Intersection cuts from bilinear disjunctions

Matteo Fischetti, University of Padova (joint work with Michele Monaci, University of Bologna)

MIQP as a MILP with bilinear eq.s

• We consider the Mixed-Integer Quadratic Problem (MIQP)

$$\begin{array}{ll} (MIQP) & \min a_0^T x + x^T Q^0 x \\ & a_k^T x + x^T Q^k \, x \, @ \, b, \quad k = 1, \ldots, m \\ & \ell_j \leq x_j \leq u_j, \qquad j = 1, \ldots, n \\ & x_j \text{ integer}, \qquad j \in \mathcal{I}, \\ & x_j \text{ continuous}, \qquad j \in \mathcal{C}, \end{array}$$

restated as Mixed-Integer Bilinear Problem (MIBLP)

$$\begin{array}{ll} (MIBLP) & \min_{x} c^{T}x \\ & Ax = b \\ \ell_{j} \leq x_{j} \leq u_{j}, \quad j = 1, \ldots, n \\ & x_{j} \text{ integer}, \quad j \in \mathcal{I} \\ & x_{j} \text{ continuous}, \quad j \in \mathcal{C} \\ & x_{r_{k}} = x_{p_{k}} x_{q_{k}}, \quad k = 1, \ldots, K, \end{array}$$

Intersection Cuts (ICs)

 Intersection cuts (Balas, 1971): a powerful tool to separate a point x* from a set X by a liner cut

- All you need is
 - a **cone** pointed at \mathbf{x}^* containing all $\mathbf{x} \in \mathbf{X}$
 - a convex set S with x^* (but no x ϵ X) in its interior
- If x* vertex of an LP relaxation, a suitable cone comes for the LP basis

Bilinear-free sets

Observation: given an infeasible point x*, any branching disjunction violated by x* implicitly defines a convex set S with x* (but no feasible x) in its <u>interior</u>

$$\bigvee_{i=1}^k (g_i^T x \ge g_{i0}) \quad \rightarrow \quad S = \{x : g_i^T x \le g_{0i}, \ i = 1, \dots, k\}$$

- Thus, in principle, one could always generate an IC instead of branching → not always advisable because of numerical issues, slow convergence, tailing off, cut saturation, etc. #LikeGomoryCuts
- Candidate branching disjunctions (supplemented by MC cuts) are the 1- and 2-level (possibly shifted) spatial branching conditions:

$$(x \le x^*) \lor (x \ge x^*)$$

 $(x\leq x^*,y\leq y^*)\vee(x\leq x^*,y\geq y^*)\vee(x\geq x^*,y\leq y^*)\vee(x\geq x^*,y\geq y^*)$

IC separation issues

 IC separation can be probematic, as we need to read the cone rays from the LP tableau → numerical accuracy can be a big issue here!

• Notation: consider w.l.o.g. an LP in standard form (no var. ub's) and let

$$\min\{\hat{c}^T\xi:\hat{A}\xi=\hat{b},\xi\geq 0\}$$
 be the LP relaxation at a given node

$$S = \{\xi : g_i^T \xi \le g_{0i}, i = 1, ..., k\}$$
 be a given bilinear-free set
 $\bigvee_{i=1}^k (g_i^T \xi \ge g_{i0})$ be the disjunction to be satisfied by all feas. sol.s

Numerically safe ICs

A **single** valid inequality can be obtained by taking, for each variable, the worst LHS Coefficient (and RHS) in each disjunction

To be applied to a **reduced form** of each disjunction where the coefficient of all basic variables is zero (kind of LP reduced costs)

$$\bigvee_{i=1}^{k} (g_i^T \xi \ge g_{i0})$$
$$\bigvee_{i=1}^{k} (\overline{g}_i^T \xi \ge \overline{g}_{i0})$$

Algorithm 1: Intersection cut separation

Input : An LP vertex ξ^* along with its a associated LP basis \hat{B} ; the feasible-free polyhedron $S = \{\xi : g_i^T \xi \leq g_{0i}, i = 1, ..., k\}$ and the associated

valid disjunction $\bigvee_{i=1}^{k} (g_i^T \xi \ge g_{i0})$ whose members are violated by ξ^* ;

Output: A valid intersection cut violated by ξ^* ;

1 for
$$i := 1$$
 to k do
2 $| (\overline{g}_i^T, \overline{g}_{i0}) := (g_i^T, g_{i0}) - u_i^T(\hat{A}, \hat{b})$, where $u_i^T = (g_i)_{\hat{B}}^T \hat{B}^{-1}$

3 end

4 for
$$j := 1$$
 to n do $\gamma_j := \max\{\overline{g}_{ij} / \overline{g}_{i0} : i \in \{1, ..., k\}\};$

5 return the violated cut $\gamma^T \xi \geq 1$

Computational analysis

- Three algorithms under comparison
 - ✓ SCIP: the general-purpose solver SCIP (vers. 5.0.1 using CPLEX 12.8 as LP solver + IPOPT 3.12.9 as nonlinear solver)
 - ✓ **basic**: our branch-and-cut algorithm <u>without</u> intersection cuts
 - with-IC: intersection cuts separated at each node where the LP solution is integral
- Single-thread runs (parallel runs not allowed in SCIP) with a time limit of 1 hour on a standard PC Intel @ 3.10 GHz with 16 GB ram
- **Testbed**: all quadratic instances in **MINLPlib** (700+ instances) but some instances removed as root LP was **unbounded**
 - \rightarrow 620 instances left, 408 of which solved by all methods in 1 hour

Results

Figure 1: Performance profile comparison of basic, SCIP and with-IC, on the 408 MINLPlib instances that could be solved by at least one method in the 1-hour time limit (time shift of 1 sec.)

Results (without small instances)

Figure 3: Performance profile comparison of basic, SCIP and with-IC as in Figure 1, when small instances are removed (time shift of 1 sec.)

ICs can make a difference!

Instance	SCIP	basic	with-IC
blend531	234.21	3600.00	31.05
$crudeoil_lee4_09$	89.12	9.83	2.21
$portfol_{classical050_{-}1}$	57.03	54.37	33.26
powerflow0009r	3600.00	3600.00	969.12
powerflow0014r	3600.00	3600.00	302.77
sporttournament 14	3600.00	182.41	125.50
squfl015-080	3600.00	238.53	137.32
squfl025-030	3600.00	44.46	18.72
turkey	61.19	3600.00	0.11

Table 4: Selected instances for which adding intersection cuts is highly beneficial.

Thanks for your attention!

Paper available at

http://www.dei.unipd.it/~fisch/papers/

Slides available at

http://www.dei.unipd.it/~fisch/papers/slides/

