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Machine Learning

• Example (MIPpers only!): Continuous 0-1 Knapack Problem with a 
fixed n. of items 
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Implementing the ? in the box
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Implementing the ? in the box
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Deep Neural Networks (DNNs)

• Parameters w’s are organized in a layered feed-forward network (DAG = 
Directed Acyclic Graph)

• Each node (or “neuron ”) makes a weighted sum of the outputs of the 
previous layer � no “flow splitting/conservation” here!
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The need of nonlinearities
• We want to be able to play with a huge n. of parameters, but if 

everything stays linear we actually have n+1 parameters only � we 
need nonlinearities somewhere!

• Zooming into neurons we see the nonlinear “activation functions ”
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• Each neuron acts as a linear SVM , however …
… its output is not interpreted immediately … 
… but it becomes a new feature …
… to be forwarded to the next layer for further analysis  #SVMcascade 



Training
• For a given DNN, we need to give appropriate values to the (w,b) 

parameters to approximate the output function f well 

• Warning: DNNs 
are usually highly
over-parametrized!

• Supervised learning :• Supervised learning :
– define an optimization problem where the parameters are the unknowns
– (huge) training set of points x for which we know the “true” value f*(x) 
– objective function : average loss/error over the training set (+ regularization 

terms) � to be minimized on the training set (but … not too much!)
– validation set : can be used to select “hyperparameters” not directly handled by 

the optimizer (it plays a crucial role indeed…) 
– test set: points not seen during training, used to evaluate the actual accuracy of 

the DNN on (future) unseen data.  
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The three pillars of
(practical) Deep Learning
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2) Backpropagation1) Stochastic Gradient Descent

3) GPUs (and open-source Python libraries like Keras, pyTorch, TensorFlow etc.)



Stochastic Gradient Descent (SGD)
• Objective function to minimize: 

average error over a huge training set 
(hundreds of millions of param.s and training points)

• SGD is not at all a naïve approach !
– Very well suited here as the objective is an average over the training 

set, so one can approximate it by selecting a random training point 
(or a small “mini -batch ” of such points) at each iteration(or a small “mini -batch ” of such points) at each iteration

– Practical experience shows that it often leads to a very good local 
minimum that “generalizes well ” over unseen points

– Further regularization by dropout (just an easy way to hurt 
optimization!)

• Question : does it make sense to look for global optimal solutions using 
much more sophisticated methods, that are more time consuming and 
are unlike to generalize equally well? 
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Efficient gradient computation
• We are given a single training point      and the current param.s

and we want to compute the gradient of the error function E in

• Linearize the DNN w.r.t.               

Notation: we have a “measure point” xj before and after each activation

� in the linearization, the slope gives the output change when the 
input x is increased by 1 w.r.t.       
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Backpropagation
• Let                              be the increase of E when xj is increased by 1

• Iteratively compute the δj’s backwards (starting from the final xj )

• .…• .…

• … 
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Backpropagation
• Once all δj’s have been computed (after/before each activation) one 

can easily read each gradient component (in the linearized network, 
this is just the increase of E when a parameter is increased by 1)
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Modeling a DNN with fixed param.s
• Assume all the parameters (weights/biases) of the DNN are fixed

• We want to model the computation that produces the output value(s) 
as a function of the inputs, using a MINLP        #MIPpersToTheBone

• Each hidden node corresponds to a summation
followed by a nonlinear activation functionfollowed by a nonlinear activation function
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Modeling ReLU activations

• Recent work on DNNs almost invariably only use ReLU activations

• Easily modeled  as 

– plus the bilinear condition                   
– or, alternatively, the indicator constraints
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A complete 0 -1 MILP

• See also: Serra, T., Tjandraatmadja, C., Ramalingam, S. (2017). Bounding and counting linear 
regions of deep neural networks. CoRR arXiv:1711.02114.
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Convolutional Neural Networks (CNNs)
• CNNs play a key role, e.g., in image recognition

• Besides ReLUs, CNNs use • Besides ReLUs, CNNs use 
pooling operations of the type

• AvgPool is just linear and can be modeled as a linear constraint

• MaxPool can easily be 
modeled within a 0-1 MILP as
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Adversarial problem: trick the DNN …
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… by changing few well-chosen pixels
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Experiments on small DNNs

• The MNIST database 
(Modified National Institute of 
Standards and Technology 
database) is a large database 
of handwritten digits that is 
commonly used for training commonly used for training 
various image processing systems

• We considered the following (small) DNNs and trained each of 
them to get a fair 
accuracy (93-96%)
on the test-set
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Computational experiments
• Instances: 100 MNIST training figures (each with its “true” label 0..9)

• Goal: Change some of the 28x28 input pixels (real values in 0-1) to 
convert the true label d into (d + 5) mod 10 (e.g., “0” � “5”, “6” � “1”)

• Metric: L1 norm (sum of the abs. differences original-modified pixels)

• MILP solver : IBM ILOG CPLEX 12.7 (as black box)
– Basic model: only obvious bounds on the continuous var.s 
– Improved model: apply a MILP-based preprocessing to compute 

tight lower/upper bounds on all the continuous variables, as in 

P. Belotti, P. Bonami, M. Fischetti, A. Lodi, M. Monaci, A. Nogales-Gomez, and D. Salvagnin. 
On handling indicator constraints in mixed integer programming. Computational Optimization 

and Applications, (65):545–566, 2016.
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Differences between the two models
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Effect of bound -tightening preproc.
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Reaching 1% optimality
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Thanks for your attention!
Slides available at     http://www.dei.unipd.it/~fisch/papers/slides/

Paper:
M. Fischetti, J. Jo, "Deep Neural Networks as 0-1 Mixed Integer Linear 
Programs: A Feasibility Study", 2017, arXiv preprint arXiv:1712.06174 
(accepted in CPAIOR 2018)
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