Safe Distancing in the time of COVID-19

Picture from https://www.ted.com/playlists/735/the_fight_against_viruses

Based on joint work with Martina Fischetti and Jakob Soustroup

Facility location under social distancing constraints

The spread of viruses such as SARS-CoV-2 brought new challenges to our society, including a stronger focus on safety across all businesses

In particular, many countries have imposed a **minimum social distance** between people (or, more generally, **facilities**) to ensure their safety

Can **Operations Research** help finding **more efficient** yet **safer** location patterns for facilities?

Minimum vs safest distancing

Positioning 20 "facilities" (i.e., people) within a square area

... with the objective of maximizing the minimum distance between facilities

... with the objective of minimizing the overall risk of infection

Example: outdoor table allocation

A brewpub in Copenhagen

Optimized layout fitting 6 more tables

Still 30 tables, but minimizing the overall risk of contagion

The safest distancing problem

Given:

- An available (possibly disconnected/irregular) area
- A minimum and maximum n. of facilities to locate in that area ٠
- A **minimum distance** between facilities
- A virus-spread model to measure the infection risk • among facilities
 - Find:
 - A facility location pattern that minimizes the overall infection risk (sum of all pairwise infection risks)

Applications

Ŀ

2 variants of the problem:

 Fit as many customers as possible while respecting social distancing → a familiar packing problem

 Fit a fixed number of customers maximizing their safety → a new (?) quadratic

optimization problem

A mathematical optimization model

The available area is sampled to get a set
 V = {1,...,n} of possible allocation points

- Let N_{MIN} and N_{MAX} be min and max n. of facilities to allocate, resp.
- Let P_i denote the **profit** of allocating a facility at point *i* (e.g., $P_i \equiv 1$)
- Define an incompatibity graph G_I= (V, E_I) whose edges [i,j] correspond to infeasible pairs with distance(i,j) < minimum_distance
- Let *I_{ij}* denote the infection risk/probability that *j* is infected by *i* (assuming *i* is positive)

 \rightarrow

The safest distancing problem

$$\max \sum_{i \in V} P_i x_i - \sum_{i \in V} \sum_{j \in V} I_{ij} x_i x_j \tag{1}$$

s.t.
$$N_{MIN} \le \sum_{i \in V} x_i \le N_{MAX}$$
 (2)

$$x_i + x_j \le 1 \qquad \qquad \forall [i, j] \in E_I \tag{3}$$

$$x_i \in \{0, 1\} \qquad \qquad \forall i \in V \tag{4}$$

An analogy: wind turbine allocation

Wind farm layout optimization

Given

- a site (offshore or onshore)
- characteristics of the turbines to build
- measurements of the wind in the site

Determine a turbine allocation that maximizes power production

Taking into account:

- minimum distance constr.s (no collisions)
- minimum/maximum number of turbines
- paiwise interference due to wake effects

Basic (noncovex) quadratic MIP

$$\max \sum_{i \in V} P_i x_i - \sum_{i \in V} \sum_{j \in V} I_{ij} x_i x_j$$
(1)
s.t.
$$N_{MIN} \leq \sum_{i \in V} x_i \leq N_{MAX}$$
(2)
$$x_i + x_j \leq 1 \qquad \forall [i, j] \in E_I$$
(3)
$$x_i \in \{0, 1\} \qquad \forall i \in V$$
(4)

A standard MILP reformulation

Introduce a quadratic n. of var.s $z_{ij} = x_i x_j$ for all i < j٠

$$\max \sum_{i \in V} P_i x_i - \sum_{i \in V} \sum_{j \in V, i < j} (I_{ij} + I_{ji}) z_{ij}$$
(1)
s.t.
$$N_{MIN} \leq \sum_{i \in V} x_i \leq N_{MAX}$$
(2)
$$x_i + x_j \leq 1 \qquad \forall [i, j] \in E_I$$
(3)

$$x_i + x_j - 1 \le z_{ij} \qquad \forall i, j \in V, i < j \tag{4}$$

$$x_i \in \{0, 1\} \qquad \forall i \in V \qquad (5)$$
$$z_{ij} \in \{0, 1\} \qquad \forall i, j \in V, i < j \qquad (6)$$

$$\in \{0,1\} \qquad \forall i, j \in V, i < j \tag{6}$$

An alternative MILP reformulation

Glover's trick: the objective function

$$\sum_{i \in V} P_i x_i - \sum_{i \in V} (\sum_{j \in V} I_{ij} x_j) x_i$$
(11)

is restated as

$$\sum_{i \in V} (P_i x_i - w_i) \tag{12}$$

where

$$w_i := \left(\sum_{j \in V} I_{ij} x_j\right) x_i = \begin{cases} \sum_{j \in V} I_{ij} x_j & \text{if } x_i = 1; \\ 0 & \text{if } x_i = 0. \end{cases}$$

→ the new continuous variable w_i is the product between a continuous term ($\sum ...$) and a binary variable (x_i)

An alternative MILP reformuation

A linearized model with linear n. of additional var.s w_i and BIGM constr.s

$$\max z = \sum_{i \in V} (P_i x_i - w_i) \tag{13}$$

s.t.
$$N_{MIN} \le \sum_{i \in V} x_i \le N_{MAX}$$
 (14)

$$x_i + x_j \le 1 \qquad \qquad \forall [i, j] \in E_I \qquad (15)$$

$$\sum_{j \in V} I_{ij} x_j \le w_i + M_i (1 - x_i) \quad \forall i \in V$$
(16)

$$x_i \in \{0, 1\} \qquad \qquad \forall i \in V \qquad (17)$$

$$w_i \ge 0 \qquad \qquad \forall i \in V \qquad (18)$$

where $M_i >> 0$ (BIGM)

Solution methods

- No interference → packing problem → exactly solvable by modern MILP solvers up to hundreds of possible positions
- With interference \rightarrow very hard quadratic problem
- Proximity search matheuristics from the wind-farm opt. literature

Martina Fischetti and Michele Monaci (2016), Proximity search heuristics for wind farm optimal layout, *Journal of Heuristics* 22 (4), pp. 459-474.

 Results in the present talk have been obtained by an ad-hoc wind-farm layout optimization software developed by *Double-Click SRL*, Padua, Italy

Modelling virus spread

10 8 6 4 2 0 0 10 10 0.8 0.6 10 0.8 0.6 10 0.8 0.6 10 0.2

Reliable wind turbine interference models in the literature (e.g., Jensen's model)

Virus spread models?

Modelling virus spread

Let d_{ij} be the distance (in m) between points *i* and *j*, and let d_{max} be the max. distance in the given area

Alternative definitions for the infection risk matrix I_{ij} as a function of d_{ij} :

$$\begin{split} I_{ij} &= d_{max} - d_{ij} & \text{Pr} \\ I_{ij} &= e^{-d_{ij}^2/2} & \text{G} \\ I_{ij} &= 1/d_{ij} & \text{Ur} \\ I_{ij} &= 1/d_{ij}^2 & \text{in} \\ I_{ij} &= 1/d_{ij}^3 & \text{di} \end{split}$$

Proportional to distance

Gaussian ($\sigma = 1m$)

Uniform concentration inside a 1- or 2- or 3dimensional sphere

- Proportional seems a natural choice
- **Gaussian** fits droplet (negligible after 3σ)
- Uniform concentration fits aerosol spread

Example: optimal allocation of **10 facilities** on a line segment (no minimum distance imposed)

Modelling virus spread

Optimal allocation of 20 facilities on a square

Applications: a pub in Copenhagen

Minimum distance of 3m

Regular solution

Applications: a pub in Copenhagen

Min dist. 3m but fixed n. of tables

Applications: beach umbrellas in Venice

Min distance of 4m

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 0 4

Optimized solution

8 more umbrellas

Extension to group allocation

Theater's version: minimize virus spread with social distance limitations, but also consider "family groups" to be allocated in consecutive seats

Family members are now allowed to seat close to each other!

- Enumerate all possible configurations of 1 2 ... k consecutive seats (e.g., A-12-3 means row A, line 12, 3 consecutive seats)
- Associate a binary variable x_i with each configuration
- Compute incompatibility/interference between configurations
- Add a constraint on the total number of chosen configurations with 1-2-...-k seats (as prescribed on input)

Lessons learned

- Facility location under social distance constraints and wind farm layout optimization are "similar" problems → we can borrow models and algorithms from the wind farm literature
- Operations Research can make a big impact for businesses and customers, both in terms of profit and safety
- Fair layouts are often not regular and not easy to find "by hand"

 Mathematical optimization is instrumental to finding more profitable yet safer configurations that minimize the overall risk of contagion

Full paper:

M. Fischetti, M. Fischetti, J. Stoustrup, "Safe distancing in the time of COVID-19", **European Journal of Operational Research**, 2021 (doi: 10.1016/j.ejor.2021.07.010)