
Branch-and-Cut

is our

swiss army knife

Verlog, June 13, 2025, Trento 1

Matteo Fischetti, University of Padova

A simple idea (?)

• Mixed-Integer Programs (MIPs) can be solved by two alternative

techniques:

– Cutting planes (notably, Mixed-Integer Gomory cuts)

– Branch and Bound

• Pros and cons are complementary, so …

 … why not merging them?

• This idea was around already in the 1980’s

• BUT: how to actually implement it?

Verlog, June 13, 2025, Trento 3

Why bothering about

implementations?

• Implementation

 is not just coding!

• Needed if we #orms want to have an impact in practical applications

• … but often omitted in papers as “of no interest for a typical reader”

• Ask yourself: would Artificial Intelligence (notably: deep learning) be

so successful without gradient-descent algorithms served with their

efficient #backpropagation implementations?

Verlog, June 13, 2025, Trento 4

Algorithms as theorems

 Proof: omitted as of no interest to the typical MP reader.

 Describing an Algorithm without Implementation is like stating a

Theorem without Proof

#just_a_computational_conjecture

Verlog, June 13, 2025, Trento 5

Algorithms without implementation

 Proof: omitted as of no interest to the typical MP reader.

 Describing an Algorithm without Implementation is like stating a

Theorem without Proof

#just_a_computational_conjecture

Verlog, June 13, 2025, Trento 6

Branch & Cut

• A “trademark” of Manfred Padberg and Giovanni Rinaldi

• Proposed in the 1990’s for the TSP (and soon extended)

• Comes as an algorithm entangled with its implementation

 Theorem. Using cuts within an enumerative scheme is good.

 Proof. Assume w.l.o.g. a good LP solver. Then apply B&Bound but

– make use of families of (problem dependent) globally-valid inequalities

– perform efficient exact/heuristic cut separation on the fly

– use a data-structure (cut pool) to effectively share cuts among nodes

– price variables in a dynamic way (well before branch-and-price!)

– alternate row and column generation in a sound way …

– suspend a node if “unattractive”

– …

Verlog, June 13, 2025, Trento 7

Modern B&C implementation

• Modern B&C solvers such as Cplex, Gurobi, Express, SCIP etc. can be

fully customized by using callback functions

• Callback functions are just entry points

 in the B&C code where an advanced user

 (you!) can add his/her customizations

• Most-used callbacks (using old-style Cplex’s jargon)

– Lazy constraint: add “lazy constr.s” that should be part of the original model

– User cut: add additional contr.s that hopefully help enforcing feasibility/integrality

– Heuristic: try to improve the incumbent (primal solution) as soon as possible

– Branch: modify the branching strategy

– …

Verlog, June 13, 2025, Trento 8

Lazy constraint callback
CPX_CALLBACKCONTEXT_CANDIDATE

• Automatically invoked when a solution is going to update the

incumbent (meaning it is integer and feasible w.r.t. current model,

e.g., because it comes from an internal primal heuristic)

• This is the last checkpoint where we can discard a

 solution for whatever reason (e.g., because it violates

 a constraint that is not part of the current model)

• To avoid be bothered by this solution again and again, we can/should

return a violated constraint (cut) that is added (globally or locally) to

the current model

• Cut generation is often simplified by the

 fact that the solution to be cut is known

 to be integer (e.g., SECs for TSP)
Verlog, June 13, 2025, Trento 9

Usercut callback
CPX_CALLBACKCONTEXT_RELAXATION

• Automatically invoked at every B&B node when the current solution

is noninteger (e.g., just before branching)

• A violated cut can possibly be returned, to be added (locally or

globally) to the current model → often leads to an improved

convergence to integer solutions

• If no cut is returned, branching occurs as usual

• Cut generation can be hard as the point is noninteger (heuristic

approaches can be used)

• User cuts are not mandatory for B&C correctness → being too

clever on them can actually slow-down the solver because of the

overhead in generating and using them (larger/denser LPs etc.)
Verlog, June 13, 2025, Trento 10

Other callbacks

• Branch callback: invoked at the end of each node (even when the

LP solution is integer and apparently does not require any

cut/branching) and used to impose/customize branching

• Heuristic callback: used to build new (possibly problem-specific)

feasible integer solutions to be posted, i.e., passed to the solver

which will use them (at the appropriate time) to possibly update the

incumbent

• etc. etc.

Verlog, June 13, 2025, Trento 11

Application: non-convex MIQP

(based on joint work with Michele Monaci, Univ. Bologna)

• Goal: implement a Mixed-Integer (non-convex) Quadratic solver

• Two approaches:

 1. start with a continuous QP solver and add enumeration on top of it

→ implement B&B to handle integer var.s

 2. start with a MILP solvers (B&C) and customize it to handle the

non-convex quadratic terms → add McCormick & spatial

branching

 PROS: …

 CONS: …

Verlog, June 13, 2025, Trento 12

MIQP as a MILP with bilinear eq.s

• The fully-general MIQP of interest reads

 and can be restated as

Verlog, June 13, 2025, Trento 13

McCormick inequalities

• To simplify notation, rewrite the generic bilinear eq. as:

• Obviously

 →

 (just replace xy by z in the products on the left)

• Note: mc1) and mc2) can be improved in case x=y → gradients cuts

Verlog, June 13, 2025, Trento 14

Spatial branching
• McCormick inequalities are not perfect

 → they are tight only when x and/or y

 are at their lower/upper bound

 → at some B&C nodes, it may happen that the current (fractional or

integer) solution satisfies all MC inequalities but some bilinear eq.s

 z = xy are still violated (we call this #bilinear_infeasibility)

 → we need a bilinear-specific branching (the usual MILP branching

on integrality does not work if all var.s are integer already)

• Spatial branching: if z* = x* y* is a violated bilinear eq., branch on

 (x ≤ x*) OR (x ≥ x*)

to make the upper (resp. lower) bound on x tight on the left (resp.

right) child node – thus improving the corresponding MC inequality

 Verlog, June 13, 2025, Trento 15

Vanilla B&C implementation

• Lazy constraint callback: separation of MC inequalities

• Usercut callback: not needed (and sometimes detrimental)

• Branch callback: spatial branching on the “most violated” z = xy

• Precision: LP precision higher (more restrictive) than bilinear tolerance

• MILP heuristics (kindly provided by the MILP solver): active at their default

level

• MIQP-specific heuristics: not implemented

• Implemented but not used in the vanilla version:

• additional bilinear-specific cuts → Balas’ Intersection Cuts (ICs)

• semi-spatial branching (branch threshold x*+δ → x* violates the x-

bound in one of the two children, MC only needed in the other one)

Verlog, June 13, 2025, Trento 16

Does it work?

• Comparison with the SCIP 5.0 MIQP solver using CPLEX 12.8 as LP

solver + internal nonlinear solver

• Preliminary test on the quadratic MINLPlib (700+ instances) …

 … but some instances removed as root LP was unbounded

 → they need bound tightening by preprocessing (TODO)

• Results of our B&C callback-based vanilla implementation using CPLEX

12.8 as MILP solver; 1-thread runs (parallel runs not allowed in SCIP);

only instances solved by both codes in the 1-hour time limit.

– Overall, we are as fast as SCIP (but the latter solves more instances within the time

limit → SCIP qualifies as a more robust solver).

– We are 2 to 10 times faster than SCIP when the optimal/best-known solution from

MINLPlib is used as a warm-start for both codes → evidently, we miss a sound

bilinear-specific heuristic (TODO)

Verlog, June 13, 2025, Trento 17

More detailed comparison

• SCIP vs noic (our “vanilla”

 version with no ICs and

 classical spatial branching) →

• Results with incumbent warm-start (only instances solved by both codes)

Verlog, June 13, 2025, Trento 18

	Slide 1: Branch-and-Cut is our swiss army knife
	Slide 3: A simple idea (?)
	Slide 4: Why bothering about implementations?
	Slide 5: Algorithms as theorems
	Slide 6: Algorithms without implementation
	Slide 7: Branch & Cut ™
	Slide 8: Modern B&C implementation
	Slide 9: Lazy constraint callback CPX_CALLBACKCONTEXT_CANDIDATE
	Slide 10: Usercut callback CPX_CALLBACKCONTEXT_RELAXATION
	Slide 11: Other callbacks
	Slide 12: Application: non-convex MIQP
	Slide 13: MIQP as a MILP with bilinear eq.s
	Slide 14: McCormick inequalities
	Slide 15: Spatial branching
	Slide 16: Vanilla B&C implementation
	Slide 17: Does it work?
	Slide 18: More detailed comparison

