
Branch -and-cut implementation
of Benders’ decomposition

Matteo Fischetti, University of Padova

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 1

Mixed -Integer Programming
• We will focus on the MIP

where f and g are convex functions

• Non-convexity only comes from integrality requirement on y, so
removing the latter produces an easy-to-solve convex relaxation �

lower bound LB along with a fractional solution x* to be used
“somehow”“somehow”

• Cutting plane method
(Gomory 1958)

• Branch-and-Bound enumeration (Land and Doig, 1960)

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 2

Branch -and-Cut (B&C)
• B&C was proposed by Padberg and Rinaldi in the 1990s

and is nowadays the method of choice for solving MIPs

• B&C is a clever mixture of cutting-plane and branch-and-bound methods

• Cuts are generated during B&B (potentially, at all nodes) with the aim of
improving the lower bound and producing “more integral” solutions �
better pruning, better heuristics, and (hopefully) better branching guidancebetter pruning, better heuristics, and (hopefully) better branching guidance

• Convergence relies on enumeration (inherited by the B&B scheme) �
cut generation can safely be stopped at any time, to prevent e.g. shallow
cuts, tailing off, numerical issues, etc.

• Since the beginning, an highly-effective implementation was part of the
B&C trademark (use of cut pool, global vs local cuts, variable pricing, etc.)

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 3

Modern B&C implementation

• Modern commercial B&C solvers such as IBM ILOG Cplex, Gurobi,
XPRESS etc. can be fully customized by using callback functions

• Callback functions are just entry points
in the B&C code where an advanced user
(you!) can add his/her customizations(you!) can add his/her customizations

• Most-used callbacks (using Cplex’s jargon)

– Lazy constraint : add “lazy constr.s” that should be part of the original model
– User cut : add additional contr.s that hopefully help enforcing integrality
– Heuristic: try to improve the incumbent (primal solution) as soon as possible
– Branch: modify the branching strategy

– …

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 4

Lazy constraint callback

• Automatically invoked when a solution is going to update the
incumbent (meaning it is integer and feasible w.r.t. current model)

• This is the last checkpoint where you can discard a
solution for whatever reason (e.g., because it violates
a constraint that is not part of the current model)

• To avoid be bothered by this solution again and again, you can/should
return a violated constraint (cut) that is added (globally or locally) to
the current model

• Cut generation is often simplified by the
fact that the solution to be cut is known
to be integer (e.g., SECs for TSP)

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 5

User cut callback
• Automatically invoked at every B&B node when the current solution

is not integer (e.g., just before branching)

• A violated cut can possibly be returned, to be added (locally or
globally) to the current model � often leads to an improved
convergence to integer solutions

• If no cut is returned, branching occurs as usual • If no cut is returned, branching occurs as usual

• Cut generation can be hard as the point is not integer (heuristic
approaches can be used)

• User cuts are not mandatory for B&C correctness � insisting too
much can actually slow-down the solver because of the overhead
in generating and using the new cuts (larger/denser LPs etc.)

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 6

Ready for Benders?
Benders decomposition is one of basic Math.Opt. tolls

… but not so many MIPeople are willing to implement it because of
its bad reputation (instability, slow convergence, etc.)

… till recently (e.g., it is now in Cplex 12.7)

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 7

Benders in a nutshell

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 8

• The original Benders decomposition from the ‘60s uses two distinct
ingredients for solving a Mixed-Integer Linear Program (MILP):
1) A search strategy where a relaxed (NP-hard) MILP on a variable subspace

is solved exactly (i.e., to integrality) by a black-box solver, and then is
iteratively tightened by means of additional “Benders” linear cuts

2) The technicality of how to actually compute those cuts (Farkas’ projection)
– Papers proposing “a new Benders-like scheme” typically refer to 1)

What do you actually mean by
“Benders decomposition”?

– Students scared by “Benders implementations” typically refer to 2)

Later developments in the ‘70s:
– Folklore (Miliotios for TSP?): generate Benders cuts within a single B&B tree

to cut any infeasible integer solution that is going to update the incumbent
– McDaniel & Devine (1977): use Benders cuts to cut fractional sol.s as well

(root node only)
• Everything fits very naturally within a modern Branch-and-Cut (B&C) framework.

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 9

Modern Benders
• Consider again the convex MINLP in the (x,y) space

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 10

and assume for the sake of simplicity that is nonempty
and bounded, and that

is nonempty , closed and bounded for all y ∈ S

� the convex function is well defined for all y ∈ S

� no “feasibility cuts” needed (this kind of cuts will be discussed later on)

Working on the y -space (projection)
(1) (2) (3)

“isolate the inner
minimization over x”

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 11

Original MINLP in the (x,y) space � Benders’ master problem in the y space

Warning : projection changes the objective function (e.g., linear � convex nonlinear)

Life of P(H)I

• Solving Benders’ master problem calls for the
minimization of a nonlinear convex function
(even if you start from a linear problem!)

• Branch-and-cut MINLP solvers generate a
sequence of linear cuts to approximate this
function from below (outer-approximation)

subgradient
(aka Benders) cut �

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 12

Benders cut computation
• Benders (for linear) and Geoffrion (general convex) told us how to

compute a subgradient to be used in the cut derivation, by using the
optimal primal-dual solution (x*,u*) available after computing

• The above formula is problem -specific and perhaps #scaring
• Introduce an artificial variable vector q (acting as a copy of y) to get• Introduce an artificial variable vector q (acting as a copy of y) to get

and to obtain the following simpler and completely general cut-recipe:

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 13

Benders feasibility cuts
• For some important applications, the set

can be empty for some “infeasible ” y ∈ S

� undefined

• This situation can be handled by considering the “phase-1” feasibility condition

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 14

where the function is convex
� it can be approximated by the usual subgradient “Benders feasibility cut”

to be computed as in the previous “Benders optimality cut”

Successful Benders applications
• Benders decomposition works well when fixing y = y* for computing

makes the problem much simpler to solve .

• This usually happens when
– The problem for y = y* decomposes into a number of independent

subproblems
• Stochastic Programming • Stochastic Programming
• Uncapacitated Facility Location
• etc.

– Fixing y = y* changes the nature of some constraints:
• in Capacitated Facility Location, tons of constr.s of the form

become just variable bounds
• Second Order Constraints become quadratic constr.s
• etc.
8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 15

That’s it … or not?

• In practice, Benders decomposition can work quite
well, but sometimes it is desperately slow
… as the root node bound does not improve even

after the addition of tons of Benders cuts

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 16

• Slow convergence is generally attributed to the poor quality of Benders
cuts, to be cured by a more clever selection policy (Pareto optimality
of Magnanti and Wong, 1981, etc.) but there is more …

Role of the cut loop
• B&C codes generate cuts, on the fly, in a sequential fashion
• Consider e.g. the root B&C node (arguably, the most critical one)
• A classical cut-loop scheme (described here for MILPs)

J. E. Kelley. The cutting plane method for solving convex programs,

Journal of the SIAM, 8:703-712, 1960 .
– Find an optimal vertex x* of the current LP relaxation
– Invoke a separation function on x*, add the returned violated cut – Invoke a separation function on x*, add the returned violated cut

(if any) to the current LP, and repeat

• Can be very ineffective in the first iterations
when few constraints are specified, and x*
moves along an unstable zig-zag trajectory
... which is precisely what often happens with Benders cuts

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 17

But… alternative cut loops do exist!
• Kelley’s cut loop implemented in standard MI(L)P solvers:

– PROS: natural, efficient reopt., often works well
– CONS: can be VERY ineffective, e.g., in

column generation or in some
under-constrained cutting plane methods

• Ellipsoid & Analytic Center cut loops:
binary search

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 18

kind of binary search in the multi-dimensional space:
at each iteration, a core point q “well inside” the
current relaxation is computed and separated
– CONS: q can be difficult to find and to separate
– PROS: overall convergence does not depend

on the quality of the cut (facets not required here!)
• Cheaper alternatives often preferred: bundle (Lemaréchal) or in-out (Ben-

Ameur and Neto) methods

Stabilizing Benders can be easy!
• To summarize:

• Benders cut machinery is easy to implement …

… but the root node cut loop can be very critical
� many implementations sank here!

• Kelley’s cut loop can be desperately slow

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 19

• Stabilization using “interior points” is a must
� this is well-known in subgradient optimization and Dantzig-Wolfe
decomposition (column generation), but holds for Benders as well

• E.g., for facility location problems, we implemented a very simple
“chase the carrot ” heuristic to determine a stabilized path
towards the optimal y

• Akin to Nesterov's Accelerated Gradient descent method

Our #ChaseTheCarrot heuristic
• We (the donkey) start with y = (1,1,…,1)
and optimize the master LP as in Kelley,
to get optimal y* (the carrot on the stick).

• We move y just half-way towards y*. We then
separate a point y’ in the segment [y, y*] close
to the new y.

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 20

• The generated Benders cut is added to the master LP, which is reoptimized
to get the new optimal y* (carrot moves).

• Repeat until bound improves, then switch to Kelley for final bound refinement
(kind of cross-over)

• Warning: adaptations needed if feasibility Benders cuts can be generated…

Effect of the improved cut loop

• Comparing Kelley cut loop at the root node with Kelley+ (add
epsilon to y*) and with our chase-the-carrot method (inout)

• Koerkel-Ghosh qUFL instance gs250a-1 (250x250, quadratic costs)
• *nc = n. of Benders cuts generated at the end of the root node
• times in logarithmic scale

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 21

Conclusions
To summarize:

• Benders cuts are easy to implement within modern B&C (just use a callback
where you solve the problem for y = y* and compute reduced costs)

• Kelley’s cut loop can be desperately slow hence stabilization is a must

• Implementations in general MIP solver already in Cplex 12.7

Slides available at http://www.dei.unipd.it/~fisch/papers/slides/

.

8th Cargese-Porquerolles Workshop on Combinatorial Optimization, August 2017 22

Slides available at http://www.dei.unipd.it/~fisch/papers/slides/

Reference papers:

M. Fischetti, I. Ljubic, M. Sinnl, "Benders decomposition without separability: a
computational study for capacitated facility location problems", European Journal of Operational
Research, 253, 557-569, 2016.

M. Fischetti, I. Ljubic, M. Sinnl, "Redesigning Benders Decomposition for Large Scale
Facility Location", to appear in Management Science, 2016.

