Exact Algorithms for Mixed-Integer Bilevel Linear Programming

Matteo Fischetti, University of Padova

(based on joint work with I. Ljubic, M. Monaci, and M. Sinnl)
Bilevel Optimization

• The general **Bilevel Optimization Problem** (optimistic version) reads:

\[
\begin{align*}
\min_{x \in \mathbb{R}^{n_1}, y \in \mathbb{R}^{n_2}} & \quad F(x, y) \\
G(x, y) & \leq 0 \\
y & \in \arg\min_{y' \in \mathbb{R}^{n_2}} \{ f(x, y') : g(x, y') \leq 0 \}
\end{align*}
\]

where \(x \) var.s only are controlled by the leader, while \(y \) var.s are computed by another player (the follower) solving a different problem.

• A very very hard problem even in a **convex setting with continuous var.s** only

• **Convergent** solution algorithms are problematic and typically require additional assumptions (binary/integer var.s or alike)
Example: 0-1 ILP

- A generic 0-1 ILP can be reformulated as the following linear & continuos bilevel problem.

\[
\begin{align*}
\min & \quad c^T x \\
Ax & = b \\
x & \in \{0, 1\}^n
\end{align*}
\]

\[
\begin{align*}
\min & \quad c^T x \\
Ax & = b \\
x & \in [0, 1]^n \\
y & = 0
\end{align*}
\]

\[y \in \arg \min_{y'} \left\{ - \sum_{j=1}^{n} y'_j : y'_j \leq x_j, \ y'_j \leq 1 - x_j \quad \forall j = 1, \ldots, n \right\}\]

Note that \(y\) is fixed to 0 but it cannot be removed from the model!
Reformulation

• By defining the value function

\[\Phi(x) = \min_{y \in \mathbb{R}^{n_2}} \{ f(x, y) : g(x, y) \leq 0 \}, \]

the problem can be restated as

\[\min F(x, y) \]

\[G(x, y) \leq 0 \]

\[g(x, y) \leq 0 \]

\[f(x, y) \leq \Phi(x) \]

\[(x, y) \in \mathbb{R}^n. \]

• Dropping the nonconvex condition \(f(x, y) \leq \Phi(x) \) one gets the so-called High Point Relaxation (HPR)
Mixed-Integer Bilevel Linear Problems

• We will focus the Mixed-Integer Bilevel Linear case (MIBLP)

\[
\begin{align*}
\min & \quad F(x, y) \\
G(x, y) & \leq 0 \\
g(x, y) & \leq 0 \\
(x, y) & \in \mathbb{R}^n \\
f(x, y) & \leq \Phi(x) \\
x_j & \text{ integer, } \forall j \in J_1 \\
y_j & \text{ integer, } \forall j \in J_2,
\end{align*}
\]

where \(F, G, f \) and \(g \) are affine functions

• Note that \(f(x, y) \leq \Phi(x) \) is nonconvex even when all \(y \) var.s are continuous
MIBLP statement

- Using standard LP notation, our MIBLP reads

\[
\min_{x,y} c^T_x x + c^T_y y \\
G_x x + G_y y \leq q \\
Ax + By \leq b \\
l \leq y \leq u \\
x_j \text{ integer, } \forall j \in J_x \\
y_j \text{ integer, } \forall j \in J_y \\
d^T y \leq \Phi(x)
\]

where for a given \(x = x^* \) one computes the value function by solving the following MILP:

\[
\Phi(x^*) := \min_{y \in \mathbb{R}^{n_2}} \{d^T y : By \leq b - Ax^*, \quad l \leq y \leq u, \quad y_j \text{ integer } \forall j \in J_y\}.
\]
Example

• A notorious example from

\[
\begin{align*}
\min_{x \in \mathbb{Z}} & \quad -x - 10y \\
y \in \arg \min_{y' \in \mathbb{Z}} & \quad y' : \\
& -25x + 20y' \leq 30 \\
& x + 2y' \leq 10 \\
& 2x - y' \leq 15 \\
& 2x + 10y' \geq 15
\end{align*}
\]

where \(f(x,y) = y \)

points of HPR relax.

___ LP relax. of HPR
Example (cont.d)

Value-function reformulation

\[
\begin{align*}
\min & \quad -x - 10y \\
& -25x + 20y \leq 30 \\
& x + 2y \leq 10 \\
& 2x - y \leq 15 \\
& -2x - 10y \leq -15 \\
x, y & \in \mathbb{Z} \\
y & \leq \Phi(x)
\end{align*}
\]
A convergent B&B scheme

Algorithm 2: A basic branch-and-bound scheme for MIBLP

Input: A MIBLP instance satisfying proper assumptions;
Output: An optimal MIBLP solution.

1. Apply a standard LP-based B&B to HPR, branching as customary on integer-constrained variables x_j and y_j that are fractional at the optimal LP solution; incumbent update is instead inhibited as it requires the bilevel-specific check described below;
2. for each unfathomed B&B node where standard branching cannot be performed do
 3. Let (x^*, y^*) be the integer HPR solution at the current node;
 4. Compute $\Phi(x^*)$ by solving the follower MILP for $x = x^*$;
 5. if $d^T y^* \leq \Phi(x^*)$ then
 6. The current solution (x^*, y^*) is bilevel feasible: update the incumbent and fathom the current node
 else
 7. if not all variables x_j with $j \in J_F$ are fixed by branching then
 8. Branch on any x_j ($j \in J_F$) not fixed by branching yet, even if x_j^* is integer, so as to reduce its domain in both child nodes
 else
 9. let (\hat{x}, \hat{y}) be an optimal solution of the HPR at the current node amended by the additional restriction $d^T y \leq \Phi(x^*)$;
 10. Possibly update the incumbent with (\hat{x}, \hat{y}), and fathom the current node
 end
 end
end

Here J_F is the set of the leader x-variables appearing in the follower problem, all of which are assumed to be integer constrained (we also exclude HPR unboundedness)
A MILP-based B&C solver

• Suppose you want to apply a Branch-and-Cut MILP solver to HPR

• Forget for a moment about internal heuristics (i.e., deactivate all of them), and assume the LP relaxation at each node is solved by the simplex algorithm

• What do we need to add to the MILP solver to handle a MIBLP?

• At each node, let \((x^*, y^*)\) be the current LP optimal vertex:

 \[
 \begin{align*}
 \text{if } (x^*, y^*) \text{ is fractional} & \rightarrow \text{branch as usual} \\
 \text{if } (x^*, y^*) \text{ is integer and } f(x^*, y^*) & \leq \Phi(x^*) \rightarrow \text{update the incumbent as usual}
 \end{align*}
 \]
The difficult case

• But, what can we do in third possible case, namely \((x^*, y^*)\) is integer but not bilevel-feasible, i.e., when \(f(x^*, y^*) > \Phi(x^*)\)?

• Question: how can we cut this integer \((x^*, y^*)\)?

Possible answers from the literature

– If \((x, y)\) is restricted to be binary, add a no-good cut requiring to flip at least one variable w.r.t. \((x^*, y^*)\) or w.r.t. \(x^*\)

– If \((x, y)\) is restricted to be integer and all MILP coeff.s are integer, add a cut requiring a slack of 1 for the sum of all the inequalities that are tight at \((x^*, y^*)\)

– Weak conditions as they do not addresses the reason of infeasibility by trying to enforce \(f(x^*, y^*) \leq \Phi(x^*)\) somehow
Intersection Cuts (ICs)

- We propose the use of intersection cuts (Balas, 1971) instead
- IC is powerful tool to separate a point x^* from a set X by a linear cut

- All you need is
 - a cone pointed at x^* containing all $x \in X$
 - a convex set S with x^* (but no $x \in X$) in its interior
- If x^* vertex of an LP relaxation, a suitable cone comes for the LP basis
ICs for bilevel problems

- Our idea is first illustrated on the Moore&Bard example

\[
\min_{x \in \mathbb{Z}} -x - 10y \\
y \in \arg \min_{y' \in \mathbb{Z}} \{ y' : \begin{align*}
-25x + 20y' &\leq 30 \\
x + 2y' &\leq 10 \\
2x - y' &\leq 15 \\
2x + 10y' &\geq 15 \}
\]

where \(f(x,y) = y \)

\[
x \quad \text{points of HPR relax.} \\
____ \quad \text{LP relax. of HPR}
\]
Define a suitable bilevel-free set

- Take the LP vertex \((x^*, y^*) = (2, 4)\) \(\Rightarrow f(x^*, y^*) = y^* = 4 > \Phi(x^*) = 2\)
Intersection cut

- We can therefore generate the intersection cut \(y \leq 2 \) and repeat
A basic bilevel-free set

Lemma 1. For any feasible solution \hat{y} of the follower, the set

$$S(\hat{y}) = \{(x, y) \in \mathbb{R}^n : f(x, y) \geq f(x, \hat{y}), g(x, \hat{y}) \leq 0\}$$ \hspace{1cm} (10)

does not contain any bilevel-feasible point in its interior.

- **Note**: $S(\hat{y})$ is a convex set (actually, a polyhedron) when f and g are affine functions, i.e., in the MIBLP case

- **Separation algorithm**: given an optimal vertex (x^*, y^*) of the LP relaxation of HPR
 - Solve the follower for $x=x^*$ and get an optimal sol., say \hat{y}
 - if (x^*, y^*) strictly inside $S(\hat{y})$ then
 - generate a violated IC using the LP-cone pointed at (x^*, y^*) together with the bilevel-free set $S(\hat{y})$
It looks simple, but …

- However, the above does not lead to a proper MILP algorithm as a bilevel-infeasible integer vertex \((x^*, y^*)\) can be on the frontier of the bilevel-free set \(S\), so we cannot be sure to cut it by using our IC’s.

- We need to define the bilevel-free set in a more clever way if we want be sure to cut \((x^*, y^*)\)
An enlarged bilevel-free set

- **Assuming** \(g(x,y) \) is integer for all integer HPR solutions, one can “move apart” the frontier of \(S(\hat{y}) \) so as be sure that vertex \((x^*,y^*)\) belongs to its interior.

 Theorem 1. Assume that \(g(x,y) \) is integer for all HPR solutions \((x,y)\). Then, for any feasible solution \(\hat{y} \) of the follower, the extended set

 \[
 S^+(\hat{y}) = \{(x,y) \in \mathbb{R}^n : f(x,y) \geq f(x,\hat{y}), g(x,\hat{y}) \leq 1\}
 \]

 does not contain any bilevel-feasible point in its interior, where 1 denotes a vector of all one’s.

- The corresponding IC is **always violated** by \((x^*,y^*)\) \(\rightarrow\) IC separation to be implemented in a lazy constraint/usercut callback to produce a (locally valid) violated cut \(\rightarrow\) **B&C solver for MIBLP**

- **Note:** **alternative bilevel-free sets** can be defined to produce hopefully deeper ICs
IC separation issues

- IC separation can be problematic, as we need to read the cone rays from the LP tableau → **numerical accuracy** can be a big issue here!

- For MILPs, ICs like Gomory cuts are **not mandatory** (so we can skip their generation in case of numerical problems), but for MIBLPs they are more instrumental **#SeparateOrPerish**

- **Notation change**: let $\xi = (x, y) \in \mathbb{R}^n$

 \[
 \min \{ c^T \xi : A \xi = b, \xi \geq 0 \} \text{ be the LP relaxation at a given node}
 \]

 \[
 S = \{ \xi : g_i^T \xi \leq g_{0i}, \ i = 1, \ldots, k \} \text{ be the bilevel-free set}
 \]

 \[
 \bigvee_{i=1}^{k} (g_i^T \xi \geq g_{i0}) \text{ be the disjunction to be satisfied by all feas. sol.s}
 \]
Numerically safe ICs

Algorithm 1: Intersection cut separation

Input: An LP vertex ξ^* along with its associated LP basis \hat{B}; the feasible-free polyhedron $S = \{\xi : g_i^T \xi \leq g_{0i}, \ i = 1, \ldots, k\}$ and the associated valid disjunction $\bigvee_{i=1}^{k}(g_i^T \xi \geq g_{i0})$ whose members are violated by ξ^*;

Output: A valid intersection cut violated by ξ^*;

1. **for** $i := 1$ **to** k **do**
 2. $(\overline{g}_i^T, \overline{g}_{i0}) := (g_i^T, g_{i0}) - u_i^T (\hat{A}, \hat{b})$, where $u_i^T = (g_i)_{\hat{B}}^{T} \hat{B}^{-1}$
 3. **end**
4. **for** $j := 1$ **to** n **do** $\gamma_j := \max\{g_{ij}/g_{i0} : i \in \{1, \ldots, k\}\}$
5. **if** $\gamma \geq 0$ **then**
6. 6. **for** $j := 1$ **to** n **do**
7. 7. **if** ξ_j is integer constrained **then** $\gamma_j := \min\{\gamma_j, 1\}$
8. **end**
9. **end**
10. **return** the violated cut $\gamma^T \xi \geq 1$
Conclusions

• Mixed-Integer Bilevel Linear Programming is a MILP plus additional constr.s
• Intersection cuts can produce valuable information at the B&B nodes
• Sound MIBLP heuristics, preprocessing etc. (not discussed here) available
• Many instances from the literature can be solved in a satisfactory way

Slides http://www.dei.unipd.it/~fisch/papers/slides/

Reference papers:

