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(Deep) Neural Networks (DNNS)

Machine whose parameters w’'s are organized in a layered feed-forward
network (DAG = Directed Acyclic Graph)
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 Each node (or “neuron ”) makes a weighted sum of the outputs of the
previous layer and applies a nonlinear activation function
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Modeling RelLU activations

 Recent work on DNNs almost invariably only use RelLU activations

| R(z) =maz(0, 2)

z = ReLU(wly +b)

« Easily modeled inaMI(N)LPas w'y+b=z-s, >0, s>0

— plus the bilinear condition zs < 0.
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— or, alternatively, the indicator constraints  * l1=22z<0

z=0—-s<0
z € {0,1}
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The DNN Is a 0-1 MILP (for fixed w’s)

K ng K ng
min} > efzi+) Y iz
k=0 j=1 k=1j=1
g —1 3\
D wij @ b =a) s
=1
;“, s¥>0 |
vy k=1,...,.K, j=1,...,n
Zj E{U 1}
zjf—l—nr <0
z;-g—[l—)-sj <0
) <z} <ubj, j=1,...,m0
lb <:1: <ub

o k=1,....K, j=1,... n.
ib; < ¥ <ub)

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018 4



Application: Adversarial problems
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Fig. 2 Adversarial examples computed through our 0-1 MILP model; the reported label is
the one having maximum activation according to the DNN (that we imposed to be the true
label plus 5, modulo 10). Note that the change of just few well-chosen pixels often suffices to
fool the DNN and to produce a wrong classification.
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Fig. 3 Adversarial examples computed through our 0-1 MILP model as in Figure 2, but
imposing that the no pixel can be changed by more than 0.2 (through the additional conditions
d; < 0.2 for all j).
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Adversarial Problem ;; N

Trick the DNN A R
by changing ﬁ . "
few well-chosen pixels ‘“ ",

Solvable to proven optimality S 1 e
(for small DNNSs) in a matter of BT
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basic model improved model » -t of
Yosolved  Y%gap nodes time (s) | %solved %gap nodes time (s) . . 4« ¢
DNN1 100 0.0 1,903 1.0 100 0.0 552 0.6 P Ny
DNN2 97 02 77,878 48.2 100 0.0 11,851 7.5 K *
DNN3 64 11.6 228,632  158.5 100 0.0 20,309 12.1 1 e
DNN4 24 38.1 282,694 263.0 98 0.7 68,563 43.9
DNN5 7 71.8 193,725 290.9 67 114 76,714 171.1

Fig. 4 Pixel changes (absolute value) that suffice to trick the DNN: the four top subfigures
Table 1 Comparison of the basic and improved models with a time limit of 300 sec.s, clearly correspond to the model where pixels can change arbitrarily, while those on the bottom refer
showing the importance of bound tightening in the improved model. In this experiment, the to the case where each pixel cannot change by more than 0.2 (hence more pixels need be

. h B . . . changed). To improve readability, the black/white map has been reverted and scaled, i.e.,
preprocessing time needed to optimally compute the tightened bounds is not taken into ac- white corresponds to unchanged pixels (d; = 0) while black corresponds to the maximum

count. allowed change (d; = 1 for the four top figures, d; = 0.2 for the four bottom ones).
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For more information...

Slides available at  http://www.del.unipd.it/~fisch/papers/slides/
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(also known as activation). A commonly-used nonlinear operator is the so-called rectified linear unit (ReLU), whose output is just the maximum between its input
value and zero. In this (and other similar cases like max pooling, where the max operation involves more than one input value), one can model the DNN as a 0-1
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