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Mixed -Integer Programming

We will focus on the MIP min f(z, y)
g9(z,y) <0

where f and g are convex functions Ay<b
y integer

Non-convexity only comes from integrality requirement on y, So
removing the latter produces an easy-to-solve convex relaxation -
lower bound LB along with a fractional solution x* to be used
“somehow”

Cutting plane method
(Gomory 1958)

Branch-and-Bound enumeration (Land and Doig, 1960 )
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Branch -and-Cut (B&C)

B&C was proposed by Padberg and Rinaldi in the 1990s
and is nowadays the method of choice for solving MIPs

B&C is a clever mixture of cutting-plane and branch-and-bound methods

Cuts are generated during B&B (potentially, at all nodes) with the aim of
improving the lower bound and producing “more integral” solutions -
better pruning, better heuristics, and (hopefully) better branching guidance

Convergence relies on enumeration (inherited by the B&B scheme) -
cut generation can safely be stopped at any time, to prevent e.g. shallow
cuts, tailing off, numerical issues, etc.

Since the beginning, an highly-effective implementation was part of the
B&C trademark (use of cut pool, global vs local cuts, variable pricing, etc.)
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Modern B&C implementation

Modern commercial B&C solvers such as IBM ILOG Cplex, Gurobi,
XPRESS etc. can be fully customized by using callback functions

Callback functions are just entry points C{)

in the B&C code where an advanced user
(you!) can add his/her customizations Q . O Q O

Most-used callbacks (using Cplex’s jargon)

— Lazy constraint : add “lazy constr.s” that should be part of the original model
— User cut : add additional contr.s that hopefully help enforcing integrality

— Heuristic: try to improve the incumbent (primal solution) as soon as possible
— Branch: modify the branching strategy
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Lazy constraint callback

Automatically invoked when a solution is going to update the
iIncumbent (meaning it is integer and feasible w.r.t. current model)

This is the last checkpoint where you can discard a THE ﬂ%
LAST

solution for whatever reason (e.g., because it violates
a constraint that is not part of the current model) CHECKPQINT

To avoid be bothered by this solution again and again, you can/should
return a violated constraint (cut) that is added (globally or locally) to

the current model
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Cut generation is often simplified by the ’ ﬂ
fact that the solution to be cut is known Ty

to be integer (e.g., SECs for TSP)




User cut callback

Automatically invoked at every B&B node when the current solution
IS not integer (e.g., just before branching)

A violated cut can possibly be returned, to be added (locally or
globally) to the current model - often leads to an improved
convergence to integer solutions

If no cut is returned, branching occurs as usual c

Cut generation can be hard as the point is not integer (heuristic
approaches can be used)

User cuts are not mandatory for B&C correctness -2 insisting too
much can actually slow-down the solver because of the overhead
In generating and using the new cuts (larger/denser LPs etc.)
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What do you actually mean by
“Benders decomposition”?

The original Benders decomposition from the ‘60s uses two distinct
Ingredients for solving a Mixed-Integer Linear Program (MILP):

1) A search strategy where a relaxed (NP-hard) MILP on a variable subspace
IS solved exactly (i.e., to integrality ) by a black-box solver, and then is
iteratively tightened by means of additional “Benders” linear cuts

2) The technicality of how to actually compute those cuts (Farkas’ projection)
— Papers proposing “a new Benders-like scheme” typically refer to 1)
— Students scared by “Benders implementations” typically refer to 2)

Later developments in the ‘70s:

— Folklore (Miliotios for TSP?): generate Benders cuts within a single B&B tree
to cut any infeasible integer solution that is going to update the incumbent

— McDaniel & Devine (1977): use Benders cuts to cut fractional sol.s as well
(root node only)

Everything fits very naturally within a modern Branch-and-Cut (B&C) framework.
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Modern Benders

» Consider again the convex MINLP in the (x,y) space
min f(z,y)
g9(z,y) <0
Ay <b
y integer

and assume for the sake of simplicity that S := {y: Ay < b} is nonempty
and bounded, and that

X(y) = {z : g(z,y) <0}
IS nonempty , closed and bounded for ally € S

- the convex function  ®(y) := n}%? | f(x,y) is well defined for ally € S
re Yy
- no “feasibility cuts” needed (this kind of cuts will be discussed later on)
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Working on the y -space (projection)

(1) (2) (3)
min min f(z, y) “isolate the inner :
v o SOIAE , min ®(y)
minimization over x
9(z,y) <0 . Ay <b
®(y) := min f(,y) =
Ay <b :
— Yy Integer
. 9(z,y) <0
Yy Integer

Original MINLP in the (x,y) space -> Benders’ master problem in the y space

Warning : projection changes the objective function (e.g., linear - convex nonlinear)

min &
min ¢ (y) = |y
T =Y
) € [_15 1]
T > -y
Yy € [_17 1]
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Life of P(H)I

Solving Benders’ master problem calls for the
minimization of a nonlinear convex function
(even if you start from a linear problem!)

of ¥O B E M BZ 28
. 3 g & J ] F F ] 7

Branch-and-cut MINLP solvers generate a
sequence of linear cuts to approximate this
function from below (outer-approximation )

min w ]
subgradient i
s.t. w > ®(y) (aka Benders) cut > N
y integer w > P(y) > (y") + g(y*)T(y —y)
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Benders cut computation

Benders (for linear) and Geoffrion (general convex) told us how to
compute a subgradient to be used in the cut derivation, by usina the
optimal primal-dual solution (x*,u*) available after computing ®(y™)

E(W*) = Vyf(x®,y") +u"Vyg(z™, y")

The above formula is problem -specific and perhaps #scaring
Introduce an artificial variable vector q (acting as a copy of y) to get

®(y*) = min{f(z,q) | 9(z,q) <0, y" <q<y*}

and to obtain the following simpler and completely general cut-recipe:
1) solve the original convex problem with new var. bounds y* <y < y*
2) take opt_val and reduced costs 7;’s

3) write w > optval + . 7;(y;—y;)
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Benders feasibility cuts

 For some important applications, the set
X(y) ={z :g9(z,y) <0}
can be empty for some “infeasible "y €S

>  ®(y):= min f(z,y) undefined
zeX(y)

e This situation can be handled by considering the “phase-1" feasibility condition
0 > U(y) := min{1?s| g(z,y) < s, s > 0}

where the function ¥(y) is convex
—> it can be approximated by the usual subgradient “Benders feasibility cut”

0> U(y) > V(y*) + W) (y—y)
to be computed as in the previous “Benders optimality cut”

w>PB(y) > (y*) + W) (y—y*)
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Successful Benders applications

« Benders decomposition works well when fixing y = y* for computing
®(y*) makes the problem much simpler to solve

e This usually happens when
— The problem for y = y* decomposes into a number of independent

subproblems win i+ 33 iy
« Stochastic Programming st 2 oy =1 vie
« Uncapacitated Facility Location iz :z;z
e efc. y; €{0,1} Viel

— Fixing y = y* changes the nature of some constraints:
 in Capacitated Facility Location, tons of constr.s of the form x;; < y;
become just variable bounds
« Second Order Constraints a:fj < zi; ¥; become quadratic constr.s
e etc.
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That's 1t ... or not?

In practice, Benders decomposition can work quite
well, but sometimes it is desperately slow
... as the root node bound does not improve even

after the addition of tons of Benders cuts
12000 _ Alternative method
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4000 (7,‘5\ «é\ 6\?36\
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st time Bere? Check 048 the FAQH

OR Exchange!

~eotty WG]
= .
rotemi
ot
2 Hello,
Tam working in a two-stage stochastic model. In SSEEETL

the model, the first stage is a MIP and the second
stage is a LP and it has almost 100 scenarios. The )} Join '#
problem has up to 100 thousan d variables and b
100 thousand constraints in the second stage. To c 4
solve I'm using benders decomposition that I

T in C++ and solving with Cplex. But solving
the whole model as a MIP is still faster than using

Slow convergence is generally attributed to the poor quality of Benders
cuts, to be cured by a more clever selection policy (Pareto optimality
of Magnanti and Wong, 1981, etc.) but there is more ...
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Role of the cut loop

B&C codes generate cuts, on the fly, in a sequential fashion
Consider e.g. the root B&C node (arguably, the most critical one)
A classical cut-loop scheme (described here for MILPS)

J. E. Kelley. The cutting plane method for solving convex programs,
Journal of the SIAM, 8:703-712, 1960 .

— Find an optimal vertex x* of the current LP relaxation

— Invoke a separation function on x*, add the returned V|olated cut
(if any) to the current LP, and repeat

Can be very ineffective in the first iterations 1 B2

when few constraints are specified, and x* it
moves along an unstable zig-zag trajectory -
.. Which is precisely what often happens with Benders cuts
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But... alternative cut loops do exist!

« Kelley's cutloop implemented in standard MI(L)P solvers:
— PROS: natural, efficient reopt., often works well
— CONS: can be VERY ineffective, e.g., in
column generation or in some
under-constrained cutting plane methods

* Ellipsoid & Analytic Center cut loops:
kind of binary search in the multi-dimensional space:
at each iteration, a core point g “well inside” the
current relaxation is computed and separated
— CONS: g can be difficult to find and to separate
— PROS: overall convergence does not depend -
on the quality of the cut (facets not required here!)

 Cheaper alternatives often preferred: bundle (Lemaréchal) or in-out (Ben-
Ameur and Neto) methods
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Stabilizing Benders can be easy!

e To summarize:
» Benders cut machinery is easy to implement ...

... but the root node cut loop can be very critical
- many implementations sank here!

» Kelley’s cut loop can be desperately slow

« Stabilization using “interior points” is a must
—> this is well-known in subgradient optimization and Dantzig-Wolfe
decomposition (column generation), but holds for Benders as well

* E.g., for facility location problems, we implemented a very simple
“chase the carrot ” heuristic to determine a stabilized path 2l
towards the optimal y

» Akin to Nesterov's Accelerated Gradient descent method
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Our #ChaseTheCarrot heuristic

* We (the donkey) start withy = (1,1,...,1)
and optimize the master LP as in Kelley,
to get optimal y* (the carrot on the stick).

* We move y just half-way towards y*. We then
separate a point y' in the segment [y, y*] close
to the new y.

» The generated Benders cut is added to the master LP, which is reoptimized
to get the new optimal y* (carrot moves).

» Repeat until bound improves, then switch to Kelley for final bound refinement
(kind of cross-over)

» Warning: adaptations needed if feasibility Benders cuts can be generated...
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Effect of the improved cut loop
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Comparing Kelley cut loop at the root node with Kelley+ (add
epsilon to y*) and with our chase-the-carrot method (inout )

Koerkel-Ghosh qUFL instance gs250a-1 (250x250, quadratic costs)
*nc = n. of Benders cuts generated at the end of the root node

times in logarithmic scale
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Conclusions

To summarize:

* Benders cuts are easy to implement within modern B&C (just use a callback
where you solve the problem for y = y* and compute reduced costs)

» Kelley’s cut loop can be desperately slow hence stabilization is a must
* Implementations in general MIP solver already in Cplex 12.7

Slides available at  http://www.del.unipd.it/~fisch/papers/slides/
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