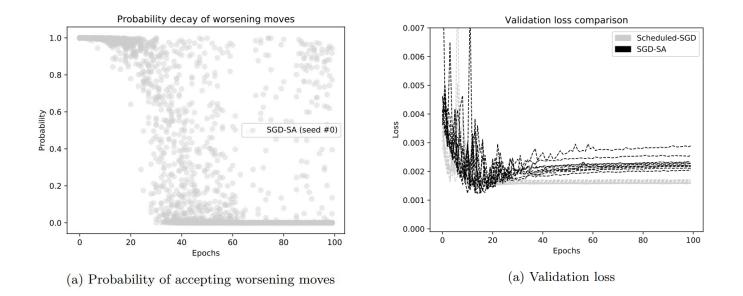
Embedding Simulated Annealing within Stochastic Gradient Descent

Matteo Fischetti and Matteo Stringher

University of Padova

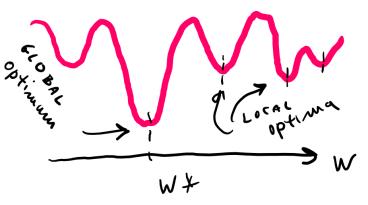


ML training as a (deterministic) optimization problem?

- Training in Machine Learning (ML) Given
 - A ML architecture (e.g., a DNN) with weights w_i
 - A training set T containing a possibly huge n. of sample points x^i
 - A nonnegative loss function $L_{\rm T}(w)$ computed w.r.t. set T Find
 - A global optimal solution w* of the problem min_w L_T(w)

Classical optimization issues:

- Large scale
- non-convexity of $L_T(w)$,
- local vs global optima, etc.

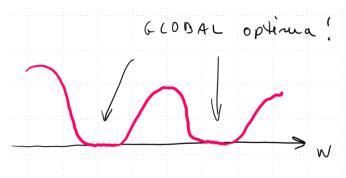


Training however is NOT a (deterministic) optimization problem

 Modern DNNs are usually highly over-parametrized!

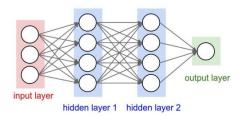
Table 1 showing different architectures statistics					
Model	AlexNet	GoogleNet	ResNet152	VGGNet16	NIN
#Param	60M	7M	60M	138M	7.6M
#OP	1140M	1600M	11300M	15740M	1100M
Storage (MB)	217	51	230	512.24	29

- $\rightarrow \min_{w} L_{T}(w) = 0$ (and, by design, quite easy to solve)
- Many GLOBAL optimal solutions w* with L_T(w*) = 0 exist!
- Although perfect on the training set, these solutions are NOT equivalent in terms of generalization (i.e., performance on unseen data)



The real training problem

 Training in Deep Learning Given

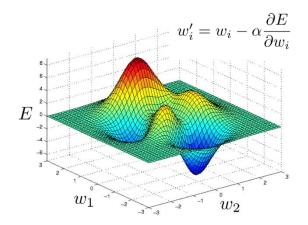


- A DNN architecture with weights w_i
- A training set T containing a possibly huge n. of sample points x^i
- A validation set V containing a large n. of verification points x^i
- A nonnegative loss function $L_{S}(w)$ w.r.t. a set of points S Find
- A sequence of solutions w with L_T(w) ≈ 0 and choose among them a sol. w* such that L_V(w*) is as small as possible
 Warning:
- Validation points can only be used *sporadically* (no gradient information or alike can be used)

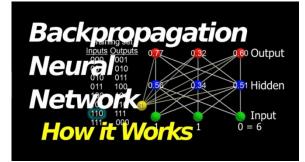
A «turbulent» SGD

- Key issue: produce diversified optimal solutions over T, so as to have more freedom in picking the best w* w.r.t. the validation set V
 - Multi-start SGD: start with different random initial weights w
 - Hyper-parameter tuning
 - Change hyper-parameters in a cyclic way within the SGD run
 - ...
- Our goal: produce a «more turbulent» sequence of solutions that lead to more variation on the validation set (even if this can slow down convergence on the training set)
- We propose to modify the classical SGD alg. by implementing a step-rejection test in the vein of Simulated Annealing (SA)

We build on the three pillars of (practical) Deep Learning



1) Stochastic Gradient Descent



2) Backpropagation

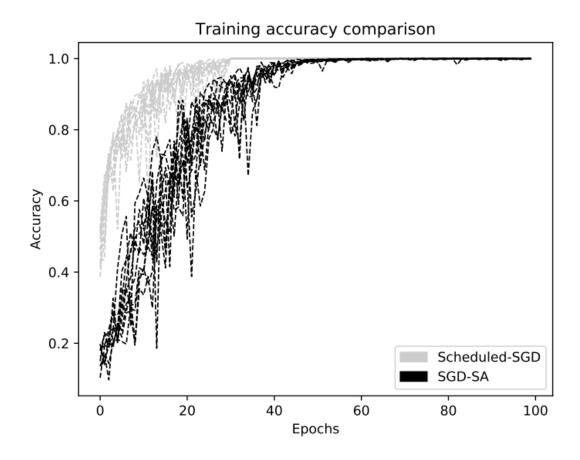
3) GPUs (and open-source Python libraries like Keras, pyTorch, TensorFlow etc.)

SGD-SA (see paper)

Algorithm 2 : SGD-SA

Parameters: A set of learning rates H, initial temperature $T_0 > 0$ **Input:** Differentiable loss function L to be minimized, cooling factor $\alpha \in (0, 1)$, number of epochs nEpochs, number of minibatches N**Output:** the best performing $w^{(i)}$ on the validation set at the end of each epoch 1: Divide the training dataset into N minibatches 2: Initialize i = 0, $T = T_0$, $w^{(0)} = random_initialization()$ 3: for $t = 1, \ldots, nEpochs$ do for n = 1, ..., N do 4: 5: Extract the *n*-th minibatch (x, y)Compute $L(w^{(i)}, x, y)$ and its gradient $v = backpropagation(w^{(i)}, x, y)$ 6: 7: Randomly pick a learning rate η from H $w_{new} = w^{(i)} - \eta \ v$ 8: 9: Compute $L(w_{new}, x, y)$ worsening = $L(w_{new}, x, y) - L(w^{(i)}, x, y)$ prob = $e^{-worsening/T}$ 10:11: 12:if random(0,1) < prob then $w^{(i+1)} = w_{new}$ 13:14:else $w^{(i+1)} = w^{(i)}$ 15:16:end if 17:i = i + 1end for 18: $T = \alpha \cdot T$ 19:20: end for

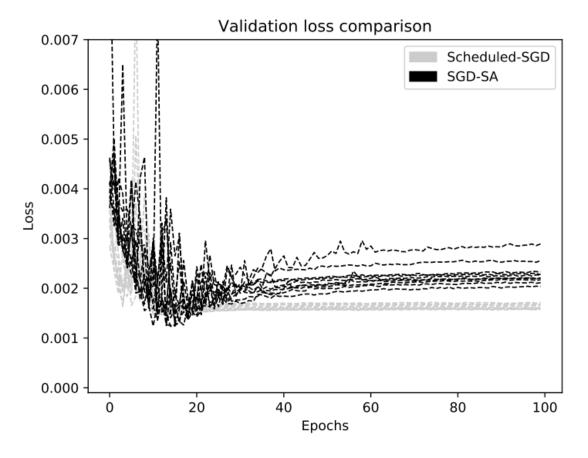
More turbulence on the training set ...



(b) Training accuracy (10 runs with different random seeds)

Fig. 3: Optimization efficiency over the training set (VGG16 on CIFAR-10)

... but better results on validation!



(a) Validation loss

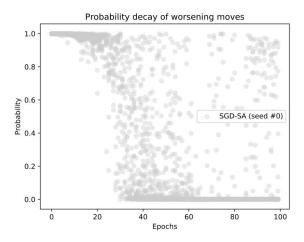
OLA 2021, Catania, 21 June 2021

Thanks for your attention!

Slides available at <u>http://www.dei.unipd.it/~fisch/papers/slides/</u>

Paper available at

http://www.dei.unipd.it/~fisch/papers/2021_embedding_SA_into_SGD.pdf



⁽a) Probability of accepting worsening moves

