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ML training as a (deterministic)
optimization problem?

« Training in Machine Learning (ML)
Given
— A ML architecture (e.g., a DNN) with weights w;
— Atraining set T containing a possibly huge n. of sample points X'
— A nonnegative loss function L(w) computed w.r.t. set T
Find
— A global optimal solution w* of the problem min,, L(w)

Classical optimization issues:
— Large scale

— non-convexity of L+(w),

— local vs global optima, etc.
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Training however is NOT a
(deterministic) optimization problem

Table 1 showing different architectures statistics
MOdern DN NS Model AlexNet GoogleNet ResNet152 VGGNet16 NIN
are usua”y h|gh|y #Param 60M 7™M 60M 138M 7.6M
#OP 1140M 1600M 11300M 15740M 1100Mm
ove r-parametri zed! Storage (MB) 217 51 230 512.24 29

- min, L(w) =0 (and, by design, quite easy to solve)

Many GLOBAL optimal solutions w* with L(w*) = 0 exist!
Although perfect on the training set, CLOBAL oplira |

these solutions are NOT equivalent
In terms of generalization (i.e., f\ /m /
performance on unseen data) —— >
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The real training problem

« Training in Deep Learning
Given
— A DNN architecture with weights w;
— Atraining set T containing a possibly huge n. of sample points X'
— Avalidation set V containing a large n. of verification points X'
— A nonnegative loss function Lg(w) w.r.t. a set of points S
Find
— A sequence of solutions w with L(w) = 0 and choose among
them a sol. w* such that L, (w*) is as small as possible

Warning:
— Validation points can only be used sporadically (no gradient
information or alike can be used)

hidden layer 1 hidden layer 2
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A «turbulent» SGD

« Key issue: produce diversified optimal solutions over T, so as to
have more freedom in picking the best w* w.r.t. the validation set V

— Multi-start SGD: start with different random initial weights w
— Hyper-parameter tuning
— Change hyper-parameters in a cyclic way within the SGD run

« Our goal: produce a «more turbulent» sequence of solutions that
lead to more variation on the validation set (even if this can slow
down convergence on the training set)

 We propose to modify the classical SGD alg. by implementing a
step-rejection test in the vein of Simulated Annealing (SA)
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We build on the three pillars 7F7F7F
of (practical) Deep Learning 4 4 A
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3) GPUs (and open-source Python libraries like Keras, pyTorch, TensorFlow etc.)
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SGD-SA (see paper)

Algorithm 2 : SGD-SA

15:
16:
17:
18:
19:
20:

Parameters: A set of learning rates H, initial temperature 7y > 0

Input: Differentiable loss function L to be minimized, cooling factor o € (0, 1),
number of epochs nEpochs, number of minibatches N

Output: the best performing w® on the validation set at the end of each epoch

Divide the training dataset into N minibatches
Initialize i = 0, T = Tp, w'® = random_initialization()
fort=1,...,nEpochs do
forn=1,...,N do
Extract the n-th minibatch (z, y)
Compute L(w'?,z,y) and its gradient v = backpropagation(w', z,y)
Randomly pick a learning rate n from H
Wnew = WD —n v
Compute L(wnew,T,Yy)
worsening = L(wnew, 2,y) — L(w™ | z, 1)
pT’Ob _ e—worscning/T
if random(0,1) < prob then
Wit ) =
else
WG+ ()
end if
1=1+1
end for
T=a-T
end for




More turbulence on the training set ...

Training accuracy comparison

1.0 - - -

0.8 -
g 0.6
S
]
L]
<

0.4

0.2

Scheduled-SGD
BN SGD-SA
0 20 40 60 80 100

Epochs

(b) Training accuracy (10 runs with different random seeds)

Fig. 3: Optimization efficiency over the training set (VGG16 on CIFAR-10)



... but better results on validation!

Validation loss comparison
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Thanks for your attention!

Slides available at

http://www.del.unipd.it/~fisch/papers/slides/

Paper available at

http://www.del.unipd.it/~fisch/papers/2021 embedding SA into SGD.pdf

Probability decay of worsening moves
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