Branch-and-cut implementation of Benders’ decomposition

Matteo Fischetti, University of Padova
Mixed-Integer Programming

• We will focus on the MIP

\[
\begin{align*}
\min f(x, y) \\
g(x, y) &\leq 0 \\
Ay &\leq b \\
y &\text{ integer}
\end{align*}
\]

where \(f \) and \(g \) are **convex functions**

• Non-convexity only comes from integrality requirement on \(y \), so removing the latter produces an easy-to-solve **convex relaxation** \(\rightarrow \) lower bound \(\text{LB} \) along with a **fractional solution** \(x^* \) to be used “somehow”

• **Cutting plane** method
 (Gomory 1958)

• **Branch-and-Bound** enumeration (Land and Doig, 1960)
Branch-and-Cut (B&C)

- B&C was proposed by Padberg and Rinaldi in the 1990s and is nowadays the **method of choice** for solving MIPs

- B&C is a clever **mixture** of cutting-plane and branch-and-bound methods

- **Cuts** are generated during B&B (potentially, at all nodes) with the aim of improving the lower bound and producing “more integral” solutions → better pruning, better heuristics, and (hopefully) better branching guidance

- **Convergence** relies on enumeration (inherited by the B&B scheme) → cut generation can safely be stopped at any time, to prevent e.g. shallow cuts, tailing off, numerical issues, etc.

- Since the beginning, an highly-effective **implementation** was part of the B&C trademark (use of cut pool, global vs local cuts, variable pricing, etc.)
Modern B&C implementation

- Modern commercial B&C solvers such as IBM ILOG Cplex, Gurobi, XPRESS etc. can be fully **customized** by using **callback functions**

- Callback functions are just **entry points** in the B&C code where an advanced user (**you!**) can add his/her customizations

- Most-used callbacks (using Cplex’s jargon)
 - **Lazy constraint**: add “lazy constr.s” that should be part of the original model
 - **User cut**: add additional contr.s that hopefully help enforcing integrality
 - Heuristic: try to improve the incumbent (primal solution) as soon as possible
 - Branch: modify the branching strategy
 - …
Lazy constraint callback

- Automatically invoked when a solution is going to update the **incumbent** (meaning it is **integer** and **feasible** w.r.t. current model)

- This is the **last checkpoint** where you can discard a solution for whatever reason (e.g., because it violates a constraint that is not part of the current model)

- To avoid be bothered by this solution again and again, you can/should return a **violated constraint (cut)** that is added (globally or locally) to the current model

- Cut generation is often **simplified** by the fact that the solution to be cut is known to be **integer** (e.g., SECs for TSP)
User cut callback

- Automatically invoked at every B&B node when the current solution is not integer (e.g., just before branching)

- A violated cut can possibly be returned, to be added (locally or globally) to the current model → often leads to an improved convergence to integer solutions

- If no cut is returned, branching occurs as usual

- Cut generation can be hard as the point is not integer (heuristic approaches can be used)

- User cuts are not mandatory for B&C correctness → insisting too much can actually slow-down the solver because of the overhead in generating and using the new cuts (larger/denser LPs etc.)
Ready for Benders?

Benders decomposition is one of basic Math.Opt. tools

... but not so many MIPeople are willing to implement it because of its bad reputation (instability, slow convergence, etc.)

... till recently (e.g., it is now in Cplex 12.7)
Benders in a nutshell

- Classical Benders (\(\min x\))
 \[
 \begin{align*}
 &\min \quad \delta y + c^T x \\
 &A y \geq b \\
 &D y + F x \geq g \\
 &\gamma \geq 0, \quad \gamma \text{ integer}
 \end{align*}
 \]

- Benders' cuts for convex \(\min f(x, y)\)
 \[
 \begin{align*}
 &\min \quad f(x, y) \\
 &\frac{\partial f(x, y)}{\partial y} < 0 \\
 &\frac{\partial g(x, y)}{\partial y} \leq 0
 \end{align*}
 \]

- Convex, feasible
 How to solve
 \[
 \begin{align*}
 &\min \quad w \\
 &\text{subject to} \quad \beta, \gamma, \text{ etc.}
 \end{align*}
 \]

- Kelley's cutting plane
 - Bundle methods
 - Implementations (specialized)

- Given \(y^*\), compute \(w(y^*)\)
 and the associate Benders' cut \(w \geq w(y^*) + \frac{\gamma}{2}(y - y^*)\)

- Solve:
 \[
 \begin{align*}
 &\min \quad f(x, y) \\
 &g(x, y) \leq 0
 \end{align*}
 \]

- Optimal value: \(w(y^*)\)
 Reduced costs: \(\nabla f(y^*)\)
What do you actually mean by “Benders decomposition”?

• The original Benders decomposition from the ‘60s uses two distinct ingredients for solving a Mixed-Integer Linear Program (MILP):
 1) A search strategy where a relaxed (NP-hard) MILP on a variable subspace is solved exactly (i.e., to integrality) by a black-box solver, and then is iteratively tightened by means of additional “Benders” linear cuts
 2) The technicality of how to actually compute those cuts (Farkas’ projection)
 – Papers proposing “a new Benders-like scheme” typically refer to 1)
 – Students scared by “Benders implementations” typically refer to 2)

Later developments in the ‘70s:
 – Folklore (Miliotios for TSP?): generate Benders cuts within a single B&B tree to cut any infeasible integer solution that is going to update the incumbent
 – McDaniel & Devine (1977): use Benders cuts to cut fractional sol.s as well (root node only)

• Everything fits very naturally within a modern Branch-and-Cut (B&C) framework.
Modern Benders

- Consider again the convex MINLP in the \((x,y)\) space

\[
\min f(x, y) \\
g(x, y) \leq 0 \\
Ay \leq b \\
y \text{ integer}
\]

and assume for the sake of simplicity that \(S := \{y : Ay \leq b\}\) is nonempty and bounded, and that

\[
X(y) := \{x : g(x, y) \leq 0\}
\]

is nonempty, closed and bounded for all \(y \in S\)

→ the convex function \(\Phi(y) := \min_{x \in X(y)} f(x, y)\) is well defined for all \(y \in S\)

→ no “feasibility cuts” needed (this kind of cuts will be discussed later on)
Working on the y-space (projection)

Original MINLP in the (x,y) space \rightarrow Benders’ master problem in the y space

Warning: projection changes the objective function (e.g., linear \rightarrow convex nonlinear)

\[
\begin{align*}
\text{(1)} & \quad \min_x \min_y f(x, y) \\
& \quad g(x, y) \leq 0 \\
& \quad Ay \leq b \\
& \quad y \text{ integer}
\end{align*}
\]

\[
\begin{align*}
\text{(2)} & \quad \Phi(y) := \min_x f(x, y) \\
& \quad g(x, y) \leq 0 \\
& \quad Ay \leq b \\
& \quad y \text{ integer}
\end{align*}
\]

\[
\begin{align*}
\text{(3)} & \quad \min \Phi(y) \\
& \quad Ay \leq b \\
& \quad y \text{ integer}
\end{align*}
\]
Life of P(H)I

• Solving Benders’ master problem calls for the minimization of a nonlinear convex function (even if you start from a linear problem!)

• Branch-and-cut MINLP solvers generate a sequence of linear cuts to approximate this function from below (outer-approximation)

\[
\begin{align*}
\min \ w \\
\text{s.t.} \quad w &\geq \Phi(y) \\
Ay &\leq b \\
y &\text{ integer}
\end{align*}
\]

subgradient (aka Benders) cut →

\[
w \geq \Phi(y) \geq \Phi(y^*) + \xi(y^*)^T(y - y^*)
\]
Benders cut computation

- **Benders** (for linear) and **Geoffrion** (general convex) told us how to compute a **subgradient** to be used in the cut derivation, by using the optimal primal-dual solution \((x^*,u^*)\) available after computing \(\Phi(y^*)\)

\[
\xi(y^*) = \nabla_y f(x^*, y^*) + u^* \nabla_y g(x^*, y^*)
\]

- The above formula is **problem-specific** and perhaps **#scaring**
- Introduce an **artificial variable vector** \(q\) (acting as a copy of \(y\)) to get

\[
\Phi(y^*) = \min \{ f(x, q) \mid g(x, q) \leq 0, y^* \leq q \leq y^* \}
\]

and to obtain the following **simpler** and **completely general** cut-recipe:

1) solve the original convex problem with new var. bounds \(y^* \leq y \leq y^*\)
2) take \(opt_val\) and reduced costs \(r_j\)'s
3) write \(w \geq opt_val + \sum_j r_j (y_j - y_j^*)\)
Benders feasibility cuts

• For some important applications, the set

\[X(y) := \{ x : g(x, y) \leq 0 \} \]

can be empty for some “infeasible” \(y \in S \)

\[\Phi(y) := \min_{x \in X(y)} f(x, y) \text{ undefined} \]

• This situation can be handled by considering the “phase-1” feasibility condition

\[0 \geq \Psi(y) := \min \{ 1^T s \mid g(x, y) \leq s, s \geq 0 \} \]

where the function \(\Psi(y) \) is convex

\[0 \geq \Psi(y) \geq \Psi(y^*) + \xi(y^*)^T (y - y^*) \]

to be computed as in the previous “Benders optimality cut”

\[w \geq \Phi(y) \geq \Phi(y^*) + \xi(y^*)^T (y - y^*) \]
Successful Benders applications

- Benders decomposition works well when fixing \(y = y^* \) for computing \(\Phi(y^*) \) makes the problem much simpler to solve.

- This usually happens when
 - The problem for \(y = y^* \) decomposes into a number of independent subproblems
 - Stochastic Programming
 - Uncapacitated Facility Location
 - etc.
 - Fixing \(y = y^* \) changes the nature of some constraints:
 - in Capacitated Facility Location, tons of constr.s of the form \(x_{ij} \leq y_j \) become just variable bounds
 - Second Order Constraints \(x_{ij}^2 \leq z_{ij} y_i \) become quadratic constr.s
 - etc.
That’s it … or not?

• In practice, Benders decomposition can work quite well, but sometimes it is **desperately slow** … as the root node bound does not improve even after the addition of tons of Benders cuts.

• Slow convergence is generally attributed to the **poor quality** of Benders cuts, to be cured by a more clever **selection policy** (Pareto optimality of Magnanti and Wong, 1981, etc.) but **there is more**…
Role of the cut loop

- B&C codes generate cuts, on the fly, in a **sequential** fashion
- Consider e.g. the **root B&C node** (arguably, the most critical one)
- A classical **cut-loop scheme** (described here for MILPs)

 - Find an optimal **vertex** x^* of the current LP relaxation
 - Invoke a separation function on x^*, add the returned violated cut (if any) to the current LP, and repeat

- Can be very **ineffective** in the **first iterations** when few constraints are specified, and x^* moves along an **unstable zig-zag trajectory**

 ... which is precisely what often happens with Benders cuts
But... alternative cut loops do exist!

- **Kelley’s** cut loop implemented in standard MI(L)P solvers:
 - **PROS**: natural, efficient reopt., often works well
 - **CONS**: can be VERY ineffective, e.g., in column generation or in some under-constrained cutting plane methods

- **Ellipsoid & Analytic Center** cut loops:
 kind of **binary search** in the multi-dimensional space:
 at each iteration, a **core point** q “well inside” the current relaxation is computed and separated
 - **CONS**: q can be difficult to find and to separate
 - **PROS**: overall convergence does not depend on the quality of the cut (facets not required here!)

- Cheaper alternatives often preferred: **bundle** (Lemaréchal) or **in-out** (Ben-Ameur and Neto) methods
Stabilizing Benders can be easy!

• To summarize:

 • Benders cut machinery is easy to implement …

 … but the root node cut loop can be **very critical**
 \(\rightarrow \) many implementations sank here!

 • Kelley’s cut loop can be **desperately slow**

 • Stabilization using “interior points” is a **must**
 \(\rightarrow \) this is well-known in subgradient optimization and Dantzig-Wolfe decomposition (column generation), but holds for Benders as well

 • E.g., for facility location problems, we implemented a very simple “**chase the carrot**” heuristic to determine a stabilized path towards the optimal \(y \)

 • Akin to **Nesterov’s Accelerated Gradient** descent method
Our #ChaseTheCarrot heuristic

• We (the donkey) start with \(y = (1,1,\ldots,1) \) and optimize the master LP as in Kelley, to get optimal \(y^* \) (the carrot on the stick).

• We move \(y \) just half-way towards \(y^* \). We then separate a point \(y' \) in the segment \([y, y^*]\) close to the new \(y \).

• The generated Benders cut is added to the master LP, which is reoptimized to get the new optimal \(y^* \) (carrot moves).

• Repeat until bound improves, then switch to Kelley for final bound refinement (kind of cross-over)

• **Warning**: adaptations needed if feasibility Benders cuts can be generated…
Effect of the improved cut loop

- Comparing **Kelley** cut loop at the root node with **Kelley+** (add epsilon to y*) and with our chase-the-carrot method (inout)
- Koerkel-Ghosh **qUFL** instance gs250a-1 (250x250, quadratic costs)
- *nc* = n. of Benders cuts generated at the end of the root node
- times in **logarithmic scale**
Conclusions

To summarize:

• Benders cuts are easy to implement within modern B&C (just use a callback where you solve the problem for $y = y^*$ and compute reduced costs)

• Kelley’s cut loop can be desperately slow hence stabilization is a must

• Implementations in general MIP solver already in Cplex 12.7

Slides available at http://www.dei.unipd.it/~fisch/papers/slides/

Reference papers:
