (larger/denser LPs etc.)
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Modern Benders
• Consider again the convex MINLP in the (x,y) space
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and assume for the sake of simplicity that                                      is nonempty 
and bounded, and that 

is nonempty , closed and bounded for all y ∈ S 

� the convex function                                           is well defined for all y ∈ S

� no “feasibility cuts” needed (this kind of cuts will be discussed later on)



Working on the y -space (projection)
(1)                                       (2)                                         (3)

“isolate the inner 
minimization over x”
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Original MINLP in the (x,y) space    � Projected “master” problem in the y space

Warning : projection changes the objective function shape! 



Life of  P(H)I

• Solving Benders’ master problem calls for the 
minimization of a nonlinear convex function
(even if you start from a linear problem!)

• Branch-and-cut MINLP solvers generate a 
sequence of linear cuts to approximate this 
function from below (outer-approximation )
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Benders cut computation
• Benders (for linear) and Geoffrion (general convex) told us how to 

compute a (sub)gradient to be used in the cut derivation, by using 
the optimal primal-dual solution (x*,u*) available after computing

• The above formula is problem -specific and perhaps #scaring
• By rewriting• By rewriting

we obtain a much simpler recipe to derive the same Benders cut:  
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Benders feasibility cuts
• For some important applications, the set

can be empty for some “infeasible ” y ∈ S 

� undefined

• This situation can be handled by considering the “phase-1” feasibility condition 
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where the function           is convex 
� it can be approximated by the usual (sub)gradient “feasibility cut”

to be computed by the same machinery as the usual “optimality cut” 



Successful Benders applications
• Benders decomposition works well when fixing y=y* for computing        

makes the problem much simpler to solve .

• This usually happens when
– The problem for y=y* decomposes into a number of independent 

subproblems
• Stochastic Programming • Stochastic Programming 
• Uncapacitated Facility Location 
• etc.

– Fixing y=y* changes the nature of some constraints:
• in Capacitated Facility Location, tons of contr.s of the form              

become just variable bounds
• Second Order Constraints                     become quadratic contr.s
• etc.
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That’s it … or not?

• In practice, Benders decomposition can work quite 
well, but sometimes it is desperately slow
… as the root node bound does not improve even

after the addition of tons of Benders cuts
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• Slow convergence is generally attributed to the poor quality of Benders 
cuts, to be cured by a more clever selection policy (Pareto optimality 
of  Magnanti and Wong, 1981, etc.) but there is more …



Role of the cut loop
• B&C codes generate cuts, on the fly, in a sequential fashion
• Consider e.g. the root B&C node (arguably, the most critical one)
• A classical cut-loop scheme (described here for MILPs)

J. E. Kelley. The cutting plane method for solving convex programs, 

Journal of the SIAM, 8:703-712, 1960 .
– Find an optimal vertex x* of the current LP relaxation
– Invoke a separation function on x*, add the returned violated cut – Invoke a separation function on x*, add the returned violated cut 

(if any) to the current LP, and repeat 

• Can be very ineffective in the first iterations 
when few constraints are specified, and x* 
moves along an unstable zig-zag trajectory
... which is precisely what often happens with Benders cuts
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But… alternative cut loops do exist!
• Kelley’s cut loop implemented in standard MI(L)P solvers:

– PROS: natural, efficient reopt., often works well 
– CONS: can be VERY ineffective, e.g., in 

column generation or in some
under-constrained cutting plane methods

• Ellipsoid & Analytic Center cut loops:
binary search 
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kind of binary search in the multi-dimensional space: 
at each iteration, a core point q “well inside” the 
current relaxation is computed and separated
– CONS: q can be difficult to find and to separate
– PROS: overall convergence does not depend 

on the quality of the cut (facets not required here!)
• Cheaper alternatives often preferred: bundle (Lemaréchal) or in-out (Ben-

Ameur and Neto) methods



Stabilizing Benders can be easy!
• To summarize:

• Benders cut machinery is easy to implement …

… but the root node cut loop can be very critical 
� many implementations sank here! 

• Kelley’s cut loop can be desperately slow
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• Stabilization using “interior points” is a must
� this is well-known in subgradient optimization and Dantzig-Wolfe 
decomposition (column generation), but holds for Benders as well

• E.g., for facility location problems, we implemented a very simple 
“chase the carrot ” heuristic to determine a stabilized path 
towards the optimal y 

• Akin to Nesterov's Accelerated Gradient descent method



Our #ChaseTheCarrot heuristic
• We (the donkey) start with y = (1,1,…,1) 
and optimize the master LP as in Kelley, 
to get optimal y* (the carrot on the stick).

• We move y just half-way towards y*. We then 
separate a point y’ in the segment [y, y* ] close 
to the new y. 
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• The generated Benders cut is added to the master LP, which is reoptimized 
to get the new optimal y* (carrot moves).

• Repeat until bound improves, then switch to Kelley for final bound refinement 
(kind of cross-over)

• Warning: adaptations needed if feasibility Benders cuts can be generated… 



Effect of the improved cut loop

• Comparing Kelley cut loop at the root node with Kelley+ (add 
epsilon to y*) and with our chase-the-carrot method (inout )

• Koerkel-Ghosh qUFL instance gs250a-1 (250x250, quadratic costs)
• *nc = n. of Benders cuts generated at the end of the root node
• times in logarithmic scale
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Conclusions
To summarize:

• Benders cuts are easy to implement within modern B&C (just use a callback 
where you solve the problem for y=y* and compute reduced costs)

• Kelley’s cut loop can be desperately slow hence stabilization is a must

• Implementations in general MIP solvers expected soon (already in Cplex 12.7)

Slides available at     http://www.dei.unipd.it/~fisch/papers/slides/

.
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Slides available at     http://www.dei.unipd.it/~fisch/papers/slides/
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