Intersection Cuts from Bilinear Disjunctions

Matteo Fischetti, University of Padova (joint work with Michele Monaci, University of Bologna)

Non-convex MIQP

- Goal: implement a Mixed-Integer (non-convex) Quadratic solver
- Two approaches:

start with a continuous QP solver and add enumeration on top of it
 → implement B&B to handle integer var.s

2. start with a MILP solvers (B&C) and customize it to handle the non-convex quadratic terms → add McCormick & spatial branching PROS: ...
CONS: ...

• This talk goes for 2.

MIQP as a **MILP** with bilinear eq.s

• The fully-general MIQP of interest reads

$$\begin{array}{ll} (MIQP) & \min a_0^T x + x^T Q^0 x \\ & a_k^T x + x^T Q^k \, x \, @ \, b, \quad k = 1, \ldots, m \\ & \ell_j \leq x_j \leq u_j, \qquad j = 1, \ldots, n \\ & x_j \text{ integer}, \qquad j \in \mathcal{I}, \\ & x_j \text{ continuous}, \qquad j \in \mathcal{C}, \end{array}$$

and can be restated as

$$egin{aligned} (MIBLP) & \min_x c^T x \ & Ax = b \ & \ell_j \leq x_j \leq u_j, \quad j = 1, \dots, n \ & x_j ext{ integer}, \quad j \in \mathcal{I} \ & x_j ext{ continuous}, \quad j \in \mathcal{C} \ & x_{r_k} = x_{p_k} x_{q_k}, \quad k = 1, \dots, K \end{aligned}$$

McCormick inequalities

• To simplify notation, rewrite the generic bilevel eq. $x_{r_k} = x_{p_k} x_{q_k}$ as:

$$egin{aligned} z &= x\,y \ \ell_x &\leq x \leq u_x \ \ell_y &\leq y \leq u_y \end{aligned}$$

• Obviously $(x - \ell_x)(y - \ell_y) \ge 0 \qquad \text{mc1} \qquad z \ \ge \ell_y x + \ell_x y - \ell_x \ell_y \\ (x - u_x)(y - u_y) \ge 0 \qquad \rightarrow \qquad \text{mc2} \qquad z \ \ge u_y x + u_x y - u_x u_y \\ (x - \ell_x)(y - u_y) \le 0 \qquad \qquad \text{mc3} \qquad z \ \le u_y x + \ell_x y - \ell_x u_y \\ (x - u_x)(y - \ell_y) \le 0 \qquad \qquad \text{mc4} \qquad z \ \le \ell_y x + u_x y - u_x \ell_y$

(just replace xy by z in the products on the left)

• Note: mc1) and mc2) can be improved in case $x=y \rightarrow$ gradients cuts

$$z \ge x_0^2 + 2x_0(x - x_0), \text{ for each } x_0 \in \Re$$

Spatial branching

- McCormick inequalities are not perfect

 → they are tight only when x and/or y
 are at their lower/upper bound
- $egin{aligned} & (x-\ell_x)(y-\ell_y) \geq 0 \ & (x-u_x)(y-u_y) \geq 0 \ & (x-\ell_x)(y-u_y) \leq 0 \ & (x-u_x)(y-\ell_y) \leq 0 \end{aligned}$

→ at some B&C nodes, it may happen that the current (fractional or integer) solution satisfies **all** MC inequalities but some bilinear eq.s z = xy are still violated (we call this **#bilinear_infeasibility**)

→ we need a **bilinear-specific branching** (the usual MILP branching on integrality does not work if all var.s are integer already)

• Standard Spatial Branching: if $z^* = x^* y^*$ is violated, branch on $(x \le x^*) OR (x \ge x^*)$

to make the upper (resp. lower) bound on *x* tight at the left (resp. right) child node – thus improving the corresponding MC inequality

A new branching rule

• Shifted Spatial Branching: let $\rho^* := z^* - x^* y^*$; if $\rho^* > 0$, branch on

$(x \leq x^* - \delta) OR (x \geq x^* - \delta)$

where δ is defined so as to **balance** the violation of the two child nodes (case $\rho^* < 0$ is similar)

- Left branch $(u_x = x^* \delta) \rightarrow violation of \delta$ of the upper bound u_x
- Right branch $(l_x = x^* \delta) \rightarrow violation of \delta$ for the MC ineq. $(x - x^* + \delta)(y - u_y) \leq 0$ by choosing $\delta = \rho^*/(1 + u_y - y^*)$
- New Branching Rule: among all violated z* = x* y*, select the one maximizing the balanced violation δ

The branching procedure

Algorithm 1: Our branching procedure

Input : The bilinear-infeasible point x* and the variable bounds (ℓ, ū) at the current node; the tolerance value ε for constraint violation;
Output: The branching variable x_{bvar} and the corresponding threshold value θ for spatial branching;
1 δ := -∞; bvar := -1; θ := 0;
2 for each k ∈ {1,..., K} with |x^{*}_{rk} - x^{*}_{pk} x^{*}_{qk}| > ε do
3 | branch_score(x*, ℓ, ū, p_k, q_k, z_k, bvar, δ, θ);
4 | branch_score(x*, ℓ, ū, q_k, p_k, z_k, bvar, δ, θ);
5 end
6 if (θ < ℓ_{bvar} + ε or θ > ū_{bvar} - ε) then θ := (ℓ_{bvar} + ū_{bvar})/2 endif;
7 return (bvar, θ);

Algorithm 2: function branch_score(x^* , $\overline{\ell}$, \overline{u} , ix, iy, iz, bvar, δ , θ)

 $\begin{array}{l} \rho^* = x_{ix}^* - x_{ix}^* x_{iy}^*;\\ \text{if } (\rho^* < -\varepsilon/2) \text{ then } // x_{iz}^* \text{ is too small: use McCormick ineq.s mc1 or mc2 to increase it}\\ \\ d := -\rho^*/(1 + x_{iy}^* - \bar{\ell}_{iy});\\ \text{ if } (d > \delta) \text{ then bvar} := ix, \ \theta := x_{ix}^* - d, \ \delta := d \text{ endif};\\ d := -\rho^*/(1 + \bar{u}_{iy} - x_{iy}^*);\\ \text{ if } (d > \delta) \text{ then bvar} := ix, \ \theta := x_{ix}^* + d, \ \delta := d \text{ endif};\\ \text{else } // x_{iz}^* \text{ is too large: use McCormick ineq.s mc3 or mc4 to reduce it}\\ \\ d := -\rho^*/(1 + \bar{u}_{iy} - x_{iy}^*);\\ \text{ if } (d > \delta) \text{ then bvar} := ix, \ \theta := x_{ix}^* - d, \ \delta = d \text{ endif};\\ d := \rho^*/(1 + x_{iy}^* - \bar{\ell}_{iy});\\ \text{ if } (d > \delta) \text{ then bvar} := ix, \ \theta := x_{ix}^* + d, \ \delta := d \text{ endif};\\ d := \rho^*/(1 + x_{iy}^* - \bar{\ell}_{iy});\\ \text{ if } (d > \delta) \text{ then bvar} := ix, \ \theta := x_{ix}^* + d, \ \delta := d \text{ endif};\\ end \end{array}$

Intersection Cuts (ICs)

 Intersection cuts (Balas, 1971): a powerful tool to separate a point x* from a set X by a liner cut

- All you need is (love, but also)
 - a **cone** pointed at \mathbf{x}^* containing all $\mathbf{x} \in \mathbf{X}$
 - a convex set S with x^* (but no x ϵ X) in its interior
- If x* vertex of an LP relaxation, a suitable cone comes for the LP basis

Bilinear-free sets

Observation: given an infeasible point x*, any branching disjunction violated by x* implicitly defines a convex set S with x* (but no feasible x) in its <u>interior</u>

$$\bigvee_{i=1}^{k} (g_i^T x \ge g_{i0}) \quad \rightarrow \quad S = \{x : g_i^T x \le g_{0i}, \ i = 1, \dots, k\}$$

- Thus, in principle, one could always generate an IC instead of branching → not always advisable because of numerical issues, slow convergence, tailing off, cut saturation, etc. #LikeGomoryCuts
- Candidate branching disjunctions (supplemented by MC cuts) are the 1- and 2-level (possibly shifted) spatial branching conditions:

$$(x \le x^*) \lor (x \ge x^*)$$

$$(x \le x^*, y \le y^*) \lor (x \le x^*, y \ge y^*) \lor (x \ge x^*, y \le y^*) \lor (x \ge x^*, y \ge y^*)$$

IC separation issues

- IC separation can be probematic, as we need to read the cone rays from the LP tableau → numerical accuracy can be a big issue here!
- For MILPs, ICs like Gomory cuts are not mandatory (so we can skip their generation in case of numerical problems), but for MIBLPs they are more instrumental #SeparateOrPerish
- **Notation**: consider w.l.o.g. an LP in standard form and no var. ub's

 $\min\{\hat{c}^T\xi:\hat{A}\xi=\hat{b},\xi\geq 0\}$ be the LP relaxation at a given node

$$S = \{\xi : g_i^T \xi \le g_{0i}, i = 1, ..., k\}$$
 be the bilevel-free set
 $\bigvee_{i=1}^k (g_i^T \xi \ge g_{i0})$ be the disjunction to be satisfied by all feas. sol.s

Numerically safe ICs

A **single** valid inequality can be obtained by taking, for each variable, the worst LHS Coefficient (and RHS) in each disjunction

To be applied to a **reduced form** of each disjunction where the coefficient of all basic variables is zero (kind of LP reduced costs)

$$\bigvee_{i=1}^{k} (g_i^T \xi \ge g_{i0})$$
$$\bigvee_{i=1}^{k} (\overline{g}_i^T \xi \ge \overline{g}_{i0})$$

$$\bigvee_{i=1}^{k} (\frac{\overline{g}_{i}^{T}}{\overline{g}_{i0}} \xi \ge 1)$$

Algorithm 1: Intersection cut separation

Input : An LP vertex ξ^* along with its a associated LP basis \hat{B} ;

the feasible-free polyhedron $S = \{\xi : g_i^T \xi \leq g_{0i}, i = 1, ..., k\}$ and the associated valid disjunction $\bigvee_{i=1}^k (g_i^T \xi \geq g_{i0})$ whose members are violated by ξ^* ;

Output: A valid intersection cut violated by ξ^* ;

1 for i := 1 to k do 2 $| (\overline{g}_i^T, \overline{g}_{i0}) := (g_i^T, g_{i0}) - u_i^T(\hat{A}, \hat{b})$, where $u_i^T = (g_i)_{\hat{B}}^T \hat{B}^{-1}$ 3 end 4 for j := 1 to n do $\gamma_j := \max\{\overline{g}_{ij}/\overline{g}_{i0} : i \in \{1, \dots, k\}\}$; 5 return the violated cut $\gamma^T \xi \ge 1$

B&C implementation

- Implementation using **IBM ILOG Cplex 12.8** using callbacks:
 - Lazy constraint callback: separation of MC inequalities for integer sol.s
 - **Usercut callback**: not needed (and sometimes detrimental)
 - **Branch callback:** our new spatial branching
 - Incumbent callback: very-last resort to kill a bilinear-infeasible integer solution (when everything else fails e.g. because of tolerances)
 - MILP heuristics (kindly provided by the MILP solver): active at their default level
 - MIQP-specific heuristics: not implemented yet

Computational analysis

- Three algorithms under comparison
 - ✓ SCIP: the general-purpose solver SCIP (vers. 5.0.1 using CPLEX 12.8 as LP solver + IPOPT 3.12.9 as nonlinear solver)
 - ✓ **basic**: our branch-and-cut algorithm <u>without</u> intersection cuts
 - ✓ with-IC: intersection cuts separated at each node where the LP solution is integral
- Single-thread runs (parallel runs not allowed in SCIP) with a time limit of 1 hour on a standard PC Intel @ 3.10 GHz with 16 GB ram
- **Testbed**: all quadratic instances in **MINLPlib** (700+ instances) ...
 - ... but some instances removed as root LP was **unbounded**
 - → 620 instances left, 248 of which solved by all methods in 1 hour

Results

	S	CIP			ba	asic		with-IC			
# opt	#fast	$\mathrm{T}_{\mathrm{ari}}$	$T_{\rm geo}$	#opt	#fast	T_{ari}	T_{geo}	#opt	#fast	T_{ari}	T_{geo}
378	224	1480.58	34.45	328	156	1744.56	53.04	323	58	1787.33	67.93

Table 1: Results on 620 instances from the MINLPlib.

		SCIP			basic			with-IC			
Class	Time	#inst	#fast	T_{ari}	T_{geo}	#fast	T_{ari}	T_{geo}	#fast	T_{ari}	T_{geo}
	Range										
$\overline{G_1}$	(0,3600]	248	123	81.23	0.90	108	76.39	0.77	34	84.46	1.15
G_2	(1, 3600]	118	37	170.65	8.19	62	160.48	6.05	22	177.42	10.67
G_3	(10, 3600]	78	26	256.84	21.14	38	242.15	17.36	16	267.51	33.02
G_4	(100, 3600]	41	20	464.30	34.33	15	449.58	87.02	6	489.46	105.46
G_5	(1000, 3600]	12	5	1153.15	154.94	5	789.24	66.83	2	954.65	84.14

Table 3: Results on the 248 MINLPlib instances than can be solved by all methods within the 1-hour time limit.

More statistics

			SCIP			basic			with-IC		
Class	Time	#inst	#fast	T_{ari}	T_{geo}	#fast	T_{ari}	T_{geo}	#fast	T_{ari}	T_{geo}
	Range										
$\overline{C_1}$	(0,1]	130	86	0.07	0.05	46	0.06	0.05	12	0.09	0.08
C_2	(1,10]	40	11	2.58	1.22	24	1.23	0.70	6	1.74	1.10
C_3	(10,100]	37	6	26.95	12.34	23	12.30	2.84	10	21.57	9.07
C_4	(100, 1000]	29	15	179.26	18.38	10	309.03	97.06	4	296.96	115.79
C_5	(1000, 3600]	12	5	1153.15	154.94	5	789.24	66.83	2	954.65	84.14
ALL	(0, 3600]	248	123	81.23	0.90	108	76.39	0.77	34	84.46	1.15

Table 2: Results on the 248 MINLPlib instances than can be solved by all methods within the 1-hour time limit.

ICs can make a difference

Instance	SCIP	basic	with-IC
blend531	234.21	3600.00	31.05
$crudeoil_lee4_09$	89.12	9.83	2.21
$portfol_{classical050_{-}1}$	57.03	54.37	33.26
powerflow0009r	3600.00	3600.00	969.12
powerflow0014r	3600.00	3600.00	302.77
sporttournament 14	3600.00	182.41	125.50
squfl015-080	3600.00	238.53	137.32
squfl025-030	3600.00	44.46	18.72
turkey	61.19	3600.00	0.11

Table 4: Selected instances for which adding intersection cuts is highly beneficial.

Thanks for your attention!

Paper available at

http://www.dei.unipd.it/~fisch/papers/

Slides available at

http://www.dei.unipd.it/~fisch/papers/slides/

