Deep Learning and
Mixed Integer Optimization

Matteo Fischetti, University of Padova

— ¢ e | e

Mathematical
Programming
Computation

hidden layer 1 hidden layer 2

@ Springer

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018



Machine Learning

« Example (MIPpers only!): Continuous 0-1 Knapack Problem with a
fixed n. of items

F'Z K
?’:--> maY Z P7 Y5
i 751
9 s.t.
> ) - > g9 ¢!
o -
g
>

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018



Implementing the ? INn the box

1 Sont the (lowms

_{_’_‘,a.f_}_;, - Z __F_‘i

U i Tr
4 f{:lhot -FC‘Q. Cfu.%t' CC*-Q :TM s
« | 3~
=

£
F < Z "2
7'2.:1' % &( 5= 17

Bl vedine
#OW& b2 Re_“fim Vv

S5 1

k R

9

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018



INn the box

?

Implementing the

ParaKeTer 5! STORHM

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018



> X
R
¥ oy

Deep Neural Networks (DNNs) |

Vl.f\ll‘yl.

 Parameters w’s are organized in a layered feed-forward network (DAG =
Directed Acyclic Graph)

 Each node (or “neuron ”) makes a weighted sum of the outputs of the
previous layer - no “flow splitting/conservation” here!

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018 5



The N€ed of nonlinearities

We want to be able to play with a huge n. of parameters, but if

everything stays linear we actually have n+1 parameters only - we
need nonlinearities somewhere!

Zooming into neurons we see the nonlinear “activation functions ”

- — >( 1{){2 W - X +L)
~Fias
\S/ s >\
N .ﬁlﬁw
/ . /moo\,e :1

e Each neuron acts as a linear SVM , however ...

.. Its output is not interpreted immediately ...
.. but it becomes a new feature ...

.. to be forwarded to the next layer for further analysis #SVMcascade

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018 6



Training

For a given DNN, we need to give appropriate values to the (w,b)
parameters to approximate the output function f well

Warning: DNNs
are usually highly
over-parametrized!

Supervised learning

Table 1 showing different architectures statistics

Model AlexNet GoogleNet ResNet152 VGGNetl6 NIN
#Param 60M M 60M 138M 7.6M
#QOP 1140M 1600M 11300M 15740M 1100M
Storage (MB) 217 51 230 512.24 29

— define an optimization problem where the parameters are the unknowns
— (huge) training set of points x for which we know the “true” value f*(x)

— objective function

. average loss/error over the training set (+ regularization

terms) - to be minimized on the training set (but ... not too much!)

— validation set : can be used to select “hyperparameters” not directly handled by
the optimizer (it plays a crucial role indeed...)

— test set: points not seen during training, used to evaluate the actual accuracy of
the DNN on (future) unseen data.

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018



The three pillars of mrrar
(practical) Deep Learning gy

Backpropagation

Inputs Qutputs g7

Neural::

060 Output
0[0@0.“

Uiryy "
\f?;:’"“" 5
e
SRR

oM .
011 100, Hidden

Networ - |

1100 111 ® Input

How it Works® °-°

2) Backpropagation

3) GPUs (and open-source Python libraries like Keras, pyTorch, TensorFlow etc.)

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018



Stochastic Gradient Descent (SG D)

« Objective function to minimize: )
average error over a huge training set £l
(hundreds of millions of param.s and training points) *

« SGD is not at all a naive approach !

— Very well suited here as the objective is an average over the training
set, SO one can approximate it by selecting a random training point
(or a small “mini -batch ” of such points) at each iteration

— Practical experience shows that it often leads to a very good local
minimum that “generalizes well ” over unseen points

— Further regularization by dropout (just an easy way to hurt
optimization!)

e Question : does it make sense to look for global optimal solutions using
much more sophisticated methods, that are more time consuming and
are unlike to generalize equally well?

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018 9



Efficient gradient computation

« We are given a single training point Z and the current param.s (@, b)

e Linearize the DNN w.r.t. (Z,w, b)

— —

X E 4= (x)

7= (DJ,L;

2
Notation: we have a “measure point” Xj before and after each activation

- in the linearization, the slope ¢ gives the output change when the
input X is increased by 1 w.r.t.

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018 10



Backpropagation

e Let 0= @E )h; be the increase of E when x; is increased by 1

* lteratively compute the 9;'s backwards (starting from the final x; )

e
gl 7D x
ol
@~ “
E— — X =%
x‘lfm.a-f.

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018 11



Backpropagation

* Once all §;'s have been computed (after/before each activation) one
can easily read each gradient component (in the linearized network,
this is just the increase of E when a parameter is increased by 1)

increasing w;; by 1 increases x; by 7;, and hence E by z;0;

increasing b; by 1 increases x; by 1, and hence E by 9,

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018 12



Modeling a DNN with fixed param.s

« Assume all the parameters (weights/biases) of the DNN are fixed
 We want to model the computation that produces the output value(s)
as a function of the inputs, using a MINLP #MIPpersToTheBone
 Each hidden node corresponds to a summation S
followed by a nonlinear activation function

Activation functions

Sigmoid Hyperbolic Tangent

1 1
Traditional _/—
Non-Linear 0 0
Activation

Functions 1 o p 1

1 0 1

y=1/(1+e™) y=(e*-e™)/(e*+e™)
Rectified Linear Unit :
(ReLU) Leaky ReLU Exponential LU

1

1 1
Modern
Non-Linear ¢ 0 0
Activation
- Lo -1
-1 0 1

Functions ;

-1 0 1 1
y=max(8,x)

0 1
X, X208
y=max(ax,x) y={ﬂ(el_1),x<e

Sze et. al., “Efficient Processing of Deep Neural Networks: A Tutorial and Survey.” arXiv (2017)

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018

13



Modeling RelLU activations

 Recent work on DNNs almost invariably only use RelLU activations

R(z) =max(0, z)

z = ReLU(wly +b)

« Easily modeled as wly+b=z—-s, z>0, s>0

— plus the bilinear condition zs < 0.

. o | _ g
— or, alternatively, the indicator constraints  * l1=22z<0

z=0—-s<0
z € {0,1}

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018 14



A complete O -1 MILP

K ng K ng
min > czi+ ) ) vy
k=0j=1 k=1 j=1
T —1 3
Z wfj_lmf_l + b?_l = $? — 3;?
=1
ok Gk
,8; 20
3 % v k=1,....K, j=1,...
Zj E{U l}
z;-“—l—>$ <0
z;P:D—}rSj <0
0] <z) <uby, j=1,...,m0
Y < a¥ < ubk
o k=1,....K, j=1,...,ns.
lb <sjgub

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018



Convolutional Neural Networks (CNNSs)

« CNNs play a key role, e.g., in image recognition

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

. 1 t
« Besides ReLUs, CNNs use w = AvgPool(y1,..w) = § ) i
pooling operations of the type == MazPool(ys,...,y:) = max{yi,...,u:}

 AvgPool is just linear and can be modeled as a linear constraint

. zi =1
 MaxPool can easily be Zl
: : > 13
modeled within a 0-1 MILP as r=y _
zi=1—-z<y; 1=1,---,1
2 E{O,l}

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018 16



Adversarial problem: trick the DNN ...

Labelis &
Label s Labelis 8
: »
o
.
2| - 2
Labe
Label is 2
-
.
s X B

3

Fa—

1)

o -
-

I
o

Fig. 2 Adversarial examples computed through our 0-1 MILP model; the reported label is
the one having maximum activation according to the DNN (that we imposed to be the true
label plus 5, modulo 10). Note that the change of just few well-chosen pixels often suffices to
fool the DNN and to produce a wrong classification.

x : u B s

Fig. 3 Adversarial examples computed through our 0-1 MILP model as in Figure 2, but
imposing that the no pixel can be changed by more than 0.2 (through the additional conditions
d; < 0.2 for all j).

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018

17



... by changing few well-chosen pixels

Labelis 0 Labei s 4
o 0
s .
s
w »
- ]
. .
» »
s s
[] 5 10 15 n E] [] 5 0 15 0 n
abetis 8 Labells 7
o o
-
s .
10 . 1
-
. -
n »
= s
-
— %% — =
Label is 6 Label is 9
o 0
b s s g
! - - 3
.
L] . =
0 - , ¥ e s
s " v 3
15| 15| . - ®
C— .
) - »|
T L]
- o
= . = -
- —
— % — %
Label s 1 Labeiis 4
o o
.-
, -rF . .
L
n "4 - e
10 - 1
-
- - ;e -
15) 1) -
r M a
20| . 20|
.
.
5 A 2

Fig. 4 Pixel changes (absolute value) that suffice to trick the DNN: the four top subfigures
correspond to the model where pixels can change arbitrarily, while those on the bottom refer
to the case where each pixel cannot change by more than 0.2 (hence more pixels need be
changed). To improve readability, the black/white map has been reverted and scaled, i.e.,
white corresponds to unchanged pixels (d; = 0) while black corresponds to the maximum
allowed change (d; = 1 for the four top figures, d; = 0.2 for the four bottom ones).

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018

18



Experiments on small DNNs

The MNIST database

(Modified National Institute of
Standards and Technology

label = 5 label = 0 label = 4 label = 1 label = 9

M EECNAR

label = 2 label = 1 label = 3 label = 1 label = 4

E I E D E

database) |S a |arge database label = 3 label = 5 label = 3 label = 6 label = 1

of handwritten digits that is
commonly used for training
various image processing systems

E EEOD

label = 7 label = 2 label = 8 label = 6 label = 9

We considered the following (small) DNNs and trained each of

them to get a fair
accuracy (93-96%)

on the test-set

DNN1:
— DNN2:
DNN3:
DNN4 :
DNNb:

8+8+8 internal units in 3 hidden layers, as in [13];
8+8+8+8-+8+8 internal units in 6 hidden layers;
20+10+8+8 internal units in 4 hidden layers;
20+10+8+848 internal units in 5 hidden layers;
20+20+104104+10 internal units in 5 hidden layers.

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018 19



Computational experiments

Instances: 100 MNIST training figures (each with its “true” label 0..9)

Goal: Change some of the 28x28 input pixels (real values in 0-1) to
convert the true label d into (d + 5) mod 10 (e.g., “0” = “5”, “6” = “1”)

Metric: L1 norm (sum of the abs. differences original-modified pixels)

MILP solver : IBM ILOG CPLEX 12.7 (as black box)

— Basic model: only obvious bounds on the continuous var.s

— Improved model: apply a MILP-based preprocessing to compute
tight lower/upper bounds on all the continuous variables, as in

P. Belotti, P. Bonami, M. Fischetti, A. Lodi, M. Monaci, A. Nogales-Gomez, and D. Salvagnin.
On handling indicator constraints in mixed integer programming. Computational Optimization

and Applications, (65):545-566, 2016.

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018 20



Differences between the two models

basic model

improved model

Y%osolved %gap nodes time (s) | %solved %gap nodes time (s)
DNN1 100 0.0 1,903 1.0 100 0.0 552 0.6
DNN2 97 0.2 77,878 48.2 100 0.0 11,851 7.5
DNN3 64 11.6 228,632 158.5 100 0.0 20,309 12.1
DNN4 24 38.1 282,694 263.0 98 0.7 68,563 43.9
DNN5S 7 71.8 193,725 290.9 67 11.4 76,714 171.1

Table 1 Comparison of the basic and improved models with a time limit of 300 sec.s, clearly
showing the importance of bound tightening in the improved model. In this experiment, the
preprocessing time needed to optimally compute the tightened bounds is not taken into ac-

count.

— DNN1:
— DNN2:
— DNN3:
— DNN4:
— DNN5:

8+8+8 internal units in 3 hidden layers, as in [13];
8+8+8+8+8+8 internal units in 6 hidden layers;
204104848 internal units in 4 hidden layers;
20+10+8+8+8 internal units in 5 hidden layers;
20+20410+10+410 internal units in 5 hidden layers.

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018

21



Effect of bound -tightening preproc.

Exact bounds

Improved model

Weaker bounds

t.pre. %sol. %gap nodes time (s) | t.pre. %sol. %gap nodes time (s)
DNN4 | 1,112.1 98 0.7 68,563 43.9 | 69.4 98 0.4 80,180 45.5
DNN5 | 4,913.1 67 11.4 76,714 171.1 72.6 57 16.9 84,328 185.0

Table 2 Performance of the improved model with a time limit of 300 sec.s, with exact vs
weaker bounds (the latter being computed with a time limit of 1 sec. for each bound compu-
tation). The overall preprocessing time (t.pre.) is greatly reduced in case of weaker bounds,
without deteriorating too much the performance of the model. The difference w.r.t. the basic

model in Table 1 is still striking.

— DNN1:
— DNN2:
— DNN3:
— DNN4:
— DNNb:

8+8+8 internal units in 3 hidden layers, as in [13];
8+8+48+48+48+8 internal units in 6 hidden layers;
20+104-848 internal units in 4 hidden layers;
204+10+8+8+8 internal units in 5 hidden layers;
20+20+410410+10 internal units in 5 hidden layers.

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018 22



Reaching 1% optimality

Basic model | Improved model (weaker bounds)
#timlim time (s) nodes %gap | #timlim time (s) nodes %gap
DNN1 0 1.0 1,920 0.5 0 0.6 531 0.3
DNN2 0 47.0 76,286 0.9 0 7.5 12,110 0.8
DNN3 8 632.8 568,579 2.2 0 11.3 19,663 0.9
DNN4 36 1806.8 1,253,415 10.2 0 50.0 89,380 1.0
DNN5 81  3224.0 1,587,892 43.5 11 851.0 163,135 3.8

Table 3 Performance of the basic and improved model (the latter with the 1-sec. weaker
bounds as in Table 2) to get solutions with guaranteed error of 1% or less; each run had a time
limit of 3,600 sec.s; the number of time limits, out of 100, is reported in column #timlim.

— DNN1: 8+8+8 internal units in 3 hidden layers, as in [13];
— DNN2: 84848484848 internal units in 6 hidden layers;

— DNN3: 204104848 internal units in 4 hidden layers;

— DNN4: 20410484848 internal units in 5 hidden layers;

— DNN5: 20420410410+10 internal units in 5 hidden layers.

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018 23



Slides available at

Paper:

Thanks for your attention!

http://www.dei.unipd.it/~fisch/papers/slides/

M. Fischetti, J. Jo, "Deep Neural Networks as 0-1 Mixed Integer Linear
Programs: A Feasibility Study", 2017, arXiv preprint arXiv:1712.06174

(accepted in CPAIOR 2018)

806 [1712.06174] Deep Neural Networks as 0-1 Mixed Integer Linear Programs: A Feasibility Study

> + htips @ arxiv.org

R ]
(I EHE n-queens UNIWEB Esse... o fxxxx.D] Dropbox Sito MF Gmail Twitter Google Foto Banca ™ OR [matteo.... MPC [mfisch. Expediait[ ... 1 Fondi

Cornell University

Rai.tv

We gratefully acknowledge support from

‘{.
- 2 (o]
» [F

the Simons Foundation
and member institutions

(Help | Advanced search)

Computer Science > Learning

Deep Neural Networks as 0-1 Mixed Integer Linear Programs: A Feasibility Study

Matteo Fischetti, Jason Jo
(Submitted on 17 Dec 2017)

Deep Neural Networks (DNNs) are very popular these days, and are the subject of a very intense investigation. A DNN is made by layers of internal units (or neurons),
each of which computes an affine combination of the output of the units in the previous layer, applies a nonlinear operator, and outputs the corresponding value
(also known as activation). A commonly-used nonlinear operator is the so-called rectified linear unit (ReLU), whose output is just the maximum between its input
value and zero. In this (and other similar cases like max pooling, where the max operation involves more than one input value), one can model the DNN as a 0-1
Mixed Integer Linear Program (0-1 MILP) where the continuous variables correspond to the output values of each unit, and a binary variable is associated with each
ReLU to model its yes/no nature. In this paper we discuss the peculiarity of this kind of 0-1 MILP models, and describe an effective bound-tightening technique
intended to ease its solution. We also present possible applications of the 0-1 MILP model arising in feature visualization and in the construction of adversarial
examples. Preliminary computational results are reported, aimed at investigating (on small DNNs) the computational performance of a state-of-the-art MILP solver
when applied to a known test case, namely, hand-written digit recognition.

Comments:  submitted to an international conference
Subjects: Learning (cs.LG)
MSC classes: 90C11, 68Q32
ACM classes: 1.2.6; I.2.8
Cite as: arXiv:1712.06174 [¢s.LG]
(or arXiv:1712.06174v1 [cs.LG] for this version)

Submission history

Feam: Mattan Ficchatti iaw amaill

Download:

s PDF
s Other formats

(license)

Current browse context:
.G

< prev | next >

new | recent | 1712

Change to browse by:

cs

References & Citations
= NASA ADS

Bookmark what is tisn

BlX R R

Designing and Implementing Algorithms for MINLO, Dagstuhl, February 2018

24





