### From Mixed-Integer Linear to Mixed-Integer Bilevel Linear Programming

#### Matteo Fischetti, University of Padova





# **Bilevel Optimization**

• The general **Bilevel Optimization Problem** (optimistic version) reads:

$$\min_{x \in \mathbb{R}^{n_1}, y \in \mathbb{R}^{n_2}} F(x, y)$$

$$G(x, y) \le 0$$

$$y \in \arg\min_{y' \in \mathbb{R}^{n_2}} \{f(x, y') : g(x, y') \le 0\}$$

where *x* var.s only are controlled by the **leader**, while *y* var.s are computed by another player (the **follower**) solving a different problem.

- A very very hard problem even in a convex setting with continuous var.s only
- **Convergent** solution algorithms are problematic and typically require additional assumptions (binary/integer var.s or alike)

### Example: 0-1 ILP

• A generic 0-1 ILP  $\min c^T x$ can be reformulated as Ax = bthe following linear &  $x \in \{0,1\}^n$ 

$$\min c^T x$$
$$Ax = b$$
$$x \in [0, 1]^n$$
$$y = 0$$

$$y \in \arg\min_{y'} \{-\sum_{j=1}^n y'_j : y'_j \le x_j, y'_j \le 1 - x_j \ \forall j = 1, \dots, n\}$$

#### Note that y is fixed to 0 but it cannot be removed from the model!

## **Interdiction Problems**

- A special case where F(x,y) = -f(x,y) and the action of the leader consists in the "**interdiction**" of some choices of the follower
- Typically stated as **min-max** optimization problems of the form:

$$\min_{x} \max_{y} f(y) g(y) \le 0 x_j \in \{0, 1\}, \qquad \forall j \in N \\ 0 \le y_j \le UB_j(1 - x_j), \qquad \forall j \in N \\ F(x) \le 0$$

- E.g., the follower solves a max flow and the leader wants to keep the resulting flow as small as possible by **interdicting** (i.e., deleting) some arcs subject to a budget constraint  $F(x) \le 0$
- Very very hard both in theory (Sigma-2) and in practice

### Reformulation

By defining the value function  $\bullet$ 

e value function  

$$\Phi(x) = \min_{y \in \mathbb{R}^{n_2}} \{ f(x, y) : g(x, y) \leq 0 \},$$

$$G(x, y) \leq 0 \},$$

 $\min_{x \in \mathbb{R}^{n_1}, y \in \mathbb{R}^{n_2}} F(x, y)$ 

 $G(x,y) \leq 0$ 

the problem can be restated as

$$\min F(x, y)$$

$$G(x, y) \le 0$$

$$g(x, y) \le 0$$

$$f(x, y) \le \Phi(x)$$

$$(x, y) \in \mathbb{R}^{n}.$$

Dropping the nonconvex condition  $f(x,y) \leq \Phi(x)$  one gets the soulletcalled **High Point Relaxation** (HPR)

#### **Mixed-Integer Bilevel Linear Problems**

• We will focus the **Mixed-Integer Bilevel Linear** case (MIBLP) where *F*, *G*, *f* and *g* are **affine functions**, namely:

$$\begin{split} \min_{x,y} \ c_x^T x + c_y^T y \\ G_x x + G_y y &\leq q \\ Ax + By &\leq b \\ l &\leq y \leq u \\ x_j \text{ integer}, \ \forall j \in J_x \\ y_j \text{ integer}, \ \forall j \in J_y \\ d^T y &\leq \Phi(x) \end{split}$$

where for a given  $x = x^*$  one computes the value function by solving the following **MILP**:

$$\Phi(x^*) := \min_{y \in \mathbb{R}^{n_2}} \{ d^T y : By \le b - Ax^*, \quad l \le y \le u, \quad y_j \text{ integer } \forall j \in J_y \}.$$

#### Example

#### • A notorious example from

J. Moore and J. Bard. The mixed integer linear bilevel programming problem. *Operations Research*, 38(5):911–921, 1990.



### Example (cont.d)

Value-function reformulation



# A convergent B&B scheme

| Algorithm 2: A basic branch-and-bound scheme for MIBLP                                                |                                                                                                                  |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| <b>Input</b> : A MIBLP instance satisfying proper assumptions;                                        |                                                                                                                  |
| Output: An optimal MIBLP solution.                                                                    |                                                                                                                  |
| 1 Apply a standard LP-based B&B to HPR, branching as customary on integer-constrained                 |                                                                                                                  |
| variables $x_j$ and $y_j$ that are fractional at the optimal LP solution; incumbent update is instead |                                                                                                                  |
| inhibited as it requires the bilevel-specific check described below;                                  |                                                                                                                  |
| <b>2</b> for each unfathomed $B \& B$ node where standard branching cannot be performed <b>do</b>     |                                                                                                                  |
| 3 Let $(x^*, y^*)$ be the integer HPR solution at the current node;                                   |                                                                                                                  |
| 4 Compute $\Phi(x^*)$ by solving the follower MILP for $x = x^*$ ;                                    |                                                                                                                  |
| 5   if $d^Ty^* \leq \Phi(x^*)$ then                                                                   |                                                                                                                  |
| 6 The current solution $(x^*, y^*)$ is bilevel feasible: update the incumbent and fathom the          |                                                                                                                  |
| current node                                                                                          |                                                                                                                  |
|                                                                                                       |                                                                                                                  |
| 8 If not all variab                                                                                   | les $x_j$ with $j \in J_F$ are fixed by branching then                                                           |
| 9 Branch on a<br>reduce its do                                                                        | ny $x_j$ $(j \in J_F)$ not fixed by branching yet, even if $x_j^*$ is integer, so as to main in both child nodes |
| 10 else                                                                                               |                                                                                                                  |
| 11   let $(\hat{x}, \hat{y})$ be                                                                      | an optimal solution of the HPR at the current node amended by the                                                |
| additional re                                                                                         | striction $d^T y \leq \Phi(x^*);$                                                                                |
| 12 Possibly upd                                                                                       | late the incumbent with $(\hat{x}, \hat{y})$ , and fathom the current node                                       |
| 13 end                                                                                                |                                                                                                                  |
| 14 end                                                                                                |                                                                                                                  |
| 15 end                                                                                                |                                                                                                                  |

Here  $J_F$  is the set of the leader x-variables appearing in the follower problem, all of which are assumed to be integer constrained (we also exclude HPR unboundedness)

#### **A MILP-based solver**

- We want to apply a standard Branch-and-Cut MILP solver to HPR, by generating **bilevel-specific cuts** on the fly to approximate the missing nonlinear condition  $d^T y \le \Phi(x)$  by a sequence of (local) **linear cuts**
- Forget for a moment about internal heuristics (i.e., deactivate all of them), and assume the LP relaxation at each node is solved by the simplex algorithm → each relevant sol. (x\*,y\*) comes with an LP basis
- At each B&C node, let (x\*,y\*) be the current LP optimal vertex:

*if*  $(x^*, y^*)$  is fractional  $\rightarrow$  cut it by a MILP cut, or branch **as usual** *if*  $(x^*, y^*)$  is integer and  $f(x^*, y^*) \leq \Phi(x^*) \rightarrow (x^*, y^*)$  is bilevelfeasible and integer  $\rightarrow$  update the incumbent **as usual** 

# i.e., no bilevel-specific actions are needed (the MILP solver already knows what to do)

### The difficult case

- But, what can we do in third possible case, namely  $(x^*, y^*)$  is integer but not bilevel-feasible, i.e., when  $f(x^*, y^*) > \Phi(x^*)$ ?
- How can we cut this infeasible but integer (x\*,y\*)?



Possible answers from the literature

- If (x,y) is restricted to be **binary**, add **a no-good** linear cut requiring to flip at least one variable w.r.t.  $(x^*,y^*)$  or w.r.t.  $x^*$
- If (x,y) is restricted to be **integer** and all MILP coeff.s are integer, add a cut requiring a slack of 1 for the sum of all the inequalities that are tight at  $(x^*, y^*)$
- Is there a better way to enforce  $f(x^*, y^*) \le \Phi(x^*)$ ?

# Intersection Cuts (ICs)

- Try and use of intersection cuts (Balas, 1971) instead
- ICs are a powerful tool to separate a point **x**\* from a set **X** by a linear cut



- All you need is
  - a **cone** pointed at  $x^*$ , containing all  $x \in X$
  - a convex set S with x\* (but no x  $\epsilon$  X) in its interior
- If x\* vertex of an LP relaxation, a suitable cone comes for the LP basis

### **ICs for bilevel problems**

• Our idea is first illustrated on the Moore&Bard example



#### Define a suitable bilevel-free set

• Take the LP vertex  $(x^*, y^*) = (2, 4) \rightarrow f(x^*, y^*) = y^* = 4 > Phi(x^*) = 2$ 



#### **Intersection cut**

• We can therefore generate the intersection cut  $y \le 2$  and repeat



### **Constructing a bilevel-free set**

**Lemma 1.** For any feasible solution  $\hat{y}$  of the follower, the set

$$S(\hat{y}) = \{ (x, y) \in \mathbb{R}^n : f(x, y) \ge f(x, \hat{y}), \, g(x, \hat{y}) \le 0 \}$$
(10)

does not contain any bilevel-feasible point in its interior.

- Note:  $S(\hat{y})$  is a convex set (actually, a **polyhedron**) in the MIBLP case
- Separation algorithm: given an optimal <u>vertex</u> (x\*,y\*) of the LP relaxation of HPR
  - Solve the follower for *x*=*x*<sup>\*</sup> and get an optimal sol., say  $\hat{y}$

- if 
$$(x^*, y^*)$$
 strictly inside  $S(\hat{y})$  then  
generate a violated IC using the LP-cone pointed at  $(x^*, y^*)$   
together with the bilevel-free set  $S(\hat{y})$ 

#### However...

 The above Lemma does exclude that (x\*,y\*) can be on the frontier of the bilevel-free set S(ŷ), so we cannot guarantee to cut it ...



• We need to define an **enlarged** bilevel-free set if we want be sure to cut (*x*\*,*y*\*), though this requires additional assumptions

# An enlarged bilevel-free set

 Assuming g(x,y) is integer for all integer HPR solutions, one can "move apart" by 1 the frontier of S(ŷ) so as be sure that the point (x\*,y\*) belongs to its interior

**Theorem 1.** Assume that g(x, y) is integer for all HPR solutions (x, y). Then, for any feasible solution  $\hat{y}$  of the follower, the extended set

 $S^{+}(\hat{y}) = \{(x, y) \in \mathbb{R}^{n} : f(x, y) \ge f(x, \hat{y}), \, g(x, \hat{y}) \le 1\}$ (11)

does not contain any bilevel-feasible point in its interior, where 1 denotes a vector of all one's.

- The above result leads to a "minimalist" **B&C solver for MIBLP**
- **Notes** (see the full papers for details)
  - branching on integer variables can be required to break tailingoff and to ensure finite convergence
  - alternative bilevel-free sets can be defined to produce hopefully deeper ICs
  - additional features (preprocessing, heuristics etc.) available

#### **IC-separation numerical issues**

- IC separation can be problematic, as we need to read the cone rays from the LP tableau → numerical accuracy can be a big issue here!
- For MILPs, ICs like Gomory cuts are not mandatory (so we can skip their generation in case of numerical problems), but for MIBLPs they are instrumental #SeparateOrPerish
- Notation change: let  $\xi = (x, y) \in \mathbb{R}^n$

 $\min\{\hat{c}^T\xi: \hat{A}\xi = \hat{b}, \xi \ge 0\}$  be the LP relaxation at a given node

$$S = \{\xi : g_i^T \xi \le g_{0i}, i = 1, ..., k\}$$
 be the bilevel-free set  
 $\bigvee_{i=1}^k (g_i^T \xi \ge g_{i0})$  be the corresp. disjunction (valid for all feas. sol.s)

# Numerically safe ICs

A **single** valid inequality can be obtained by taking, for each variable, the worst LHS Coefficient (and RHS) in each disjunction

To be applied to a **reduced form** of each disjunction where the coefficient of all basic variables is zero (kind of LP reduced costs)

$$\bigvee_{i=1}^{k} (g_i^T \xi \ge g_{i0})$$
$$\bigvee_{i=1}^{k} (\overline{g}_i^T \xi \ge \overline{g}_{i0})$$

$$\bigvee_{i=1}^{k} (\frac{\overline{g}_{i}^{T}}{\overline{g}_{i0}} \xi \geq 1)$$

Algorithm 1: Intersection cut separation

**Input** : An LP vertex  $\xi^*$  along with its a associated LP basis  $\hat{B}$ ;

the feasible-free polyhedron  $S = \{\xi : g_i^T \xi \leq g_{0i}, i = 1, ..., k\}$  and the associated valid disjunction  $\bigvee_{i=1}^k (g_i^T \xi \geq g_{i0})$  whose members are violated by  $\xi^*$ ;

**Output**: A valid intersection cut violated by  $\xi^*$ ;

1 for i := 1 to k do 2  $| (\overline{g}_i^T, \overline{g}_{i0}) := (g_i^T, g_{i0}) - u_i^T(\hat{A}, \hat{b})$ , where  $u_i^T = (g_i)_{\hat{B}}^T \hat{B}^{-1}$ 3 end 4 for j := 1 to n do  $\gamma_j := \max\{\overline{g}_{ij}/\overline{g}_{i0} : i \in \{1, ..., k\}\}$ ; 5 return the violated cut  $\gamma^T \xi \ge 1$ 

# Conclusions

- Mixed-Integer Bilevel Linear Programming is a **MILP** plus additional constr.s
- Intersection cuts can produce valuable information at the B&B nodes
- Sound MIBLP heuristics, preprocessing etc. (not discussed here) available
- Many instances from the literature can be **solved in a satisfactory way**
- Our **binary code** is available on request (research purposes)

Slides <a href="http://www.dei.unipd.it/~fisch/papers/slides/">http://www.dei.unipd.it/~fisch/papers/slides/</a>

#### **Reference papers:**

M. Fischetti, I. Ljubic, M. Monaci, M. Sinnl, "Intersection cuts for bilevel optimization", in Integer Programming and Combinatorial Optimization: 18th International Conference, IPCO 2016 Proceedings, 77-88, 2016 (to appear in *Mathematical Programming*)

M. Fischetti, I. Ljubic, M. Monaci, M. Sinnl, "A new general-purpose algorithm for mixedinteger bilevel linear program", to appear in *Operations Research*.

M. Fischetti, I. Ljubic, M. Monaci, M. Sinnl, "Interdiction Games and Monotonicity", Tech. Report 2016 (submitted)