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Implementations at ISMP?
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c. MINLP: Mixed Integer Non-linear Programming
d. APPROX: Complexity, Approximation and Online Algorithms
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. CP: Constraint Programming
Gallery

Cluster 2: Optimization under Uncertainty
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b. Robust: Robust Optimization
Schedule <. Markov: Dynamic Programming, Markov Decision Processes, and Simulation
d. Game: Game theory, Bi-level and Multi-Objective Optimization
Program ¥ Cluster 3: Continuous Optimization
Social Events ¥ a. NLP: Linear and Nonlinear Optimization, Sparse Optimization and Applications
oot Bents b. Global: Global Optimization
c. Iy th Optimizati
Prize Awards d. SDP: Conic Programming, Quadratic Programming and Semi-Definite Programming
. Variat : Variational Analysis, Variational Inequalities and Complementarity.
5 f. RandomM: Random Methods for Continuous Optimization (Stochastic Gradient, ...)
Committees ¥ g. DerFree: Derivative-free and Simulation-based Optimization
h. Control: Optimal Control, PDE Constrained Optimization, and Multi-level Methods
Attendees . . R P
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g. Algo: Math Programming Algorithm Implementations, Parallel Computing, and Software
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Why bothering about
Implementations at ISMP?

806 ¢ selfsplit.c — src

Implementation s
IS not just coding!

CPXmipopt(env, 1p);
nodelim = nodelim - CPXgetnodecnt(env, 1p); if ( nodelim < @ ) nodelim = 8;

/7 2nd phase: kill nodes belonging to the other workers
CPXsetintparam(env, CPX_PARAM_THREADS, 1);
CPXsetintparam(env, CPX_PARAM_NODELIM, INT_MAX);
ssdata.phase = 2;

CPXmipopt(env, 1p);

// create the syncronization file (if does not exist already)
ssdata.counter = @;
if ( strcmp(sync_file,"NULL") == @ ) ssdata.counter = -1; /7 means no syncronization file

") } 8"

e wayhfrom_gtping(st-;' fa®

- i), el if ( stremp(sync_file,"NONE™) = @ ) ssdata.counter = -1; // means no syncronization file
o “. C= if ( (ssdata.counter >= @) && (155_file_exists(sync_file)) ) /7 syncronization file does not exist
-—). " i
" .‘“J,,’ if (C <2 x double zstar; if ( CPXgetobjval(env, lp, &zstar) ) zstar = CPX_INFBOUND;
‘,‘ this double *xbest = (double *) calloc(ssdata.ncols, sizeof(double));
if ( zstar < CPX_INFBOUND/2.8 ) CPXgetx(env, lp, xbest, @, ssdata.ncols-1);
SS_write_sol(&ssdata, zstar, xbest);
free(xbest);
1

// 3rd phase: complete the optimization with the original parameters
if ( ssdata.verbose »= 1 ) printf("\n### SelfSplit: unit %d out of %d starts the final runt at epoch ¥ld\m\n", ssdata.unit, ssdata.num_units, timeCNULLY:
CPXsetintparam(env, CPX_PARAM_NODELIM, nodelim);
CPXsetintparamenv, CPX_PARAM_BBINTERVAL, bbinterval);
C(PXsetintparam(env, CPX_PARAM_NODESEL, nodesel);
1 Column: 1 &C t v TabSize: 4 3 —

Needed if we #orms want to have an impact in practical applications

Ask yourself: would Artificial Intelligence (notably: deep learning) be
so successful without gradient-descent algorithms served with their
efficient #backpropagation implementations ?
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Algorithms without implementation

Theorem 2 Assume w.l.o.g. that rank(A) = n. Given a vertex x* of P, let the system
Ax > b be partitioned into Bx > bg and Nx > by, where Bx* = bg and B is an
n X n nonsingular matrix. Let (ug, vg) and (uy, vy) denote the Farkas multipliers
associated with the rows of B and N, respectively. For a given disjunction (2) with
n* =nx*—mo €[0,1], letug =1—n*, vy =n*, uy = vy =0,up = [:»'1,'B’_I]Jr and
Vg = [—7 B~ 1., while y* and Yo are defined through (4) and (6), respectively. Then
V™, vg,u*, v*, ug, vy) is an optimal CGLP solution w.r.t. the trivial normalization
(10).

Proof We first prove feasibility. Consistency between (4) and (5) requires u*A —
ugw = v*A + yym, ie., upy — vy = (uy + 't,JE,")Jw:B_l — wB~!, which follows
directly from the definition of % and vy. Analogously, consistency between (6) and
(7) requires (up — vy)bp = (ug + vy)mo + vy, i.e., nB lbp = o + vg- This latter
equation is indeed satisfied because B~ 'bp = x* and vg = n* = nx* — mp. As to
optimality, we observe that u; + vy = 1 holds by definition. Because of (4) and (6),
yx*—y = u*(Ax™ —b) —uy(wx*—mo) = ux(Bx* —bp)+uy(Nx*—by)—ugn™ =
0+ 0 — (1 — n*)n*, hence the cut violation attains bound UB3 of Lemma 1. O
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Algorithms without implementation

Theorem 2 Assume w.l.o.g. that rank(A) = n. Given a vertex x* of P, let the system
Ax > b be partitioned into Bx > bg and Nx > by, where Bx* = bg and B is an
n X n nonsingular matrix. Let (ug, vg) and (uy, vy) denote the Farkas multipliers
associated with the rows of B and N, respectively. For a given disjunction (2) with
n* =nx*—mo €[0,1], letug =1—n*, vy =n*, uy = vy =0,up = [:»'1:E-’_lLr and
Vg = [—7 B~ 1., while y* and Yo are defined through (4) and (6), respectively. Then
V™, vg,u*, v*, ug, vy) is an optimal CGLP solution w.r.t. the trivial normalization

(10).

Proof: omitted as of no interest to the typical MP reader.

Describing an Algorithm without Implementation is like stating a
Theorem without Proof

#just_a_computational conjecture
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Branch

SIAM REVIEW (©1991 Society for Industrial and Applied Mathematics
Vol. 33, No. 1, pp. 60-100, March 1991 004

& C ut A BRANCH-AND-CUT ALGORITHM

FOR THE RESOLUTION OF LARGE-SCALE
SYMMETRIC TRAVELING SALESMAN PROBLEMS *

MANFRED PADBERGt AND GIOVANNI RINALDI}

A “trademark” of Manfred Padberg and Giovanni Rinaldi
Proposed in the 1990’s for the TSP (and soon extended)
Comes as an algorithm entangled with its implementation

Theorem . Using cuts within an enumerative scheme is good.

Proof. Assume w.l.0.g. a good LP solver. Then apply B&Bound but

make use of families of (problem dependent) globally-valid inequalities
perform efficient exact/heuristic cut separation on the fly

use a data-structure (cut pool) to effectively share cuts among nodes
price variables in a dynamic way (well before branch-and-price!)
alternate row and column generation in a sound way ...

suspend a node if “unattractive”

ISMP 2018, Bordeaux, July 6, 2018 6



Modern B&C implementation

Modern B&C solvers such as Cplex, Gurobi, Express, SCIP etc. can be
fully customized by using callback functions

Callback functions are just entry points O;/)

in the B&C code where an advanced user
(you!) can add his/her customizations Q . O Q O

Most-used callbacks (using Cplex’s jargon)

— Lazy constraint : add “lazy constr.s” that should be part of the original model

— User cut : add additional contr.s that hopefully help enforcing feasibility/integrality
— Heuristic: try to improve the incumbent (primal solution) as soon as possible

— Branch: modify the branching strategy
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Lazy constraint callback

Automatically invoked when a solution is going to update the
iIncumbent (meaning it is integer and feasible w.r.t. current model)

This is the last checkpoint where we can discard a THE ﬂ%

solution for whatever reason (e.g., because it violates
a constraint that is not part of the current model) CHECKPQINT

To avoid be bothered by this solution again and again, we can/should
return a violated constraint (cut) that is added (globally or locally) to
the current model

Cut generation is often simplified by the ’ ﬂ l
fact that the solution to be cut is known Ty e

to be integer (e.g., SECs for TSP)
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User cut callback

Automatically invoked at every B&B node when the current solution
IS not integer (e.g., just before branching)

A violated cut can possibly be returned, to be added (locally or
globally) to the current model - often leads to an improved
convergence to integer solutions

If no cut is returned, branching occurs as usual c

Cut generation can be hard as the point is not integer (heuristic
approaches can be used)

User cuts are not mandatory for B&C correctness - being too
clever on them can actually slow-down the solver because of the
overhead in generating and using them (larger/denser LPs etc.)
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Other callbacks

Branch callback :invoked at the end of each node (even when the
LP solution is integer and apparently does not require any
cut/branching) and used to impose/customize branching

Incumbent callback : invoked just before updating the incumbent
(after the lazy constraint callback) to possibly kill a solution without
providing any violated cut

Heuristic callback : used to build new (possibly problem-specific)
feasible integer solutions

Informative : to just compute/print internal statistics

etc. eftc.
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Application: non -convex MIQP

(based on ongoing work with Michele Monaci, U. Bologna,
and Domenico Salvagnin, U. Padova)

 Goal: implement a Mixed-Integer (non-convex) Quadra tic solver
 Two approaches:

1. start with a continuous QP solver and add enumeration on top of it
- implement B&B to handle integer var.s

2. start with a MILP solvers (B&C) and customize it to handle the
non-convex quadratic terms - add McCormick & spatial branching

PROS: ...
CONS: ...
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MIQP as a MILP with bilinear eq.s

» The fully-general MIQP of interest reads

(MIQP) minalz+zTQ%
alfz+2TQ*z@b, k=1,...,m

£; <x; <uy, i=1...,n
x; integer, 7 €L,
x; continuous, j €cC,
and can be restated as
(MIBLP) min, cl'z
Az =b
li<z;<u;, j=1,...,n
x; integer, je’l
z; continuous, j €C
Tr, = Tp, gy k=1,..., K,
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McCormick inequalit

« To simplify notation, rewrite the generic bilevel eq. z,, = z,, x4, as:

zZ=1TYy
by <z < uy
by <y < uy
« Obviously (& — ) (y — £,) > 0 mel) 2
(@ —uz)(y—uy) >0 2 me2) 2z
(x — L)y —uy) <0 mc3) 2z
(—uz)(y—4£,) <0 mcd) z

les

> Ly + Ly — L4y,

2> Uyl + Uzl — UzUy
< uyx + Loy — Lpuy
< Lyx + ugy — uzly

(just replace xy by z in the products on the left)

 Note: mcl) and mc2) can be improved in case x=y - gradients cuts

z > x5+ 2xo(x — 1), for each zg € R
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Spatial branching

* McCormick inequalities are not perfect (2 —Lz)(y —4y) 20
> they are tight only when x and/ory ~ ®~ ";xigy N “y; i g

. T —Lg)\Y —Uy) >
are at their lower/upper bound (2 — w)(y — £,) <0

- at some B&C nodes, it may happen that the current (fractional or
Integer) solution satisfies all MC inequalities but some bilinear eq.s

z = xy are still violated (we call this #bilinear_infeasibility )

- we need a bilinear-specific branching  (the usual MILP branching
on integrality does not work if all var.s are integer already)

e Spatial branching : if z* = x* y* is an offended bilinear eq., branch on
(x £x*) OR (X 2 x*)
to make the upper (resp. lower) bound on x tight at the left (resp.
right) child node — thus improving the corresponding MC inequality
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Vanilla B&C implementation

Lazy constraint callback : separation of MC inequalities
Usercut callback : not needed (and sometimes detrimental)
Branch callback: spatial branching on the “most offended” z = xy

Incumbent callback : very-last resort to kill a bilinear-infeasible integer
solution (when everything else fails e.g. because of tolerances)

Precision : LP precision higher (more restrictive) than bilinear tolerance

MILP heuristics (kindly provided by the MILP solver): active at their default
level

MIQP-specific heuristics : not implemented

Implemented but not used in the vanilla version:
 additional bilinear-specific cuts - Balas’ Intersection Cuts (ICs )

o semi-spatial branching (branch threshold x*+& - x* violates the x-
bound in one of the two children, MC only needed in the other one)
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Does It work?

Comparison with the SCIP 5.0 MIQP solver using CPLEX 12.8 as LP
solver + internal nonlinear solver

Preliminary test on the quadratic MINLPIib (700+ instances) ...
... but some instances removed as root LP was unbounded
- they need bound tightening by preprocessing (TODO)

Results of our B&C callback-based vanilla implementation using CPLEX
12.8 as MILP solver ; 1-thread runs (parallel runs not allowed in SCIP);
only instances solved by both codes in the 1-hour time limit.

— Overall, we are as fast as SCIP (but the latter solves more instances within the time
limit > SCIP qualifies as a more robust solver).

— We are 2 to 10 times faster than SCIP when the optimal/best-known solution from
MINLPIib is used as a warm-start for both codes - evidently, we miss a sound
bilinear-specific heuristic (TODO)
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More detailed comparison

1.0

SCIP vs noic (our “vanilla”
version with no ICs and
classical spatial branching) >

Time Ratio

Results with incumbent warm-start (only instances solved by both codes)

v Time ratio
SVSVIV O RRRVEVETEEES o Sty Y - 1,00
075
0,50
0.4 4
025
0.2 4
—— scIP 0,00
~¥- noic al  >1s >10s >100s
0.0
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Thanks for your attention!

Slides available at  http://www.del.unipd.it/~fisch/papers/slides/
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