Intersection cuts from bilinear disjunctions

Matteo Fischetti, University of Padova (joint work with Michele Monaci, University of Bologna)

MIQP as a MILP with bilinear eq.s

- We consider the Mixed-Integer Quadratic Problem (MIQP)

$$
\begin{array}{cll}
(M I Q P) \quad \min a_{0}^{T} x+x^{T} Q^{0} x & \\
a_{k}^{T} x+x^{T} Q^{k} x @ b, & k=1, \ldots, m \\
\ell_{j} \leq x_{j} \leq u_{j}, & j=1, \ldots, n \\
x_{j} \text { integer, } & j \in \mathcal{I}, \\
x_{j} \text { continuous, } & j \in \mathcal{C},
\end{array}
$$

restated as Mixed-Integer Bilinear Problem (MIBLP)

$$
\begin{array}{cl}
\min _{x} c^{T} x & \\
A x=b & \\
\ell_{j} \leq x_{j} \leq u_{j}, & j=1, \ldots, n \\
x_{j} \text { integer, } & j \in \mathcal{I} \\
x_{j} \text { continuous, } & j \in \mathcal{C} \\
x_{r_{k}}=x_{p_{k}} x_{q_{k}}, & k=1, \ldots, K
\end{array}
$$

Intersection Cuts (ICs)

- Intersection cuts (Balas, 1971): a powerful tool to separate a point \mathbf{x}^{*} from a set \mathbf{X} by a liner cut

- All you need is
- a cone pointed at \mathbf{x}^{*} containing all $\mathbf{x} \boldsymbol{\varepsilon} \mathbf{X}$
- a convex set S with x^{*} (but no $\mathbf{x} \boldsymbol{\varepsilon} \mathbf{X}$) in its interior
- If x^{*} vertex of an LP relaxation, a suitable cone comes for the LP basis

Bilinear-free sets

- Observation: given an infeasible point x^{*}, any branching disjunction violated by x^{*} implicitly defines a convex set S with x^{*} (but no feasible x) in its interior

$$
\bigvee_{i=1}^{k}\left(g_{i}^{T} x \geq g_{i 0}\right) \quad \rightarrow \quad S=\left\{x: g_{i}^{T} x \leq g_{0 i}, i=1, \ldots, k\right\}
$$

- Thus, in principle, one could always generate an IC instead of branching \rightarrow not always advisable because of numerical issues, slow convergence, tailing off, cut saturation, etc. \#LikeGomoryCuts
- Candidate branching disjunctions (supplemented by MC cuts) are the 1- and 2 -level (possibly shifted) spatial branching conditions:

$$
\left(x \leq x^{*}\right) \vee\left(x \geq x^{*}\right)
$$

$\left(x \leq x^{*}, y \leq y^{*}\right) \vee\left(x \leq x^{*}, y \geq y^{*}\right) \vee\left(x \geq x^{*}, y \leq y^{*}\right) \vee\left(x \geq x^{*}, y \geq y^{*}\right)$
Dr. Egon Balas Academic Symposium, Tepper School of Business, Pittsburgh, October 28, 2019

IC separation issues

- IC separation can be probematic, as we need to read the cone rays from the LP tableau \rightarrow numerical accuracy can be a big issue here!
- Notation: consider w.l.o.g. an LP in standard form (no var. ub's) and let $\min \left\{\hat{c}^{T} \xi: \hat{A} \xi=\hat{b}, \xi \geq 0\right\}$ be the LP relaxation at a given node $S=\left\{\xi: g_{i}^{T} \xi \leq g_{0 i}, i=1, \ldots, k\right\}$ be a given bilinear-free set k
$\bigvee\left(g_{i}^{T} \xi \geq g_{i 0}\right)$ be the disjunction to be satisfied by all feas. sol.s $i=1$

Numerically safe ICs

A single valid inequality can be obtained by taking, for each variable, the worst LHS Coefficient (and RHS) in each disjunction

To be applied to a reduced form of each disjunction where the coefficient of all basic variables is zero (kind of LP reduced costs)

$$
\begin{aligned}
& \bigvee_{i=1}^{k}\left(g_{i}^{T} \xi \geq g_{i 0}\right) \\
& \bigvee_{i=1}^{k}\left(\bar{g}_{i}^{T} \xi \geq \bar{g}_{i 0}\right) \\
& \bigvee_{i=1}^{k}\left(\frac{\bar{g}_{i}^{T}}{\bar{g}_{i 0}} \xi \geq 1\right)
\end{aligned}
$$

```
Algorithm 1: Intersection cut separation
    Input : An LP vertex \(\xi^{*}\) along with its a associated LP basis \(\hat{B}\);
        valid disjunction \(\bigvee_{i=1}^{k}\left(g_{i}^{T} \xi \geq g_{i 0}\right)\) whose members are violated by \(\xi^{*}\);
    Output: A valid intersection cut violated by \(\xi^{*}\);
1 for \(i:=1\) to \(k\) do
\(2 \mid\left(\bar{g}_{i}^{T}, \bar{g}_{i 0}\right):=\left(g_{i}^{T}, g_{i 0}\right)-u_{i}^{T}(\hat{A}, \hat{b})\), where \(u_{i}^{T}=\left(g_{i}\right)_{\hat{B}}^{T} \hat{B}^{-1}\)
3 end
4 for \(j:=1\) to \(n\) do \(\gamma_{j}:=\max \left\{\bar{g}_{i j} / \bar{g}_{i 0}: i \in\{1, \ldots, k\}\right\}\);
5 return the violated cut \(\gamma^{T} \xi \geq 1\)
```

 the feasible-free polyhedron \(S=\left\{\xi: g_{i}^{T} \xi \leq g_{0 i}, i=1, \ldots, k\right\}\) and the associated

Computational analysis

- Three algorithms under comparison
\checkmark SCIP: the general-purpose solver SCIP (vers. 5.0.1 using CPLEX 12.8 as LP solver + IPOPT 3.12 .9 as nonlinear solver)
\checkmark basic: our branch-and-cut algorithm without intersection cuts
\checkmark with-IC: intersection cuts separated at each node where the LP solution is integral
- Single-thread runs (parallel runs not allowed in SCIP) with a time limit of 1 hour on a standard PC Intel @ 3.10 GHz with 16 GB ram
- Testbed: all quadratic instances in MINLPlib (700+ instances) but some instances removed as root LP was unbounded $\rightarrow \mathbf{6 2 0}$ instances left, $\mathbf{4 0 8}$ of which solved by all methods in 1 hour

Results

Figure 1: Performance profile comparison of basic, SCIP and with-IC, on the 408 MINLPlib instances that could be solved by at least one method in the 1-hour time limit (time shift of 1 sec .)

Results (without small instances)

Figure 3: Performance profile comparison of basic, SCIP and with-IC as in Figure 1, when small instances are removed (time shift of 1 sec .)

ICs can make a difference!

Instance	SCIP	basic	with-IC
blend531	234.21	3600.00	31.05
crudeoil_lee4_09	89.12	9.83	2.21
portfol_classical050_1	57.03	54.37	33.26
powerflow0009r	3600.00	3600.00	969.12
powerflow0014r	3600.00	3600.00	302.77
sporttournament14	3600.00	182.41	125.50
squfl015-080	3600.00	238.53	137.32
squfl025-030	3600.00	44.46	18.72
turkey	61.19	3600.00	0.11

Table 4: Selected instances for which adding intersection cuts is highly beneficial.

Thanks for your attention!

Paper available at
Slides available at
http://www.dei.unipd.it/~fisch/papers/
http://www.dei.unipd.it/~fisch/papers/slides/

