#post_modern Branch -and-Cut
Implementation

Matteo Fischetti, University of Padova

ISMP 2018, Bordeaux, July 6, 2018

Why bothering about
Implementations at ISMP?

O PMP0IS

23 |nternational Symposium on
Mathematical Programming |

Clusters and Streams
MAIN MENU
Home Cluster 1: Discrete Optimization and Integer Programming
a. IPtheory: Integer Programming Theory (Polyhedral Study, Lattices, Extented Formulations...)
JuMP Workshop b. IPpractice: Integer Programming Algorithms (Branch-and-cut, Reformulations and Decomposition, ...)
c. MINLP: Mixed Integer Non-linear Programming
d. APPROX: Complexity, Approximation and Online Algorithms
Poster ISMP 2018 e. COMB: Combinatorial Optimization and Graph Theory
. CP: Constraint Programming
Gallery

Cluster 2: Optimization under Uncertainty

Clusters and Streams

a. Stoch: Stochastic Optimization
b. Robust: Robust Optimization
Schedule <. Markov: Dynamic Programming, Markov Decision Processes, and Simulation
d. Game: Game theory, Bi-level and Multi-Objective Optimization
Program ¥ Cluster 3: Continuous Optimization
Social Events ¥ a. NLP: Linear and Nonlinear Optimization, Sparse Optimization and Applications
oot Bents b. Global: Global Optimization
c. Iy th Optimizati
Prize Awards d. SDP: Conic Programming, Quadratic Programming and Semi-Definite Programming
. Variat : Variational Analysis, Variational Inequalities and Complementarity.
5 f. RandomM: Random Methods for Continuous Optimization (Stochastic Gradient, ...)
Committees ¥ g. DerFree: Derivative-free and Simulation-based Optimization
h. Control: Optimal Control, PDE Constrained Optimization, and Multi-level Methods
Attendees . . R P
Cluster 4: Problem Specific Models, Algorithm Impl ations, and e
Submissions ¥ a. Learning: Machine Learning, Big Data, Cloud Computing, and Huge-Scale Optimization
b. Network: Network Flow, Network Design, and Applications in Telecom and Traffic Management
Sponsors & Exhibits ¥ c. Logistics: Packing, Logistics, Location, and Routing
d. i ing, Planning and ications in M ing Systems and Health
e. Energy: Optimization for Envi Energy and Engineering Systems
Important Dates f. Sciences: Optimization in Sciences, Ci i Biology, Societal Issues, Finance, and Economics

g. Algo: Math Programming Algorithm Implementations, Parallel Computing, and Software

ISMP 2018, Bordeaux, July 6, 2018 2

Why bothering about
Implementations at ISMP?

806 ¢ selfsplit.c — src

Implementation s
IS not just coding!

CPXmipopt(env, 1p);
nodelim = nodelim - CPXgetnodecnt(env, 1p); if (nodelim < @) nodelim = 8;

/7 2nd phase: kill nodes belonging to the other workers
CPXsetintparam(env, CPX_PARAM_THREADS, 1);
CPXsetintparam(env, CPX_PARAM_NODELIM, INT_MAX);
ssdata.phase = 2;

CPXmipopt(env, 1p);

// create the syncronization file (if does not exist already)
ssdata.counter = @;
if (strcmp(sync_file,"NULL") == @) ssdata.counter = -1; /7 means no syncronization file

") } 8"

e wayhfrom_gtping(st-;' fa®

- i), el if (stremp(sync_file,"NONE™) = @) ssdata.counter = -1; // means no syncronization file
o “. C= if ((ssdata.counter >= @) && (155_file_exists(sync_file))) /7 syncronization file does not exist
-—). " i
" .‘“J,,’ if (C <2 x double zstar; if (CPXgetobjval(env, lp, &zstar)) zstar = CPX_INFBOUND;
‘,‘ this double *xbest = (double *) calloc(ssdata.ncols, sizeof(double));
if (zstar < CPX_INFBOUND/2.8) CPXgetx(env, lp, xbest, @, ssdata.ncols-1);
SS_write_sol(&ssdata, zstar, xbest);
free(xbest);
1

// 3rd phase: complete the optimization with the original parameters
if (ssdata.verbose »= 1) printf("\n### SelfSplit: unit %d out of %d starts the final runt at epoch ¥ld\m\n", ssdata.unit, ssdata.num_units, timeCNULLY:
CPXsetintparam(env, CPX_PARAM_NODELIM, nodelim);
CPXsetintparamenv, CPX_PARAM_BBINTERVAL, bbinterval);
C(PXsetintparam(env, CPX_PARAM_NODESEL, nodesel);
1 Column: 1 &C t v TabSize: 4 3 —

Needed if we #orms want to have an impact in practical applications

Ask yourself: would Artificial Intelligence (notably: deep learning) be
so successful without gradient-descent algorithms served with their
efficient #backpropagation implementations ?

ISMP 2018, Bordeaux, July 6, 2018 3

Algorithms without implementation

Theorem 2 Assume w.l.o.g. that rank(A) = n. Given a vertex x* of P, let the system
Ax > b be partitioned into Bx > bg and Nx > by, where Bx* = bg and B is an
n X n nonsingular matrix. Let (ug, vg) and (uy, vy) denote the Farkas multipliers
associated with the rows of B and N, respectively. For a given disjunction (2) with
n* =nx*—mo €[0,1], letug =1—n*, vy =n*, uy = vy =0,up = [:»'1,'B’_I]Jr and
Vg = [—7 B~ 1., while y* and Yo are defined through (4) and (6), respectively. Then
V™, vg,u*, v*, ug, vy) is an optimal CGLP solution w.r.t. the trivial normalization
(10).

Proof We first prove feasibility. Consistency between (4) and (5) requires u*A —
ugw = v*A + yym, ie., upy — vy = (uy + 't,JE,")Jw:B_l — wB~!, which follows
directly from the definition of % and vy. Analogously, consistency between (6) and
(7) requires (up — vy)bp = (ug + vy)mo + vy, i.e., nB lbp = o + vg- This latter
equation is indeed satisfied because B~ 'bp = x* and vg = n* = nx* — mp. As to
optimality, we observe that u; + vy = 1 holds by definition. Because of (4) and (6),
yx*—y = u*(Ax™ —b) —uy(wx*—mo) = ux(Bx* —bp)+uy(Nx*—by)—ugn™ =
0+ 0 — (1 — n*)n*, hence the cut violation attains bound UB3 of Lemma 1. O

ISMP 2018, Bordeaux, July 6, 2018 4

Algorithms without implementation

Theorem 2 Assume w.l.o.g. that rank(A) = n. Given a vertex x* of P, let the system
Ax > b be partitioned into Bx > bg and Nx > by, where Bx* = bg and B is an
n X n nonsingular matrix. Let (ug, vg) and (uy, vy) denote the Farkas multipliers
associated with the rows of B and N, respectively. For a given disjunction (2) with
n* =nx*—mo €[0,1], letug =1—n*, vy =n*, uy = vy =0,up = [:»'1:E-’_lLr and
Vg = [—7 B~ 1., while y* and Yo are defined through (4) and (6), respectively. Then
V™, vg,u*, v*, ug, vy) is an optimal CGLP solution w.r.t. the trivial normalization

(10).

Proof: omitted as of no interest to the typical MP reader.

Describing an Algorithm without Implementation is like stating a
Theorem without Proof

#just_a_computational conjecture

ISMP 2018, Bordeaux, July 6, 2018 5

Branch

SIAM REVIEW (©1991 Society for Industrial and Applied Mathematics
Vol. 33, No. 1, pp. 60-100, March 1991 004

& C ut A BRANCH-AND-CUT ALGORITHM

FOR THE RESOLUTION OF LARGE-SCALE
SYMMETRIC TRAVELING SALESMAN PROBLEMS *

MANFRED PADBERGt AND GIOVANNI RINALDI}

A “trademark” of Manfred Padberg and Giovanni Rinaldi
Proposed in the 1990’s for the TSP (and soon extended)
Comes as an algorithm entangled with its implementation

Theorem . Using cuts within an enumerative scheme is good.

Proof. Assume w.l.0.g. a good LP solver. Then apply B&Bound but

make use of families of (problem dependent) globally-valid inequalities
perform efficient exact/heuristic cut separation on the fly

use a data-structure (cut pool) to effectively share cuts among nodes
price variables in a dynamic way (well before branch-and-price!)
alternate row and column generation in a sound way ...

suspend a node if “unattractive”

ISMP 2018, Bordeaux, July 6, 2018 6

Modern B&C implementation

Modern B&C solvers such as Cplex, Gurobi, Express, SCIP etc. can be
fully customized by using callback functions

Callback functions are just entry points O;/)

in the B&C code where an advanced user
(you!) can add his/her customizations Q . O Q O

Most-used callbacks (using Cplex’s jargon)

— Lazy constraint : add “lazy constr.s” that should be part of the original model

— User cut : add additional contr.s that hopefully help enforcing feasibility/integrality
— Heuristic: try to improve the incumbent (primal solution) as soon as possible

— Branch: modify the branching strategy

ISMP 2018, Bordeaux, July 6, 2018 7

Lazy constraint callback

Automatically invoked when a solution is going to update the
iIncumbent (meaning it is integer and feasible w.r.t. current model)

This is the last checkpoint where we can discard a THE ﬂ%

solution for whatever reason (e.g., because it violates
a constraint that is not part of the current model) CHECKPQINT

To avoid be bothered by this solution again and again, we can/should
return a violated constraint (cut) that is added (globally or locally) to
the current model

Cut generation is often simplified by the ’ ﬂ l
fact that the solution to be cut is known Ty e

to be integer (e.g., SECs for TSP)

ISMP 2018, Bordeaux, July 6, 2018 8

User cut callback

Automatically invoked at every B&B node when the current solution
IS not integer (e.g., just before branching)

A violated cut can possibly be returned, to be added (locally or
globally) to the current model - often leads to an improved
convergence to integer solutions

If no cut is returned, branching occurs as usual c

Cut generation can be hard as the point is not integer (heuristic
approaches can be used)

User cuts are not mandatory for B&C correctness - being too
clever on them can actually slow-down the solver because of the
overhead in generating and using them (larger/denser LPs etc.)

ISMP 2018, Bordeaux, July 6, 2018

Other callbacks

Branch callback :invoked at the end of each node (even when the
LP solution is integer and apparently does not require any
cut/branching) and used to impose/customize branching

Incumbent callback : invoked just before updating the incumbent
(after the lazy constraint callback) to possibly kill a solution without
providing any violated cut

Heuristic callback : used to build new (possibly problem-specific)
feasible integer solutions

Informative : to just compute/print internal statistics

etc. eftc.

ISMP 2018, Bordeaux, July 6, 2018

10

Application: non -convex MIQP

(based on ongoing work with Michele Monaci, U. Bologna,
and Domenico Salvagnin, U. Padova)

 Goal: implement a Mixed-Integer (non-convex) Quadra tic solver
 Two approaches:

1. start with a continuous QP solver and add enumeration on top of it
- implement B&B to handle integer var.s

2. start with a MILP solvers (B&C) and customize it to handle the
non-convex quadratic terms - add McCormick & spatial branching

PROS: ...
CONS: ...

ISMP 2018, Bordeaux, July 6, 2018 11

MIQP as a MILP with bilinear eq.s

» The fully-general MIQP of interest reads

(MIQP) minalz+zTQ%
alfz+2TQ*z@b, k=1,...,m

£; <x; <uy, i=1...,n
x; integer, 7 €L,
x; continuous, j €cC,
and can be restated as
(MIBLP) min, cl'z
Az =b
li<z;<u;, j=1,...,n
x; integer, je’l
z; continuous, j €C
Tr, = Tp, gy k=1,..., K,

ISMP 2018, Bordeaux, July 6, 2018

McCormick inequalit

« To simplify notation, rewrite the generic bilevel eq. z,, = z,, x4, as:

zZ=1TYy
by <z < uy
by <y < uy
« Obviously (& —) (y — £,) > 0 mel) 2
(@ —uz)(y—uy) >0 2 me2) 2z
(x — L)y —uy) <0 mc3) 2z
(—uz)(y—4£,) <0 mcd) z

les

> Ly + Ly — L4y,

2> Uyl + Uzl — UzUy
< uyx + Loy — Lpuy
< Lyx + ugy — uzly

(just replace xy by z in the products on the left)

 Note: mcl) and mc2) can be improved in case x=y - gradients cuts

z > x5+ 2xo(x — 1), for each zg € R

ISMP 2018, Bordeaux, July 6, 2018

13

Spatial branching

* McCormick inequalities are not perfect (2 —Lz)(y —4y) 20
> they are tight only when x and/ory ~ ®~ ";xigy N “y; i g

. T —Lg)\Y —Uy) >
are at their lower/upper bound (2 — w)(y — £,) <0

- at some B&C nodes, it may happen that the current (fractional or
Integer) solution satisfies all MC inequalities but some bilinear eq.s

z = xy are still violated (we call this #bilinear_infeasibility)

- we need a bilinear-specific branching (the usual MILP branching
on integrality does not work if all var.s are integer already)

e Spatial branching : if z* = x* y* is an offended bilinear eq., branch on
(x £x*) OR (X 2 x*)
to make the upper (resp. lower) bound on x tight at the left (resp.
right) child node — thus improving the corresponding MC inequality

ISMP 2018, Bordeaux, July 6, 2018 14

Vanilla B&C implementation

Lazy constraint callback : separation of MC inequalities
Usercut callback : not needed (and sometimes detrimental)
Branch callback: spatial branching on the “most offended” z = xy

Incumbent callback : very-last resort to kill a bilinear-infeasible integer
solution (when everything else fails e.g. because of tolerances)

Precision : LP precision higher (more restrictive) than bilinear tolerance

MILP heuristics (kindly provided by the MILP solver): active at their default
level

MIQP-specific heuristics : not implemented

Implemented but not used in the vanilla version:
 additional bilinear-specific cuts - Balas’ Intersection Cuts (ICs)

o semi-spatial branching (branch threshold x*+& - x* violates the x-
bound in one of the two children, MC only needed in the other one)

ISMP 2018, Bordeaux, July 6, 2018 15

Does It work?

Comparison with the SCIP 5.0 MIQP solver using CPLEX 12.8 as LP
solver + internal nonlinear solver

Preliminary test on the quadratic MINLPIib (700+ instances) ...
... but some instances removed as root LP was unbounded
- they need bound tightening by preprocessing (TODO)

Results of our B&C callback-based vanilla implementation using CPLEX
12.8 as MILP solver ; 1-thread runs (parallel runs not allowed in SCIP);
only instances solved by both codes in the 1-hour time limit.

— Overall, we are as fast as SCIP (but the latter solves more instances within the time
limit > SCIP qualifies as a more robust solver).

— We are 2 to 10 times faster than SCIP when the optimal/best-known solution from
MINLPIib is used as a warm-start for both codes - evidently, we miss a sound
bilinear-specific heuristic (TODO)

ISMP 2018, Bordeaux, July 6, 2018 16

More detailed comparison

1.0

SCIP vs noic (our “vanilla”
version with no ICs and
classical spatial branching) >

Time Ratio

Results with incumbent warm-start (only instances solved by both codes)

v Time ratio
SVSVIV O RRRVEVETEEES o Sty Y - 1,00
075
0,50
0.4 4
025
0.2 4
—— scIP 0,00
~¥- noic al >1s >10s >100s
0.0

ISMP 2018, Bordeaux, July 6, 2018 17

Thanks for your attention!

Slides available at http://www.del.unipd.it/~fisch/papers/slides/

ISMP 2018, Bordeaux, July 6, 2018 18

