Intersection Cuts from Bilinear Disjunctions

Matteo Fischetti, University of Padova (joint work with Michele Monaci, University of Bologna)

Non-convex MIQP

- Goal: implement a Mixed-Integer (non-convex) Quadratic solver
- Two approaches:

1. start with a continuous QP solver and add enumeration on top of it
\rightarrow implement B\&B to handle integer var.s
2. start with a MILP solvers (B\&C) and customize it to handle the non-convex quadratic terms \rightarrow add McCormick \& spatial branching PROS: ... CONS: ...

- This talk goes for 2.

MIQP as a MILP with bilinear eq.s

- The fully-general MIQP of interest reads

$$
\begin{array}{ccl}
(M I Q P) \quad & \min a_{0}^{T} x+x^{T} Q^{0} x & \\
a_{k}^{T} x+x^{T} Q^{k} x @ b, & k=1, \ldots, m \\
\ell_{j} \leq x_{j} \leq u_{j}, & j=1, \ldots, n \\
x_{j} \text { integer, } & j \in \mathcal{I}, \\
& x_{j} \text { continuous, } & j \in \mathcal{C},
\end{array}
$$

and can be restated as

$$
\begin{array}{ccl}
(M I B L P) & \min _{x} c^{T} x & \\
& A x=b & \\
\ell_{j} \leq x_{j} \leq u_{j}, & j=1, \ldots, n \\
x_{j} \text { integer, } & j \in \mathcal{I} \\
x_{j} \text { continuous, } & j \in \mathcal{C} \\
x_{r_{k}}=x_{p_{k}} x_{q_{k}}, & k=1, \ldots, K,
\end{array}
$$

McCormick inequalities

- To simplify notation, rewrite the generic bilevel eq. $x_{r_{k}}=x_{p_{k}} x_{q_{k}}$ as:

$$
\begin{gathered}
z=x y \\
\ell_{x} \leq x \leq u_{x} \\
\ell_{y} \leq y \leq u_{y}
\end{gathered}
$$

- Obviously

$$
\begin{array}{rllll}
\left(x-\ell_{x}\right)\left(y-\ell_{y}\right) \geq 0 \\
\left(x-u_{x}\right)\left(y-u_{y}\right) \geq 0 \\
\left(x-\ell_{x}\right)\left(y-u_{y}\right) \leq 0 \\
\left(x-u_{x}\right)\left(y-\ell_{y}\right) \leq 0
\end{array} \quad \rightarrow \quad \begin{array}{lll}
\mathrm{mc} 1) & z & \geq \ell_{y} x+\ell_{x} y-\ell_{x} \ell_{y} \\
\mathrm{mc} 2) & z & \geq u_{y} x+u_{x} y-u_{x} u_{y} \\
\mathrm{mc} 3) & z & \leq u_{y} x+\ell_{x} y-\ell_{x} u_{y} \\
\mathrm{mc} 4) & z & \leq \ell_{y} x+u_{x} y-u_{x} \ell_{y}
\end{array}
$$

(just replace $x y$ by z in the products on the left)

- Note: mc1) and mc2) can be improved in case $x=y \rightarrow$ gradients cuts

$$
z \geq x_{0}^{2}+2 x_{0}\left(x-x_{0}\right), \quad \text { for each } x_{0} \in \Re
$$

Spatial branching

- McCormick inequalities are not perfect
\rightarrow they are tight only when x and/or y are at their lower/upper bound

$$
\begin{aligned}
\left(x-\ell_{x}\right)\left(y-\ell_{y}\right) & \geq 0 \\
\left(x-u_{x}\right)\left(y-u_{y}\right) & \geq 0 \\
\left(x-\ell_{x}\right)\left(y-u_{y}\right) & \leq 0 \\
\left(x-u_{x}\right)\left(y-\ell_{y}\right) & \leq 0
\end{aligned}
$$

\rightarrow at some B\&C nodes, it may happen that the current (fractional or integer) solution satisfies all MC inequalities but some bilinear eq.s $z=x y$ are still violated (we call this \#bilinear_infeasibility)
\rightarrow we need a bilinear-specific branching (the usual MILP branching on integrality does not work if all var.s are integer already)

- Standard Spatial Branching: if $z^{*}=x^{*} y^{*}$ is violated, branch on

$$
\left(x \leq x^{*}\right) O R\left(x \geq x^{*}\right)
$$

to make the upper (resp. lower) bound on x tight at the left (resp. right) child node - thus improving the corresponding MC inequality

A new branching rule

- Shifted Spatial Branching: let $\rho^{*}:=z^{*}-x^{*} y^{*}$; if $\rho^{*}>0$, branch on

$$
\left(x \leq x^{*}-\delta\right) \text { OR }\left(x \geq x^{*}-\delta\right)
$$

where $\boldsymbol{\delta}$ is defined so as to balance the violation of the two child nodes (case $\rho^{*}<0$ is similar)

- Left branch $\left(u_{x}=x^{*}-\delta\right) \rightarrow$ violation of $\boldsymbol{\delta}$ of the upper bound u_{x}
- Right branch $\left(I_{x}=x^{*}-\delta\right) \rightarrow$ violation of $\boldsymbol{\delta}$ for the MC ineq. $\left(x-x^{*}+\delta\right)\left(y-u_{y}\right) \leq 0$ by choosing $\delta=\rho^{*} /\left(1+u_{y}-y^{*}\right)$
- New Branching Rule: among all violated $z^{*}=x^{*} y^{*}$, select the one maximizing the balanced violation $\boldsymbol{\delta}$

The branching procedure

```
Algorithm 1: Our branching procedure
    Input : The bilinear-infeasible point }\mp@subsup{x}{}{*}\mathrm{ and the variable bounds ( }\overline{\ell},\overline{u})\mathrm{ at the
            current node; the tolerance value }\varepsilon\mathrm{ for constraint violation;
    Output: The branching variable }\mp@subsup{x}{\mathrm{ bvar }}{}\mathrm{ and the corresponding threshold value }0\mathrm{ for
            spatial branching;
```



```
2 for each }k\in{1,\ldots,K}\mathrm{ with }|\mp@subsup{x}{\mp@subsup{r}{k}{}}{*}-\mp@subsup{x}{\mp@subsup{p}{k}{}}{*}\mp@subsup{x}{\mp@subsup{q}{k}{}}{*}|>\varepsilon d
            branch_score ( }\mp@subsup{x}{}{*},\overline{\ell},\overline{u},\mp@subsup{p}{k}{},\mp@subsup{q}{k}{},\mp@subsup{z}{k}{},\mathrm{ bvar, }\delta,0)
            branch_score( }\mp@subsup{x}{}{*},\overline{\ell},\overline{u},\mp@subsup{q}{k}{},\mp@subsup{p}{k}{},\mp@subsup{z}{k}{},\mathrm{ bvar, }\delta,0)
    end
    if ( }0<\mp@subsup{\overline{\ell}}{\textrm{bvar}}{}+\varepsilon\mathrm{ or }0>\mp@subsup{\overline{u}}{\textrm{bvar}}{}-\varepsilon)\mathrm{ then }0:=(\mp@subsup{\overline{\ell}}{\textrm{bvar}}{}+\mp@subsup{\overline{u}}{\textrm{bvar}}{})/2\mathrm{ endif;
7 return (bvar, 0);
```

```
Algorithm 2: function branch_score \(\left(x^{*}, \bar{\ell}, \bar{u}, i x, i y, i z\right.\), bvar, \(\left.\delta, \theta\right)\)
    \(\rho^{*}=x_{i z}^{*}-x_{i x}^{*} x_{i y}^{*} ;\)
    if \(\left(\rho^{*}<-\varepsilon / 2\right)\) then \(/ / x_{i z}^{*}\) is too small: use McCormick ineq.s mc1 or mc2 to
    increase it
        \(d:=-\rho^{*} /\left(1+x_{i y}^{*}-\bar{\ell}_{i y}\right) ;\)
        if \((d>\delta)\) then bvar \(:=i x, \theta:=x_{i x}^{*}-d, \delta:=d\) endif;
        \(d:=-\rho^{*} /\left(1+\bar{u}_{i y}-x_{i y}^{*}\right)\);
        if \((d>\delta)\) then \(\operatorname{bvar}:=i x, \theta:=x_{i x}^{*}+d, \delta:=d\) endif;
    else // \(x_{i z}^{*}\) is too large: use McCormick ineq.s mc3 or mc4 to reduce it
        \(d:=\rho^{*} /\left(1+\bar{u}_{i y}-x_{i y}^{*}\right) ;\)
        if \((d>\delta)\) then bvar \(:=i x, \theta:=x_{i x}^{*}-d, \delta=d\) endif;
        \(d:=\rho^{*} /\left(1+x_{i y}^{*}-\bar{\ell}_{i y}\right)\);
        if \((d>\delta)\) then bvar \(:=i x, \theta:=x_{i x}^{*}+d, \delta:=d\) endif;
    end
```


Intersection Cuts (ICs)

- Intersection cuts (Balas, 1971): a powerful tool to separate a point \mathbf{x}^{*} from a set \mathbf{X} by a liner cut

- All you need is (love, but also)
- a cone pointed at \mathbf{x}^{*} containing all $\mathbf{x} \boldsymbol{\varepsilon} \mathbf{X}$
- a convex set S with x^{*} (but no $\mathbf{x} \boldsymbol{\varepsilon} \mathbf{X}$) in its interior
- If x^{*} vertex of an LP relaxation, a suitable cone comes for the LP basis

Bilinear-free sets

- Observation: given an infeasible point x^{*}, any branching disjunction violated by x^{*} implicitly defines a convex set S with x^{*} (but no feasible x) in its interior

$$
\bigvee^{k}\left(g_{i}^{T} x \geq g_{i 0}\right) \quad \rightarrow \quad S=\left\{x: g_{i}^{T} x \leq g_{0 i}, i=1, \ldots, k\right\}
$$

- Thus, in principle, one could always generate an IC instead of branching \rightarrow not always advisable because of numerical issues, slow convergence, tailing off, cut saturation, etc. \#LikeGomoryCuts
- Candidate branching disjunctions (supplemented by MC cuts) are the 1 - and 2 -level (possibly shifted) spatial branching conditions:

$$
\begin{gathered}
\left(x \leq x^{*}\right) \vee\left(x \geq x^{*}\right) \\
\left(x \leq x^{*}, y \leq y^{*}\right) \vee\left(x \leq x^{*}, y \geq y^{*}\right) \vee\left(x \geq x^{*}, y \leq y^{*}\right) \vee\left(x \geq x^{*}, y \geq y^{*}\right)
\end{gathered}
$$

IC separation issues

- IC separation can be probematic, as we need to read the cone rays from the LP tableau \rightarrow numerical accuracy can be a big issue here!
- For MILPs, ICs like Gomory cuts are not mandatory (so we can skip their generation in case of numerical problems), but for MIBLPs they are more instrumental \#SeparateOrPerish
- Notation: consider w.l.o.g. an LP in standard form and no var. ub's
$\min \left\{\hat{c}^{T} \xi: \hat{A} \xi=\hat{b}, \xi \geq 0\right\}$ be the LP relaxation at a given node
$S=\left\{\xi: g_{i}^{T} \xi \leq g_{0 i}, i=1, \ldots, k\right\}$ be the bilevel-free set
$\bigvee_{i=1}^{k}\left(g_{i}^{T} \xi \geq g_{i 0}\right)$ be the disjunction to be satisfied by all feas. sol.s

Numerically safe ICs

A single valid inequality can be obtained by taking, for each variable, the worst LHS Coefficient (and RHS) in each disjunction

$$
\begin{aligned}
& \bigvee_{i=1}^{k}\left(g_{i}^{T} \xi \geq g_{i 0}\right) \\
& \bigvee_{i=1}^{k}\left(\bar{g}_{i}^{T} \xi \geq \bar{g}_{i 0}\right)
\end{aligned}
$$

To be applied to a reduced form of each disjunction where the coefficient of all basic variables is zero (kind of LP reduced costs)
$\bigvee_{i=1}^{k}\left(\frac{\bar{g}_{i}^{T}}{\bar{g}_{i 0}} \xi \geq 1\right)$

```
Algorithm 1: Intersection cut separation
    Input : An LP vertex \(\xi^{*}\) along with its a associated LP basis \(\hat{B}\);
                valid disjunction \(\bigvee_{i=1}^{k}\left(g_{i}^{T} \xi \geq g_{i 0}\right)\) whose members are violated by \(\xi^{*}\);
    Output: A valid intersection cut violated by \(\xi^{*}\);
1 for \(i:=1\) to \(k\) do
\(2 \mid\left(\bar{g}_{i}^{T}, \bar{g}_{i 0}\right):=\left(g_{i}^{T}, g_{i 0}\right)-u_{i}^{T}(\hat{A}, \hat{b})\), where \(u_{i}^{T}=\left(g_{i}\right)_{\hat{B}}^{T} \hat{B}^{-1}\)
3 end
4 for \(j:=1\) to \(n\) do \(\gamma_{j}:=\max \left\{\bar{g}_{i j} / \bar{g}_{i 0}: i \in\{1, \ldots, k\}\right\}\);
5 return the violated cut \(\gamma^{T} \xi \geq 1\)
```

 the feasible-free polyhedron \(S=\left\{\xi: g_{i}^{T} \xi \leq g_{0 i}, i=1, \ldots, k\right\}\) and the associated

B\&C implementation

- Implementation using IBM ILOG Cplex 12.8 using callbacks:
- Lazy constraint callback: separation of MC inequalities for integer sol.s
- Usercut callback: not needed (and sometimes detrimental)
- Branch callback: our new spatial branching
- Incumbent callback: very-last resort to kill a bilinear-infeasible integer solution (when everything else fails e.g. because of tolerances)
- MILP heuristics (kindly provided by the MILP solver): active at their default level
- MIQP-specific heuristics: not implemented yet

Computational analysis

- Three algorithms under comparison
\checkmark SCIP: the general-purpose solver SCIP (vers. 5.0.1 using CPLEX 12.8 as LP solver + IPOPT 3.12.9 as nonlinear solver)
\checkmark basic: our branch-and-cut algorithm without intersection cuts
\checkmark with-IC: intersection cuts separated at each node where the LP solution is integral
- Single-thread runs (parallel runs not allowed in SCIP) with a time limit of 1 hour on a standard PC Intel @ 3.10 GHz with 16 GB ram
- Testbed: all quadratic instances in MINLPlib (700+ instances) ...
... but some instances removed as root LP was unbounded
$\rightarrow \mathbf{6 2 0}$ instances left, 248 of which solved by all methods in 1 hour

Results

SCIP				basic				with-IC			
\#opt	\#fast	$\mathrm{T}_{\text {ari }}$	$\mathrm{T}_{\text {geo }}$	\#opt	\#fast	$\mathrm{T}_{\text {ari }}$	$\mathrm{T}_{\text {geo }}$	\#opt	\#fast	$\mathrm{T}_{\text {ari }}$	$\mathrm{T}_{\text {geo }}$
378	224	1480.58	34.45	328	156	1744.56	53.04	323	58	1787.33	67.93

Table 1: Results on 620 instances from the MINLPlib.

			SCIP			basic			with-IC		
Class	Time	\#inst	\#fast	$\mathrm{T}_{\text {ari }}$	$\mathrm{T}_{\text {geo }}$	\#fast	$\mathrm{T}_{\text {ari }}$	$\mathrm{T}_{\text {geo }}$	\#fast	$\mathrm{T}_{\text {ari }}$	$\mathrm{T}_{\text {geo }}$
	Range										
G_{1}	$(0,3600]$	248	123	81.23	0.90	108	76.39	0.77	34	84.46	1.15
G_{2}	$(1,3600]$	118	37	170.65	8.19	62	160.48	6.05	22	177.42	10.67
G_{3}	$(10,3600]$	78	26	256.84	21.14	38	242.15	17.36	16	267.51	33.02
G_{4}	$(100,3600]$	41	20	464.30	34.33	15	449.58	87.02	6	489.46	105.46
G_{5}	$(1000,3600]$	12	5	1153.15	154.94	5	789.24	66.83	2	954.65	84.14

Table 3: Results on the 248 MINLPlib instances than can be solved by all methods within the 1-hour time limit.

More statistics

		SCIP			basic			with-IC			
Class	Time	\#inst	\#fast	$\mathrm{T}_{\text {ari }}$	$\mathrm{T}_{\text {geo }}$	\#fast	$\mathrm{T}_{\text {ari }}$	$\mathrm{T}_{\text {geo }}$	\#fast	$\mathrm{T}_{\text {ari }}$	$\mathrm{T}_{\text {geo }}$
	Range										
C_{1}	$(0,1]$	130	86	0.07	0.05	46	0.06	0.05	12	0.09	0.08
C_{2}	$(1,10]$	40	11	2.58	1.22	24	1.23	0.70	6	1.74	1.10
C_{3}	$(10,100]$	37	6	26.95	12.34	23	12.30	2.84	10	21.57	9.07
C_{4}	$(100,1000]$	29	15	179.26	18.38	10	309.03	97.06	4	296.96	115.79
C_{5}	$(1000,3600]$	12	5	1153.15	154.94	5	789.24	66.83	2	954.65	84.14
ALL	$(0,3600]$	248	123	81.23	0.90	108	76.39	0.77	34	84.46	1.15

Table 2: Results on the 248 MINLPlib instances than can be solved by all methods within the 1-hour time limit.

ICs can make a difference

Instance	SCIP	basic	with-IC
blend531	234.21	3600.00	31.05
crudeoil_lee4_09	89.12	9.83	2.21
portfol_classical050_1	57.03	54.37	33.26
powerflow0009r	3600.00	3600.00	969.12
powerflow0014r	3600.00	3600.00	302.77
sporttournament14	3600.00	182.41	125.50
squfl015-080	3600.00	238.53	137.32
squfl025-030	3600.00	44.46	18.72
turkey	61.19	3600.00	0.11

Table 4: Selected instances for which adding intersection cuts is highly beneficial.

Thanks for your attention!

Paper available at
http://www.dei.unipd.it/~fisch/papers/
Slides available at
http://www.dei.unipd.it/~fisch/papers/slides/

Bellairs Workshop on Discrete Optimization, April 12-19, 2019

