
Branch-and-cut implementation

of Benders’ decomposition

Verolog, June 13, 2025, Trento 1

Matteo Fischetti, University of Padova

• The original Benders decomposition from the ‘60s uses two distinct

 ingredients for solving a Mixed-Integer Linear Program (MILP):

1) A cut loop strategy where a relaxed (NP-hard) MILP on a variable subspace

is solved exactly (i.e., to integrality) by a black-box solver, and then is

iteratively tightened by means of additional “Benders” linear cuts

2) The technicality of how to actually compute those cuts (Farkas’ projection)

– Papers proposing “a new Benders-like scheme” typically refer to 1)

– Students scared by “Benders implementations” typically refer to 2)

 Later developments in the ‘70s:

– Folklore (Miliotios for TSP?): generate Benders cuts within a single B&B tree

to cut any infeasible integer solution that is going to update the incumbent

– McDaniel & Devine (1977): use Benders cuts to cut fractional sol.s as well

(root node only)

• Everything fits very naturally within a modern Branch-and-Cut (B&C) framework.

Verolog, June 13, 2025, Trento 2

What do you actually mean by

“Benders decomposition”?

Modern Benders

Verolog, June 13, 2025, Trento 3

• Consider the convex MINLP in the (x,y) space

 and assume for the sake of simplicity that is nonempty

and bounded, and that

 is nonempty, closed and bounded for all y ∈ S

 → the convex function is well defined for all y ∈ S

 → no “feasibility cuts” needed (this kind of cuts will be discussed later on)

Working on the y-space (projection)

Verolog, June 13, 2025, Trento 4

(1) (2) (3)

Original MINLP in the (x,y) space → Benders’ master problem in the y space

Warning: projection changes the objective function (e.g., linear → convex nonlinear)

“isolate the inner

minimization over x”

Life of P(H)I

• Solving Benders’ master problem calls for the

 minimization of a nonlinear convex function

 (even if you start from a linear problem!)

• Branch-and-cut MINLP solvers generate a

 sequence of linear cuts to approximate this

 function from below (outer-approximation)

 subgradient

 (aka Benders) cut →

Verolog, June 13, 2025, Trento 5

Benders cut computation

• Benders (for linear) and Geoffrion (general convex) told us how to

compute a subgradient to be used in the cut derivation, by using the

optimal primal-dual solution (x*,u*) available after computing

• The above formula is problem-specific and perhaps #scaring

• Introduce an artificial variable vector q (acting as a copy of y) to get

 and to obtain the following simpler and completely general cut-recipe:

Verolog, June 13, 2025, Trento 6

Benders feasibility cuts

Verolog, June 13, 2025, Trento 7

• For some important applications, the set

can be empty for some “infeasible” y ∈ S

→ undefined

• This situation can be handled by considering the “phase-1” feasibility condition

 where the function is convex

 → it can be approximated by the usual subgradient “Benders feasibility cut”

 to be computed using reduced costs as before

Successful Benders applications

• Benders decomposition works well when fixing y = y* for computing

 makes the problem much simpler to solve.

• This usually happens when

– The problem for y = y* decomposes into a number of independent

subproblems

• Stochastic Programming

• Uncapacitated Facility Location

• etc.

– Fixing y = y* changes the nature of some constraints:

• in Capacitated Facility Location, tons of constr.s of the form

 become just variable bounds

• Second Order Constraints become quadratic constr.s

• etc.

Verolog, June 13, 2025, Trento 8

That’s it … or not?

Verolog, June 13, 2025, Trento 9

• In practice, Benders decomposition can work quite

 well, but sometimes it is desperately slow

 … as the root node bound does not improve even

 after the addition of tons of Benders cuts

• Slow convergence is generally attributed to the poor quality of Benders

cuts, to be cured by a more clever selection policy (Pareto optimality

of Magnanti and Wong, 1981, etc.) but there is more…

Role of the cut loop

• B&C codes generate cuts, on the fly, in a sequential fashion

• Consider e.g. the root B&C node (arguably, the most critical one)

• A classical cut-loop scheme (described here for MILPs)

 J. E. Kelley. The cutting plane method for solving convex programs,

Journal of the SIAM, 8:703-712, 1960.

– Find an optimal vertex x* of the current LP relaxation

– Invoke a separation function on x*, add the returned violated cut

(if any) to the current LP, and repeat

• Can be very ineffective in the first iterations

 when few constraints are specified, and x*

 moves along an unstable zig-zag trajectory

 ... which is precisely what often happens with Benders cuts

Verolog, June 13, 2025, Trento 10

Stabilizing Benders can be easy!

Verolog, June 13, 2025, Trento 12

• To summarize:

• Benders cut machinery is easy to implement …

… but the root node cut loop can be very critical

 → many implementations sank here!

• Kelley’s cut loop can be desperately slow

• Stabilization using “interior points” is a must

→ this is well-known in subgradient optimization and Dantzig-Wolfe

decomposition (column generation), but holds for Benders as well

• E.g., for facility location problems, we implemented a very simple

 “chase the carrot” heuristic to determine a stabilized path

 towards the optimal y

• Mimics Frank-Wolfe alg. for minimizing a convex function over a convex set

Our #ChaseTheCarrot heuristic

Verolog, June 13, 2025, Trento 13

• We (the donkey) start with y = (1,1,…,1)

 and optimize the master LP as in Kelley,

 to get optimal y* (the carrot on the stick).

• We move y just half-way towards y*. We then

 separate a point y’ in the segment [y, y*] close

 to the new y.

• The generated Benders cut is added to the master LP, which is reoptimized

 to get the new optimal y* (carrot moves).

• Repeat until bound improves, then switch to Kelley for final bound refinement

 (kind of cross-over)

• Warning: adaptations needed if feasibility Benders cuts need to be

generated…

Effect of the improved cut loop

• Comparing Kelley cut loop at the root node with Kelley+ (add

epsilon to y*) and with our chase-the-carrot method (inout)

• Koerkel-Ghosh qUFL instance gs250a-1 (250x250, quadratic costs)

• *nc = n. of Benders cuts generated at the end of the root node

• times in logarithmic scale

Verolog, June 13, 2025, Trento 14

Conclusions

 .

Verolog, June 13, 2025, Trento 15

To summarize:

• Benders cuts are easy to implement within modern B&C (just use a callback

where you solve the problem for y = y* and compute reduced costs)

• Kelley’s cut loop can be desperately slow hence stabilization is a must

• Implemented in CPLEX general MIP solver since version 12.7

Slides available at http://www.dei.unipd.it/~fisch/papers/slides/

Reference papers:

M. Fischetti, I. Ljubic, M. Sinnl, "Benders decomposition without separability: a

computational study for capacitated facility location problems", European Journal of Operational

Research, 253, 557-569, 2016.

M. Fischetti, I. Ljubic, M. Sinnl, "Redesigning Benders Decomposition for Large Scale

Facility Location", Management Science 63 (7), 2146-2162, 2017.

http://www.dei.unipd.it/~fisch/papers/slides/

	Slide 1: Branch-and-cut implementation of Benders’ decomposition
	Slide 2: What do you actually mean by “Benders decomposition”?
	Slide 3: Modern Benders
	Slide 4: Working on the y-space (projection)
	Slide 5: Life of P(H)I
	Slide 6: Benders cut computation
	Slide 7: Benders feasibility cuts
	Slide 8: Successful Benders applications
	Slide 9: That’s it … or not?
	Slide 10: Role of the cut loop
	Slide 12: Stabilizing Benders can be easy!
	Slide 13: Our #ChaseTheCarrot heuristic
	Slide 14: Effect of the improved cut loop
	Slide 15: Conclusions

