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What do you actually mean by
“Benders decomposition”?

The original Benders decomposition from the ‘60s uses two distinct
ingredients for solving a Mixed-Integer Linear Program (MILP):

1) A cut loop strategy where a relaxed (NP-hard) MILP on a variable subspace
is solved exactly (i.e., to integrality) by a black-box solver, and then is
iteratively tightened by means of additional “Benders” linear cuts

2) The technicality of how to actually compute those cuts (Farkas’ projection)
— Papers proposing “a new Benders-like scheme” typically refer to 1)
— Students scared by “Benders implementations” typically refer to 2)

Later developments in the ‘70s:

— Folklore (Miliotios for TSP?): generate Benders cuts within a single B&B tree
to cut any infeasible integer solution that is going to update the incumbent

— McDaniel & Devine (1977): use Benders cuts to cut fractional sol.s as well
(root node only)

Everything fits very naturally within a modern Branch-and-Cut (B&C) framework.
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Modern Benders

Consider the convex MINLP in the (x,y) space

min f(z, y)
.M/a/h/.
g(z,y) <0 Moo, 9- t
a/‘e %’78/71« L e
Ay < b GJ”S /6/;8
y integer

and assume for the sake of simplicity that S := {y : Ay < b} is nonempty
and bounded, and that

X(y) ={z:g(z,y) <0}
is nonempty, closed and bounded forally € S

- the convex function ®(y) := ngé? ; f(z,y) is well defined forally € S
reX(y
- no “feasibility cuts” needed (this kind of cuts will be discussed later on)
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Working on the y-space (projection)

(1) (2) (3)
min min f(z,y) “isolate the inner :
v @ SO , min ©(y)
minimization over x
g(z,y) <0 . <
®(y) := min f(z,y) Ay=b
Ay <b :
— Yy Integer
. g(z,y) <0
Yy Integer

Original MINLP in the (x,y) space - Benders’ master problem in the y space

Warning: projection changes the objective function (e.g., linear = convex nonlinear)

min
min ®(y) = |y|
x>y
x> —y
Yy € [_1: 1]
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Life of P(H)I

« Solving Benders’ master problem calls for the
minimization of a nonlinear convex function
(even if you start from a linear problem!)

« Branch-and-cut MINLP solvers generate a
sequence of linear cuts to approximate this
function from below (outer-approximation)

min w _
subgradient .
s.b. w > ®(y) (aka Benders) cut > o
Ay <b
y integer w > P(y) > P(y*) + f(y*)T(y —y)
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Benders cut computation

Benders (for linear) and Geoffrion (general convex) told us how to
compute a subgradient to be used in the cut derivation, by usina the
optimal primal-dual solution (x* u*) available after computing ®(y™)

E(W*) =V f(x™,y") + u"Vyg(z*, y")

The above formula is problem-specific and perhaps #scaring
Introduce an artificial variable vector q (acting as a copy of y) to get

®(y*) = min{ f(z,q) | g(x,q) <0, y" <q<y"}

and to obtain the following simpler and completely general cut-recipe:

1) solve the original convex problem with new var. bounds y* <y < y*
2) take opt_val and reduced costs 7;’s
3) write w > opt val + . 7;(y; —yj)
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Benders feasibility cuts

« For some important applications, the set

X(y) ={z : g(z,y) <0}
can be empty for some “infeasible” y € S

> P(y) := xg}é?y) f(x,vy) undefined

« This situation can be handled by considering the “phase-1” feasibility condition

0> U(y) := min{1ls|g(z,y) < s, s > 0}

where the function ¥(y) is convex
—> it can be approximated by the usual subgradient “Benders feasibility cut”

0> U(y) > V(y*) +£u*)" (v —y)
to be computed using reduced costs as before
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Successful Benders applications

« Benders decomposition works well when fixing y = y* for computing
®(y*) makes the problem much simpler to solve.

e This usually happens when
— The problem for y = y* decomposes into a number of independent

subproblems mind it 33 e
» Stochastic Programming sl 3 g =1 vies
i HE . Tij S Yi Viel,jed
» Uncapacitated Facility Location ’ s
z;; >0 Viel,jelJ
» efc. y: € {0,1} Viel

— Fixing y = y* changes the nature of some constraints:
 in Capacitated Facility Location, tons of constr.s of the form x;; < y;
become just variable bounds
» Second Order Constraints a:fj < zi; Y; become quadratic constr.s
* efc.
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That’s it ... or not?

In practice, Benders decomposition can work quite

well, but sometimes it is desperately slow

... as the root node bound does not improve even
after the addition of tons of Benders cuts
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Hello,

I am working in a two-stage stochastic model. In

the model, the first stage is a MIP and the second ——

stage is a LP and it has almost 100 scenarios. The

problem has up to 100 thousan d varial bles and
100 thousand constraints in the second stage. To
solve I'm using benders decomposition that I

ote in C++ and solving with Cplex. But solving

wri
the whole model as a MIP is still faster than using ... e i

Benders.
Is possib that s! cases solving the whole

model a P can be faster than using benders
decomposition?
Thank you
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Slow convergence is generally attributed to the poor quality of Benders
cuts, to be cured by a more clever selection policy (Pareto optimality
of Magnanti and Wong, 1981, etc.) but there is more...

Verolog, June 13, 2025, Trento



Role of the cut loop

B&C codes generate cuts, on the fly, in a sequential fashion
Consider e.g. the root B&C node (arguably, the most critical one)
A classical cut-loop scheme (described here for MILPSs)

J. E. Kelley. The cutting plane method for solving convex programs,
Journal of the SIAM, 8:703-712, 1960.

— Find an optimal vertex x* of the current LP relaxation

— Invoke a separation function on x*, add the returned V|olated cut
(if any) to the current LP, and repeat

Can be very ineffective in the first iterations |
when few constraints are specified, and x*
moves along an unstable zig-zag trajectory L

.. which is precisely what often happens with Benders cuts

Verolog, June 13, 2025, Trento 10



Stabilizing Benders can be easy!

* To summarize:
* Benders cut machinery is easy to implement ...

... but the root node cut loop can be very critical
- many implementations sank here!

 Kelley’s cut loop can be desperately slow

« Stabilization using “interior points” is a must
—> this is well-known in subgradient optimization and Dantzig-Wolfe
decomposition (column generation), but holds for Benders as well

* E.g., for facility location problems, we implemented a very simple
“chase the carrot” heuristic to determine a stabilized path
towards the optimal y

* Mimics Frank-Wolfe alg. for minimizing a convex function over a convex set
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Our #ChaseTheCarrot heuristic

» We (the donkey) start with y = (1,1,...,1)
and optimize the master LP as in Kelley,
to get optimal y* (the carrot on the stick).

» We move y just half-way towards y*. We then
separate a point y’in the segment [y, y*] close
to the new y.

» The generated Benders cut is added to the master LP, which is reoptimized
to get the new optimal y* (carrot moves).

» Repeat until bound improves, then switch to Kelley for final bound refinement
(kind of cross-over)

 Warning: adaptations needed if feasibility Benders cuts need to be
generated...
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Effect of the improved cut loop
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Comparing Kelley cut loop at the root node with Kelley+ (add
epsilon to y*) and with our chase-the-carrot method (inout)

Koerkel-Ghosh qUFL instance gs250a-1 (250x250, quadratic costs)
*nc = n. of Benders cuts generated at the end of the root node

times in logarithmic scale
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Conclusions

To summarize:

* Benders cuts are easy to implement within modern B&C (just use a callback
where you solve the problem for y = y* and compute reduced costs)

 Kelley’s cut loop can be desperately slow hence stabilization is a must
* Implemented in CPLEX general MIP solver since version 12.7

Slides available at  http://www.dei.unipd.it/~fisch/papers/slides/
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