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• The original Benders decomposition from the ‘60s uses two distinct 

 ingredients for solving a Mixed-Integer Linear Program (MILP):

1) A cut loop strategy where a relaxed (NP-hard) MILP on a variable subspace 

is solved exactly (i.e., to integrality) by a black-box solver, and then is 

iteratively tightened by means of additional “Benders” linear cuts 

2) The technicality of how to actually compute those cuts (Farkas’ projection)

– Papers proposing “a new Benders-like scheme” typically refer to 1)

– Students scared by “Benders implementations”  typically refer to 2)

 Later developments in the ‘70s:

– Folklore (Miliotios for TSP?): generate Benders cuts within a single B&B tree 

to cut any infeasible integer solution that is going to update the incumbent 

– McDaniel & Devine (1977): use Benders cuts to cut fractional sol.s as well

(root node only)

• Everything fits very naturally within a modern Branch-and-Cut (B&C) framework.
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What do you actually mean by 

“Benders decomposition”?



Modern Benders
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• Consider the convex MINLP in the (x,y) space

 and assume for the sake of simplicity that                                      is nonempty 

and bounded, and that 

 is nonempty, closed and bounded for all y ∈ S 

 → the convex function                                           is well defined for all y ∈ S

 

 → no “feasibility cuts” needed (this kind of cuts will be discussed later on)

 



Working on the y-space (projection)
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(1)                                       (2)                                         (3)

Original MINLP in the (x,y) space    → Benders’ master problem in the y space

Warning: projection changes the objective function (e.g., linear → convex nonlinear) 

“isolate the inner 

minimization over x”



Life of  P(H)I

• Solving Benders’ master problem calls for the 

 minimization of a nonlinear convex function

 (even if you start from a linear problem!)

• Branch-and-cut MINLP solvers generate a 

 sequence of linear cuts to approximate this 

 function from below (outer-approximation)

    

    subgradient 

    (aka Benders) cut →
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Benders cut computation 

• Benders (for linear) and Geoffrion (general convex) told us how to 

compute a subgradient to be used in the cut derivation, by using the 

optimal primal-dual solution (x*,u*) available after computing

• The above formula is problem-specific and perhaps #scaring

• Introduce an artificial variable vector q (acting as a copy of y) to get

 and to obtain the following simpler and completely general cut-recipe:  
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Benders feasibility cuts
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• For some important applications, the set

can be empty for some “infeasible” y ∈ S 

→                                              undefined

•  This situation can be handled by considering the “phase-1” feasibility condition 

 where the function             is convex 

 → it can be approximated by the usual subgradient “Benders feasibility cut”

     to be computed using reduced costs as before 



Successful Benders applications 

• Benders decomposition works well when fixing y = y*  for computing

                 makes the problem much simpler to solve.

• This usually happens when

– The problem for y = y* decomposes into a number of independent 

subproblems

• Stochastic Programming 

• Uncapacitated Facility Location 

• etc.

– Fixing y = y* changes the nature of some constraints:

• in Capacitated Facility Location, tons of constr.s  of the form              

 become just variable bounds

• Second Order Constraints                     become quadratic constr.s

• etc.
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That’s it … or not?
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• In practice, Benders decomposition can work quite 

 well, but sometimes it is desperately slow

 … as the root node bound does not improve even

  after the addition of tons of Benders cuts

• Slow convergence is generally attributed to the poor quality of Benders 

cuts, to be cured by a more clever selection policy (Pareto optimality 

of  Magnanti and Wong, 1981, etc.) but there is more…



Role of the cut loop

• B&C codes generate cuts, on the fly, in a sequential fashion

• Consider e.g. the root B&C node (arguably, the most critical one)

• A classical cut-loop scheme (described here for MILPs)

 J. E. Kelley. The cutting plane method for solving convex programs, 

Journal of the SIAM, 8:703-712, 1960.

– Find an optimal vertex x* of the current LP relaxation

– Invoke a separation function on x*, add the returned violated cut 

(if any) to the current LP, and repeat 

• Can be very ineffective in the first iterations 

 when few constraints are specified, and x* 

 moves along an unstable zig-zag trajectory

 ... which is precisely what often happens with Benders cuts
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Stabilizing Benders can be easy!
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• To summarize:

• Benders cut machinery is easy to implement …

… but the root node cut loop can be very critical 

 → many implementations sank here! 

• Kelley’s cut loop can be desperately slow

• Stabilization using “interior points” is a must 

→ this is well-known in subgradient optimization and Dantzig-Wolfe 

decomposition (column generation), but holds for Benders as well

• E.g., for facility location problems, we implemented a very simple 

   “chase the carrot” heuristic to determine a stabilized path 

   towards the optimal y 

• Mimics Frank-Wolfe alg. for minimizing a convex function over a convex set



Our #ChaseTheCarrot heuristic
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• We (the donkey) start with y = (1,1,…,1) 

  and optimize the master LP as in Kelley, 

  to get optimal y* (the carrot on the stick).

• We move y just half-way towards y*. We then 

   separate a point y’ in the segment [y, y*] close 

   to the new y. 

• The generated Benders cut is added to the master LP, which is reoptimized 

   to get the new optimal y* (carrot moves).

• Repeat until bound improves, then switch to Kelley for final bound refinement 

  (kind of cross-over)

• Warning: adaptations needed if feasibility Benders cuts need to be 

generated…



Effect of the improved cut loop

• Comparing Kelley cut loop at the root node with Kelley+ (add 

epsilon to y*) and with our chase-the-carrot method (inout)

• Koerkel-Ghosh qUFL instance gs250a-1 (250x250, quadratic costs)

• *nc = n. of Benders cuts generated at the end of the root node

• times in logarithmic scale
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Conclusions

 .      
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To summarize:

• Benders cuts are easy to implement within modern B&C (just use a callback 

where you solve the problem for y = y* and compute reduced costs)

• Kelley’s cut loop can be desperately slow hence stabilization is a must

• Implemented in CPLEX general MIP solver since version 12.7

Slides available at     http://www.dei.unipd.it/~fisch/papers/slides/
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