
Deep Neural Networks
and

Mixed Integer Linear Optimization

Matteo Fischetti, University of Padova

Pittsburgh, 21 September 2018 1

Machine Learning

• Example (MIPpers only!): Continuous 0-1 Knapack Problem with a
fixed n. of items

Pittsburgh, 21 September 2018 2

Implementing the ? in the box

Pittsburgh, 21 September 2018 3

Implementing the ? in the box

Pittsburgh, 21 September 2018 4

Deep Neural Networks (DNNs)

• Parameters w’s are organized in a layered feed-forward network (DAG =
Directed Acyclic Graph)

• Each node (or “neuron ”) makes a weighted sum of the outputs of the
previous layer � no “flow splitting/conservation” here!

Pittsburgh, 21 September 2018 5

The need of nonlinearities
• We want to be able to play with a huge n. of parameters, but if

everything stays linear we actually have n+1 parameters only � we
need nonlinearities somewhere!

• Zooming into neurons we see the nonlinear “activation functions ”

Pittsburgh, 21 September 2018 6

• Each neuron acts as a linear SVM , however …
… its output is not interpreted immediately …
… but it becomes a new feature …
… to be forwarded to the next layer for further analysis #SVMcascade

Training
• For a given DNN, we need to give appropriate values to the (w,b)

parameters to approximate the output function f well

• Warning: DNNs
are usually highly
over-parametrized!

• Supervised learning :• Supervised learning :
– define an optimization problem where the parameters are the unknowns
– (huge) training set of points x for which we know the “true” value f*(x)
– objective function : average loss/error over the training set (+ regularization

terms) � to be minimized on the training set (but … not too much!)
– validation set : can be used to select “hyperparameters” not directly handled by

the optimizer (it plays a crucial role indeed…)
– test set: points not seen during training, used to evaluate the actual accuracy of

the DNN on (future) unseen data.

Pittsburgh, 21 September 2018 7

The three pillars of
(practical) Deep Learning

Pittsburgh, 21 September 2018 8

2) Backpropagation1) Stochastic Gradient Descent

3) GPUs (and open-source Python libraries like Keras, pyTorch, TensorFlow etc.)

Stochastic Gradient Descent (SGD)
• Objective function to minimize:

average error over a huge training set
(hundreds of millions of param.s and training points)

• SGD is not at all a naïve approach !
– Very well suited here as the objective is an average over the training

set, so one can approximate it by selecting a random training point
(or a small “mini -batch ” of such points) at each iteration(or a small “mini -batch ” of such points) at each iteration

– Practical experience shows that it often leads to a very good local
minimum that “generalizes well ” over unseen points

– Further regularization by dropout (just an easy way to hurt
optimization!)

• Question : does it make sense to look for global optimal solutions using
much more sophisticated methods, that are more time consuming and
are unlike to generalize equally well?

Pittsburgh, 21 September 2018 9

Efficient gradient computation
• We are given a single training point and the current param.s

and we want to compute the gradient of the error function E in

• Linearize the DNN w.r.t.

Notation: we have a “measure point” xj before and after each activation

� in the linearization, the slope gives the output change when the
input x is increased by 1 w.r.t.

Pittsburgh, 21 September 2018 10

Backpropagation
• Let be the increase of E when xj is increased by 1

• Iteratively compute the δj’s backwards (starting from the final xj)

• .…• .…

• …

Pittsburgh, 21 September 2018 11

Backpropagation
• Once all δj’s have been computed (after/before each activation) one

can easily read each gradient component (in the linearized network,
this is just the increase of E when a parameter is increased by 1)

Pittsburgh, 21 September 2018 12

Modeling a DNN with fixed param.s
• Assume all the parameters (weights/biases) of the DNN are fixed

• We want to model the computation that produces the output value(s)
as a function of the inputs, using a MINLP #MIPpersToTheBone

• Each hidden node corresponds to a summation
followed by a nonlinear activation functionfollowed by a nonlinear activation function

Pittsburgh, 21 September 2018 13

Modeling ReLU activations

• Recent work on DNNs almost invariably only use ReLU activations

• Easily modeled as

– plus the bilinear condition
– or, alternatively, the indicator constraints

Pittsburgh, 21 September 2018 14

A complete 0 -1 MILP

• See also: Serra, T., Tjandraatmadja, C., Ramalingam, S. (2017). Bounding and counting linear
regions of deep neural networks. CoRR arXiv:1711.02114.

Pittsburgh, 21 September 2018 15

Convolutional Neural Networks (CNNs)
• CNNs play a key role, e.g., in image recognition

• Besides ReLUs, CNNs use • Besides ReLUs, CNNs use
pooling operations of the type

• AvgPool is just linear and can be modeled as a linear constraint

• MaxPool can easily be
modeled within a 0-1 MILP as

Pittsburgh, 21 September 2018 16

Adversarial problem: trick the DNN …

Pittsburgh, 21 September 2018 17

… by changing few well-chosen pixels

Pittsburgh, 21 September 2018 18

Experiments on small DNNs

• The MNIST database
(Modified National Institute of
Standards and Technology
database) is a large database
of handwritten digits that is
commonly used for training commonly used for training
various image processing systems

• We considered the following (small) DNNs and trained each of
them to get a fair
accuracy (93-96%)
on the test-set

Pittsburgh, 21 September 2018 19

Computational experiments
• Instances: 100 MNIST training figures (each with its “true” label 0..9)

• Goal: Change some of the 28x28 input pixels (real values in 0-1) to
convert the true label d into (d + 5) mod 10 (e.g., “0” � “5”, “6” � “1”)

• Metric: L1 norm (sum of the abs. differences original-modified pixels)

• MILP solver : IBM ILOG CPLEX 12.7 (as black box)
– Basic model: only obvious bounds on the continuous var.s
– Improved model: apply a MILP-based preprocessing to compute

tight lower/upper bounds on all the continuous variables, as in

P. Belotti, P. Bonami, M. Fischetti, A. Lodi, M. Monaci, A. Nogales-Gomez, and D. Salvagnin.
On handling indicator constraints in mixed integer programming. Computational Optimization

and Applications, (65):545–566, 2016.

Pittsburgh, 21 September 2018 20

Differences between the two models

Pittsburgh, 21 September 2018 21

Effect of bound -tightening preproc.

Pittsburgh, 21 September 2018 22

Reaching 1% optimality

Pittsburgh, 21 September 2018 23

Thanks for your attention!
Slides available at http://www.dei.unipd.it/~fisch/papers/slides/

Paper:
M. Fischetti, J. Jo, "Deep Neural Networks as 0-1 Mixed Integer Linear
Programs: A Feasibility Study", 2017, arXiv preprint arXiv:1712.06174
(accepted in CPAIOR 2018)

.

Pittsburgh, 21 September 2018 24

