Intersection Cuts for
Quadratic Mixed-Integer Optimization

Matteo Fischetti, University of Padova

Michele Monaci, University of Bologna

ODS 2019

INTERNATIONAL CONFERENCE ON
OPTIMIZATION AND DECISION SCIENCE

XLIX ANNUAL MEETING OF AIRO - ITALIAN OPERATIONS RESEARCH SOCIETY

GENOVA, ITALY, SEPTEMBER 4-7, 2019

ODS 2019, Genova, September 4-7, 2019 1

Non-convex MIQP

 Goal: implement a Mixed-Integer (non-convex) Quadratic solver
 Two approaches:

1. start with a continuous QP solver and add enumeration on top of it
- implement B&B to handle integer var.s

2. start with a MILP solvers (B&C) and customize it to handle the
non-convex quadratic terms - add McCormick & spatial branching

PROS: ...
CONS: ...

 This talk goes for 2.

ODS 2019, Genova, September 4-7, 2019 2

MIQP as a MILP with bilinear eq.s

» The fully-general MIQP of interest reads

(MIQP) minalz+zTQ%
alfz+2TQ*z@b, k=1,...,m

EjSCL‘jS’LLj, j:].,...,n
x; integer, 7 €L,
x; continuous, j €cC,
and can be restated as
(MIBLP) min, cl'z
Az =b

fjgiﬂjsu‘?, j:].,...,?'b
x; integer, je’l
z; continuous, j €C

Tr, = Tp, gy k=1,..., K,

ODS 2019, Genova, September 4-7, 2019

McCormick inequalities

« To simplify notation, rewrite the generic bilevel eq. z,, = z,, x4, as:

Z2=2xy
by <z <uy
by <y < uy
* Obviously (z —)y — £,) >0 mcl) z > lyx+Lyy — L0,
(x —ug)(y —uy) >0 =2 mc2) 2z > uyT+ uzly — Uzl
(x —L4e)(y —uy) <0 me3) z < uyx+ Lyy — Ly
(—uz)(y—4£,) <0 mcd) z < x4+ uzy — ugly

(just replace xy by z in the products on the left)

 Note: mcl) and mc2) can be improved in case x=y > gradients cuts

z > x5+ 2xo(x — 1), for each zg € R

ODS 2019, Genova, September 4-7, 2019

Spatial branching

* McCormick inequalities are not perfect (2 —Lz)(y —4y) 20
> they are tight only when x and/ory ~ ®~ ";migy N “y; i g

. T —Lg)\Y —Uy) >
are at their lower/upper bound (2 — w)(y — £,) <0

- at some B&C nodes, it may happen that the current (fractional or
Integer) solution satisfies all MC inequalities but some bilinear eq.s

z = xy are still violated (we call this #bilinear_infeasibility)

- we need a bilinear-specific branching (the usual MILP branching
on integrality does not work if all var.s are integer already)

« Standard Spatial Branching: if z* = x* y* is violated, branch on
(x £x*) OR (X 2 x*)
to make the upper (resp. lower) bound on x tight at the left (resp.
right) child node — thus improving the corresponding MC inequality

ODS 2019, Genova, September 4-7, 2019

A new branching rule

Shifted Spatial Branching: let p* :=z* - x* y*; if p* > 0, branch on

(Xsx*-0)OR (Xx2x*-0)
where O is defined so as to balance the violation of the two child

nodes (case p* < 0 Is similar)

Left branch (u,=x*- &) = violation of & of the upper bound u,

Right branch (I, =x* - &) = violation of & for the MC ineq.
(z —2*+8)(y — uy) <0 bychoosing § = p*/(1+ u, — y*)

New Branching Rule: among all violated z* = x* y*, select the one
maximizing the balanced violation O

ODS 2019, Genova, September 4-7, 2019

Intersection Cuts (ICs)

* Intersection cuts (Balas, 1971). a powerful tool to separate a point x*
from a set X by a liner cut

< X X XX Y%
e .
° : X .
v X X
X ¥
X x X X
x* € comv (%) X

imtnieckion wt

« Allyou need is (love, but also)
— acone pointed at x* containing all x € X
— aconvex set S with x* (but no x € X) in its interior
o |f x* vertex of an LP relaxation, a suitable cone comes for the LP basis

ODS 2019, Genova, September 4-7, 2019 7

Bilinear-free sets

Observation: given an infeasible point x*, any branching disjunction
violated by x* implicitly defines a convex set S with x* (but no
feasible x) in its interior

k
V(giz>g0) > S:{ﬁ?igffﬁégma i=1,...,k}

1=1

Thus, in principle, one could always generate an IC instead of
branching = not always advisable because of numerical issues, slow
convergence, tailing off, cut saturation, etc. #LikeGomoryCuts

Candidate branching disjunctions (supplemented by MC cuts) are
the 1- and 2-level (possibly shifted) spatial branching conditions:

(x <z*)V (x> 2z")

(z<z"y<y)V <zy>2y)VE@>zsy<y)V(c=>z"y>y")

ODS 2019, Genova, September 4-7, 2019 8

|IC separation issues

|IC separation can be probematic, as we need to read the cone rays from
the LP tableau - numerical accuracy can be a big issue here!

For MILPs, ICs like Gomory cuts are not mandatory (so we can skip
their generation in case of numerical problems), but for MIBLPs they are
more instrumental #SeparateOrPerish

Notation: consider w.l.0.g. an LP in standard form and no var. ub’s
min{¢T¢ : A€ = b,€ > 0} be the LP relaxation at a given node

S={€¢:97¢< g, i=1,...,k} Dbe the bilinear-free set
k

V (9; € > gio) be the disjunction to be satisfied by all feas. sol.s
i=1
ODS 2019, Genova, September 4-7, 2019 9

Numerically safe ICs

A single valid inequality can be obtained by
taking, for each variable, the worst LHS
Coefficient (and RHS) in each disjunction

To be applied to a reduced form of each
disjunction where the coefficient of all basic
variables is zero (kind of LP reduced costs)

k

\/(9?6 > gio)

=1
k

_\/ (GF€ > Gao)

Algorithm 1: Intersection cut separation

Input : An LP vertex £* along with its a associated LP basis é;

the feasible-free polyhedron S = {£:g97¢ <gy, i=1,...,k} and the associated

valid disjunction szl(gff > gi;0) whose members are violated by £*;

Output: A valid intersection cut violated by £*;

for i:=1 to k£ do
| (97,3,0) := (g%, 9:0) — uT(A,b), where ul = (gi)gB—l

3 end

N =

1=

for j:=1tondo v;:=max{g;;/g,:1€{1,...,k}};

<

return the violated cut v7£€>1

ODS 2019, Genova, September 4-7, 2019

10

B&C implementation
* Implementation using IBM ILOG Cplex 12.8 using callbacks:

— Lazy constraint callback: separation of MC inequalities for integer sol.s

— Usercut callback: separation of fractional sol.s = not mandatory (and
sometimes even detrimental)

— Branch callback: spatial branching (in a new variants)

— Incumbent callback: very-last resort to kill a bilinear-infeasible integer solution
(when everything else fails e.g. because of tolerances)

— MILP heuristics (kindly provided by the MILP solver): active at their default
level

— MIQP-specific heuristics: could be very useful, but not implemented yet

ODS 2019, Genova, September 4-7, 2019 11

Computational analysis

 Three algorithms under comparison

v" SCIP: the general-purpose solver SCIP (vers. 5.0.1 using CPLEX
12.8 as LP solver + IPOPT 3.12.9 as nonlinear solver)

v’ basic: our branch-and-cut algorithm without intersection cuts

v with-IC: intersection cuts separated at each node where the LP
solution is integral

» Single-thread runs (parallel runs not allowed in SCIP) with a time limit of
1 hour on a standard PC Intel @ 3.10 GHz with 16 GB ram

 Testbed: all quadratic instances in MINLPIlib (700+ instances) ...
... but some instances removed as root LP was unbounded
- 620 instances left, 408 of which solved by all methods in 1 hour

ODS 2019, Genova, September 4-7, 2019 12

Results

shift 1 sec.

1.0

0.8f

0.2 -
+—+ basic

» x SCIP
o o with-IC

0";[.0 1.5 2.0 2.5 3.0 3I,5 4.0 4.5 5.0
Time Ratio

Figure 1: Performance profile comparison of basic, SCIP and with-IC, on the 408
MINLPIib instances that could be solved by at least one method in the 1-hour time
limit (time shift of 1 sec.)

ODS 2019, Genova, September 4-7, 2019

Results without small instances

Only instances with n > 50 (shift 1 sec.) Only instances with n > 100 (shift 1 sec.)

1.0 1.0
0.8}
e X — K= = = =X X
" ﬂ*x—%x g @20 =]
0.61 a] W B8
0.4
0.2 — 0.2 .
+—+ basic +—+ basic
% % SCIP % % SCIP
o o with-IC o @ with-IC
%9% 15 2.0 25 3.0 35 40 45 5.0 %-9% 15 20 25 3.0 35 4.0 45 5.0
Time Ratio Time Ratio

Figure 3: Performance profile comparison of basic, SCIP and with-IC as in Figure 1,
when small instances are removed (time shift of 1 sec.)

ODS 2019, Genova, September 4-7, 2019 14

|ICs can make a difference

Instance SCIP | basic | with-IC
blend531 234.21 | 3600.00 31.05
crudeoil lee4_09 89.12 9.83 2.21
portfol_classical050_1 57.03 54.37 33.26
powerflow0009r 3600.00 | 3600.00 969.12
powerflow(0014r 3600.00 | 3600.00 302.77
sporttournament14 3600.00 | 182.41 125.50
squfl015-080 3600.00 | 238.53 137.32
squfl025-030 3600.00 44.46 18.72
turkey 61.19 | 3600.00 0.11

Table 4: Selected instances for which adding intersection cuts is highly beneficial.

ODS 2019, Genova, September 4-7, 2019 15

Thanks for your attention!

Paper available at http://www.dei.unipd.it/~fisch/papers/

Slides available at http://www.dei.unipd.it/~fisch/papers/slides/

Intersection cuts from bilinear disjunctions

Matteo Fischetti' and Michele Monaci?
! DEI, Universita di Padova, via Gradenigo 6/A, 35100 Padova (Italy)
2 DEI “Guglielmo Marconi”, Universita di Bologna, Viale Risorgimento 2, 40136 Bologna (Italy)

e-mail: matteo.fischetti@Qunipd.it, michele.monaci@unibo.it

February 22, 2019; Revised, 27 June 2019

Abstract

In this paper we consider the Mixed-Integer Bilinear Programming problem,
a widely-used reformulation of the classical mixed-integer quadratic programming
problem. For this problem we describe a branch-and-cut algorithm for its exact
solution, based on a new family of intersection cuts derived from bilinear-specific
disjunctions. We computationally analyze the behavior of the proposed algorithm
on a large set of mixed-integer quadratic instances from the MINLPIlib problem
library. Our results show that our method, even without intersection cuts, is com-
petitive with a state-of-the-art mixed-integer nonlinear solver. As to intersection
cuts, their extensive use at each branching node tends to slow down the solver for
most problems in our test bed, but they are extremely effective for some specific
instances.

Keywords: (O) mixed-integer quadratic programming, bilinear programming, branch-
and-cut algorithms, intersection cuts, computational experiments.

ODS 2019, Genova, September 4-7, 2019

