Deep Neural Networks as 0 -1
Mixed Integer Linear Programs:
A feasibility study

Matteo Fischetti , University of Padova
Jason Jo , Montreal Institute for Learning Algorithms (MILA)

N><7

N P
XX :}Q

X
Va

4
%

J',O
i

=
\ . output layer

input layer

hidden layer 1 hidden layer 2

CPAIOR 2018, Delft, June 2018

Machine Learning

« Example (MIPpers only!): Continuous 0-1 Knapack Problem with a
fixed n. of items

F'Z K
?’:--> maY Z P7 Y5
i 751
9 s.t.
>) - > g9 ¢!
o -
g
>

CPAIOR 2018, Delft, June 2018

Implementing the ? INn the box

U 9 Tr
’ ¢ Tind e culicl doam s
3~ ' g '
n « z, 9% & Z. 9571

0 LWmA

CPAIOR 2018, Delft, June 2018

INn the box

?

Implementing the

ParaKeTer 5! STORHM

#differentiable _programming (Yann LeCun)

CPAIOR 2018, Delft, June 2018

Deep Neural Networks (DNNSs)

 Parameters w’s are organized in a layered feed-forward network (DAG =
Directed Acyclic Graph)

 Each node (or “neuron ”) makes a weighted sum of the outputs of the
previous layer - no “flow splitting/conservation” here!

CPAIOR 2018, Delft, June 2018 5

Role of nonlinearities

We want to be able to play with a huge n. of parameters, but if

everything stays linear we actually have n+1 parameters only - we
need nonlinearities somewhere!

Zooming into neurons we see the nonlinear “activation functions ”

- — >(1{){2 W - X H;)
~Fias
\5/ s >\
N Hﬁw
/ . /moo\,e :1

Each neuron acts as a linear SVM , however ...

.. Its output is not interpreted immediately ...

.. but it becomes a new feature ... #automatic feature detection
.. to be forwarded to the next layer for further analysis #SVMcascade

CPAIOR 2018, Delft, June 2018 6

Modeling a DNN with fixed param.s

« Assume all the parameters (weights/biases) of the DNN are fixed
 We want to model the computation that produces the output value(s)
as a function of the inputs, using a MINLP #MIPpersToTheBone
 Each hidden node corresponds to a summation S
followed by a nonlinear activation function

Activation functions

Sigmoid Hyperbolic Tangent

1 1
Traditional _f
Non-Linear 0 [0
Activation

Functions 1 o p 1

1 0 1

y=1/(1+e™) y=(e*-e™)/(e*+e™)
Rectified Linear Unit :
(ReLU) Leaky ReLU Exponential LU

1

1 1
Modern
Non-Linear ¢ 0 0
Activation
Functions
) : Lo -1
-1 0 1

1.
-1 0 1

y=max(8,x)

0 1
X, X208
y=max (ax,x) y={ﬂ(el_1),x<e

Sze et. al., “Efficient Processing of Deep Neural Networks: A Tuterial and Survey.” arXiv (2017)

CPAIOR 2018, Delft, June 2018

Modeling RelLU activations

 Recent work on DNNs almost invariably only use RelLU activations

R(z) =max(0, z)

z = ReLU(wly +b)

« Easily modeled as wly+b=z—-s, z>0, s>0

— plus the bilinear condition zs < 0.

. o | _ g
— or, alternatively, the indicator constraints * l1=22z<0

z=0—-s<0
z € {0,1}

CPAIOR 2018, Delft, June 2018

A complete O -1 MILP

K ng K ng
min > czi+)) vy
k=0j=1 k=1j=1
MNg—1 3
k—1_ k—1 k—1 k k
1=1
m?,sﬁfzo
L rk=1,...,K, j=1,
zj € {0,1}
ko k
zj =1—z; <0
z;“:[l—)v.s?f([))
0 0 0
lbj < L4 < ‘U,bj,] = l, s L0
by < ¥ < ubk
L . k=1 K, j=1 k
Ib; < sk < ub;
J — %) — J

CPAIOR 2018, Delft, June 2018

versar

E
|
|

Label
.

o -
-

1)

1)

.
E A‘
2| 2

0 s oo m s X

Fig. 2 Adversarial examples computed through our 0-1 MILP model; the reported label is
the one having maximum activation according to the DNN (that we imposed to be the true
label plus 5, modulo 10). Note that the change of just few well-chosen pixels often suffices to
fool the DNN and to produce a wrong classification.

CR

CPAIOR 2018, Delft,

al problem

trick the DNN ...

Label is 5

r 7
3.
g s 0 15 —

Label s 9

g g T

Labelis |

g [T

Fig. 3 Adversarial examples computed through our 0-1 MILP model as in Figure 2, but
imposing that the no pixel can be changed by more than 0.2 (through the additional conditions
d; < 0.2 for all j).

June 2018

10

... by changing few well-chosen pixels

Label is 0 Label is 4
. .
. .
s
» s "
" ;
- -
» »
» s
e ——
bl Labain 3
. .
.
s s
10 . 1
-
a =
m zu
75 ,-,
-
S R B R I
Label is 6 Label is §
’ E
b s s g
; . .
-
L] . =
L. Y o ol o
N v
15| 15| . - *
C— .
) - »|
“ L]
- |
-
n = -
- —
@ 5 0 15 E] F 3 0]] 5 E] F)
Labeiie Labeii s
. .
-
, -r .
.- »
.\ "4 = ¢
10 - 1
-
. . L .
15) ‘ 15 -
. - °
20| . 20|
.
-
5 A 5

Fig. 4 Pixel changes (absolute value) that suffice to trick the DNN: the four top subfigures
correspond to the model where pixels can change arbitrarily, while those on the bottom refer
to the case where each pixel cannot change by more than 0.2 (hence more pixels need be
changed). To improve readability, the black/white map has been reverted and scaled, i.e.,
white corresponds to unchanged pixels (d; = 0) while black corresponds to the maximum
allowed change (d; = 1 for the four top figures, d; = 0.2 for the four bottom ones).

CPAIOR 2018, Delft, June 2018

Experiments on small DNNs

label = 5 label = 0 label = 4 label = 1 label = 9

+ The MNIST database O

(Modified National Institute of

Standards and Technology | N &
database) |S a |arge database label = 3 label =5 label = 3 label =6 label = 1

of handwritten digits that is “

Commonly used for tralnlng label = 7 label = 2 label = 8 label = 6 label = 9

various image processing systems

S

abel =

 We considered the following (small) DNNs and trained each of

them to get a fair — DNN1: 8+4-8+8 internal units in 3 hidden layers, as in [13];

accuracy (93-96%) DNN2: 8—|—8—|—8—|—8—|—8T|—8 internal. un.its in .6 hidden layers;
— DNN3: 204104848 internal units in 4 hidden layers;
on the test-set — DNN4: 20+10+48+8+8 internal units in 5 hidden layers;

— DNN5: 204-20410+10+10 internal units in 5 hidden layers.

CPAIOR 2018, Delft, June 2018 12

Computational experiments

Instances: 100 MNIST training figures (each with its “true” label 0..9)

Goal: Change some of the 28x28 input pixels (real values in 0-1) to
convert the true label d into (d + 5) mod 10 (e.g., “0” = “5”, “6” = “1”)

Metric: L1 norm (sum of the abs. differences original-modified pixels)

MILP solver : IBM ILOG CPLEX 12.7 (as black box)

— Basic model: only obvious bounds on the continuous var.s

— Improved model: apply a MILP-based preprocessing to compute
tight lower/upper bounds on all the continuous variables, as in

P. Belotti, P. Bonami, M. Fischetti, A. Lodi, M. Monaci, A. Nogales-Gomez, and D. Salvagnin.
On handling indicator constraints in mixed integer programming. Computational Optimization

and Applications, (65):545-566, 2016.

CPAIOR 2018, Delft, June 2018

13

Differences between the two models

basic model

improved model

Y%osolved %gap nodes time (s) | %solved %gap nodes time (s)
DNN1 100 0.0 1,903 1.0 100 0.0 552 0.6
DNN2 97 0.2 77,878 48.2 100 0.0 11,851 7.5
DNN3 64 11.6 228,632 158.5 100 0.0 20,309 12.1
DNN4 24 38.1 282,694 263.0 98 0.7 68,563 43.9
DNN5S 7 71.8 193,725 290.9 67 11.4 76,714 171.1

Table 1 Comparison of the basic and improved models with a time limit of 300 sec.s, clearly
showing the importance of bound tightening in the improved model. In this experiment, the
preprocessing time needed to optimally compute the tightened bounds is not taken into ac-

count.

— DNN1:
— DNN2:
— DNN3:
— DNN4:
— DNN5:

CPAIOR 2018, Delft, June 2018

8+8+8 internal units in 3 hidden layers, as in [13];
8+8+8+8+8+8 internal units in 6 hidden layers;
204104848 internal units in 4 hidden layers;
20+10+8+8+8 internal units in 5 hidden layers;
20+20410+10+410 internal units in 5 hidden layers.

Effect of bound -tightening preproc.

Exact bounds

Improved model

Weaker bounds

t.pre. %sol. %gap nodes time (s) | t.pre. %sol. %gap nodes time (s)
DNN4 | 1,112.1 98 0.7 68,563 43.9 | 69.4 98 0.4 80,180 45.5
DNN5 | 4,913.1 67 11.4 76,714 171.1 72.6 57 16.9 84,328 185.0

Table 2 Performance of the improved model with a time limit of 300 sec.s, with exact vs
weaker bounds (the latter being computed with a time limit of 1 sec. for each bound compu-
tation). The overall preprocessing time (t.pre.) is greatly reduced in case of weaker bounds,
without deteriorating too much the performance of the model. The difference w.r.t. the basic

model in Table 1 is still striking.

— DNN1:
— DNN2:
— DNN3:
— DNN4:
— DNNb:

8+8+8 internal units in 3 hidden layers, as in [13];
8+8+48+48+48+8 internal units in 6 hidden layers;
20+104-848 internal units in 4 hidden layers;
204+10+8+8+8 internal units in 5 hidden layers;
20+20+410410+10 internal units in 5 hidden layers.

CPAIOR 2018, Delft, June 2018 15

Reaching 1% optimality

Basic model | Improved model (weaker bounds)
#timlim time (s) nodes %gap | #timlim time (s) nodes %gap
DNN1 0 1.0 1,920 0.5 0 0.6 531 0.3
DNN2 0 47.0 76,286 0.9 0 7.5 12,110 0.8
DNN3 8 632.8 568,579 2.2 0 11.3 19,663 0.9
DNN4 36 1806.8 1,253,415 10.2 0 50.0 89,380 1.0
DNN5 81 3224.0 1,587,892 43.5 11 851.0 163,135 3.8

Table 3 Performance of the basic and improved model (the latter with the 1-sec. weaker
bounds as in Table 2) to get solutions with guaranteed error of 1% or less; each run had a time
limit of 3,600 sec.s; the number of time limits, out of 100, is reported in column #timlim.

— DNN1: 8+8+8 internal units in 3 hidden layers, as in [13];
— DNN2: 84848484848 internal units in 6 hidden layers;

— DNN3: 204104848 internal units in 4 hidden layers;

— DNN4: 20410484848 internal units in 5 hidden layers;

— DNN5: 20420410410+10 internal units in 5 hidden layers.

CPAIOR 2018, Delft, June 2018 16

Thanks for your attention!

Slides available at http://www.del.unipd.it/~fisch/papers/slides/

Paper:
M. Fischetti, J. Jo, "Deep Neural Networks as 0-1 Mixed Integer Linear
Programs: A Feasibility Study", Constraints 23(3), 296-309, 2018.

Constraints

CONSTRAINTS ... July 2018, Volume 23, Issue 3, pp 296-309 | Cite as

An ntvmetsonat Roseme!

e Deep neural networks and mixed integer linear
~____ optimization

Authors Authors and affiliations

Matteo Fischetti[~], Jason Jo

Article

62
First Online: 26 April 2018

Downloads

Part of the following topical collections:
« Topical Collection on Integration of Constraint Programming, Artificial Intelligence,

and Operations Research

CPAIOR 2018, Delft, June 2018 17

