

or

How to enhance the heuristic behaviour of your favourite 0-1 MIP solver

Matteo Fischetti

DEI, University of Padova, <u>fisch@dei.unipd.it</u>

Andrea Lodi

DEIS, University of Bologna, <u>alodi@deis.unibo.it</u>

Presented in AUSSOIS, January 6-11, 2002

0-1 Mixed-Integer Programs

We consider generic Mixed-Integer Linear Programming problems (MIP's) with 0-1 variables

min
$$c^T X$$

 $A \times \overline{c}b$
 $x_j \in \{0,1\}$, $\forall j \in \mathcal{F} \neq \emptyset$
 $x_j integer$, $\forall j \in \mathcal{G} (\supseteq \emptyset)$

Relevant cases:

- 0-1 ILP's (generic or with a special structure)
 - set partitioning/covering models (crew scheduling etc.)
 - TSP, VRP, etc.
- MIP's with no "general integer" variables
- MIP's with both general integer and binary variables, the latter being often used to activate/deactivate costs/constraints (possibly using BIG-M tricks...)

Assumption: once the binary variables have been fixed, the problem becomes (relatively) easy to solve Hard-to-solve 0-1 MIP's (in practice)

- In many practical cases, generic 0-1 MIP's can be solved in a satisfactory way by general-purpose commercial software which delivers:
 - Provably optimal solution
 - Heuristic solutions with a practically-acceptable error

Most MIPlib instances are of this type!

- Unfortunately, in other cases general-purpose software is not adequate and one has to:
 - Play with the MIP solver parameters ("emphasize integrality" etc.) so as to convince the \$#\$#?@# solver to deliver, at least, a good solution
 - Design and use ad-hoc heuristics—thus loosing the advantage of working in a generic MIP framework

Many real-world instances are of this type!

Better heuristics for general 0-1 MIP's strongly required!

A general heuristic framework

• We aim at embedding a **black-box** (general-purpose or specific) 0-1 MIP solver within an overall **heuristic framework** that "helps" the solver to deliver improved heuristic solutions

The available black-box module

The desired "Italian flag"

The Local Branch heuristic on a hard MIPLIP problem (seymour.lp)

MIPLIP problem seymour.lp

CPLEX 7.0: MIP emphasis: optimality

\triangleright	Elapse	ed b&k) time	=	151.0	2 5	sec.	:	435.0
\triangleright	Final	Sol.	after	180	000.0	sec	c.s	:	435.0

CPLEX 7.0: MIP emphasis: integer feasibility

	Elapsed	b&b	time	=	118.85	sec.	:	459.0
	Elapsed	b&b	time	=	202.98	sec.	:	456.0
								455.0
								454.0
	Elapsed	b&b	time	=	222.97	sec.	:	453.0
	Elapsed	b&b	time	=	304.97	sec.	:	435.0
	Elapsed	b&b	time	=	479.85	sec.	:	432.0
	Elapsed	b&b	time	=	2380.52	sec.	:	431.0
	Elapsed	b&b	time	=	2772.62	sec.	:	430.0
	Elapsed	b&b	time	=	3162.93	sec.	:	429.0
	Elapsed	b&b	time	=	4507.88	sec.	:	428.0
	Elapsed	b&b	time	=	7605.32	sec.	:	427.0
\triangleright	Final So	ol. a	after	18	3000.0 se	ec.s	:	427.0

۶	Local	Branch	Time	=	151.8	sec.	:	435.0
	Local	Branch	Time	=	392.1	sec.	:	430.0
	Local	Branch	Time	=	404.8	sec.	:	427.0
≻	Local	Branch	Time	=	826.6	sec.	:	426.0
≻	Local	Branch	Time	=	1122.3	sec.	:	425.0
≻	Local	Branch	Time	=	1608.5	sec.	:	424.0
	Local	Branch	Time	=	2470.9	sec.	:	423.0

MIPLIP: problem arki001.lp

CPLEX 7.0: MIP emphasis: optimality

\triangleright	Elapsed	b&b	time	=	21.12	sec.	7,594,629.2
\triangleright							7,590,295.2
\triangleright							7,590,247.2
\triangleright	Elapsed	b&b	time	=	212.32	sec.	7,585,194.4
\triangleright	Elapsed	b&b	time	=	1897.90	sec.	7,584,116.1
\triangleright	Elapsed	b&b	time	=	2088.58	sec.	7,583,895.3
\triangleright							7,583,878.4
\triangleright	Elapsed	b&b	time	=	2450.85	sec.	7,582,953.8
\triangleright	Elapsed	b&b	time	=	2613.20	sec.	7,582,840.6
\triangleright	Elapsed	b&b	time	=	4160.22	sec.	7,582,751.4
\triangleright	Elapsed	b&b	time	=	6216.88	sec.	7,582,634.8
\triangleright	Elapsed	b&b	time	=	7161.85	sec.	7,582,414.4
\triangleright	Elapsed	b&b	time	=	7161.85	sec.	7,582,302.6
\triangleright	Elapsed	b&b	time	=	14322.80) sec.	7,582,202.7
\triangleright	Elapsed	b&b	time	=	16237.02	2 sec.	7,582,031.3
\triangleright	Elapsed	b&b	time	=	16237.02	2 sec.	7,582,024.4

\triangleright	Time =	21.6	best sol = 7,594,629.28
\triangleright	Time =	471.9	best sol = 7,581,831.57
≻	Time =	922.0	best sol = 7,581,267.36
≻	Time =	2279.9	best sol = 7,580,980.56
≻	Time =	2730.1	best sol = 7,580,947.53
≻	Time =	3630.4	best sol = 7,580,937.90
\succ	Time =	4080.5	best sol = 7,580,925.20

Variable-fixing strategy (hard version)

- A commonly-used (often quite effective) heuristic framework
- Let x^{H} be an (almost) feasible "target solution", and let

$$S = \{ j \in B : x_j^H = 1 \}$$

denote its **binary support** (binary var.s at value 1).

- Heuristic depth-first search of the branching tree:
 - iteratively <u>fix to 1</u> certain "highly efficient" variables in S (green nodes)
 - apply the black-box module to some green nodes only
 - only limited **backtracking** allowed

Advantages:

- Problem size quickly reduced: the black-box solver can concentrate on smaller and smaller "**core problems**"
- The black-box solver is applied over and over on different subproblems (diversification)

Example:

Black-box = Crew scheduling solver based on a set covering model (dynamic column-generation & Lagrangian heuristics)

Crew scheduling heuristic TURNI using variable fixing

Disadvantages:

- How to choose the "highly efficient variables in S" to be fixed?
- Wrong choices at early levels are typically very difficult to detect, even when **lower bounds** are computed along the way

Feasible solutions only available after several fixings, at a **deep level** in the branching tree The lower bound does not help at early levels: it often stays quiet for several fixings, and **bumps** suddenly after an apparently innocent late fixing

How to reach a sufficiently-deep branching level with a good lower bound?

Variable-fixing strategy (soft version): local branching

- As before, let x^H be a (almost) feasible "target solution" and denote by $S^H = \{ j \in B : x_j^H = 1 \}$ its binary support
- Don't decide the actual variables in S^H to be fixed (a difficult task!), but just their **number** $|S^H| - k$
- Introduce the local branching constraint

$$\left(S^{H} \right) := \sum_{j \in S^{H}}^{I} x_{j} \ge |S^{H}| - K$$

$$\left(or \sum_{j \in S^{H}}^{I} (1 - x_{j}) \le K \right)$$

so as to define a convenient **k-OPT neighbourhood** $N(x^H, k)$ of the target solution x^H (the larger *k*, the larger the neighbourhood)

"Akin to k-OPT for TSP"

- Search $N(x^H, k)$ by means of the black-box module
- Repeat with a different target solution (if available) and/or with a modified *k* (basic idea: to be elaborated in the sequel...)

<u>Conjecture</u>: a small value of k drives the black-box solver towards integrality as effectively as fixing a large number of variables, but with a **much larger** <u>degree of freedom</u> \rightarrow better solutions can be found.

Local branching in an exact solution framework

• **Black-box module** = generic **exact** branch-and-cut (or branch-andbound) MIP solver , e.g. Cplex or XPRESS

• <u>General scheme (sketch)</u>

- 1. set h := 0 and choose a convenient value for parameter k
- 2. run the MIP solver (initial upper bound = $+\infty$) for a while, until a **first feasible solution** $x^{(h)}$ is found, and let

$$S^{(h)} := \{ j \in B : x_j^{(h)} = 1 \}$$

be its binary support

- 3. add the local branching constraint $x(S^{(h)}) \ge |S^{(h)}| k$ to the current MIP, and try to solve it exactly within a certain time limit (initial upper bound = $c^T x^{(h)}$)
- 4. let $x^{(h+1)}$ be the best solution found so far
- 5. remove the last local branching constraint $x(S^{(h)}) \ge |S^{(h)}| k$
- 6. **GREEN flag** : if current problem solved to proven optimality or infeasible, then

add the "valid cut" $x(S^{(h)}) \leq |S^{(h)}| - k - 1$, set h := h + 1 and repeat from step 3 (increase *k* if pr. infeas.)

- 7. if you feel lucky, reduce k and repeat from step 3
- 8. **RED flag** : give-up and run the MIP solver on the current problem

Example: local branching in an exact solution framework

Local branching in a heuristic solution framework

- Easy adaptation of the previous framework: when the RED FLAG situation occurs, use a **diversification** mechanism to find a (worse) solution $x^{(h+1)}$ to replace the current-best solution, and continue.
- Diversification by Variable Neighbourhood Search (Hansen & Mladenovic, 1998):

Find a solution $x^{(h+1)}$ close enough to $x^{(h)}$, but outside the current k-OPT neighbourhood, e.g.

 $x^{(h+1)} \in N(x^{(h)}, k+k/2) \setminus N(x^{(h)}, k)$

➤ Run the MIP solver (initial upper bound = +∞) to find the first feasible solution $x^{(h+1)}$ of the current problem amended by the **diversification constraint**

$$k+1 \le |S^{(h)}| - x(S^{(h)}) \le k + k/2$$

"Akin to a random 3-OPT move after several 2-OPT moves for TSP"

Variants and extensions (under investigation)

- Tabu search by branch-and-cut:
 - The black-box MIP solver is used to explore a suitable neighbourhood $N(x^H, k)$ of the current target solution x^H
 - the neighbourhood is defined by a <u>restricted</u> MIP model defining a proper subset of the feasible solution space, e.g.
 - not too far from the current target solution:

• tabu moves:

$$x(S^{*}) \leq |S^{*}| - 1$$

• big-M coefficient reductions of the type

• possibly: problem-specific constraints ...

<u>Working with percentage gap closed</u>

$$\begin{cases} \min c^{T} x \\ \sum_{j \in S^{H}}^{j} x_{j} \ge |S^{H}| - K \\ j \in S^{H} \\ A \times z = b \\ 0 \le x_{j} \le |, j \in \beta \\ \end{cases} \begin{cases} \kappa := \left[\max \frac{\sum x_{j}}{j \in S^{H}} \right] \\ c^{T} x \le \alpha \perp B + (1-\alpha) \cup B \\ A \times > b \\ 0 \le x_{j} \le |, j \in \beta \\ 0 \le x_{j} \le |, j \in \beta \\ \end{cases} \end{cases} \begin{cases} \kappa := \left[\max \frac{\sum x_{j}}{j \in S^{H}} \right] \\ c^{T} x \le \alpha \perp B + (1-\alpha) \cup B \\ A \times > b \\ 0 \le x_{j} \le |, j \in \beta \\ 0 \le x_{j} \le |, j \in \beta \\ \end{cases} \end{cases}$$

• Smart backtracking

MIPLIP problem seymour.lp

CPLEX 7.0: MIP emphasis: optimality

\succ	Elapsed	b&b	time	=	151.02	sec.	:	435.0

> Final Sol. after 18000.0 sec.s : 435.0

CPLEX 7.0: MIP emphasis: integer feasibility

\triangleright	Elapsed	b&b	time	=	118.85	sec.	:	459.0
	Elapsed	b&b	time	=	202.98	sec.	:	456.0
								455.0
								454.0
۶	Elapsed	b&b	time	=	222.97	sec.	:	453.0
۶	Elapsed	b&b	time	=	304.97	sec.	:	435.0
۶	Elapsed	b&b	time	=	479.85	sec.	:	432.0
۶	Elapsed	b&b	time	=	2380.52	sec.	:	431.0
۶	Elapsed	b&b	time	=	2772.62	sec.	:	430.0
۶	Elapsed	b&b	time	=	3162.93	sec.	:	429.0
۶	Elapsed	b&b	time	=	4507.88	sec.	:	428.0
	Elapsed	b&b	time	=	7605.32	sec.	:	427.0
\triangleright	Final Sc	51. a	after	18	3000.0 se	ec.s	:	427.0

\triangleright	Local	Branch	Time	=	151.8	sec.	:	435.0
\triangleright	Local	Branch	Time	=	392.1	sec.	:	430.0
۶	Local	Branch	Time	=	404.8	sec.	:	427.0
\triangleright	Local	Branch	Time	=	826.6	sec.	:	426.0
\triangleright	Local	Branch	Time	=	1122.3	sec.	:	425.0
\triangleright	Local	Branch	Time	=	1608.5	sec.	:	424.0
۶	Local	Branch	Time	=	2470.9	sec.	:	423.0

MIPLIP: problem arki001.lp

CPLEX 7.0: MIP emphasis: optimality

\triangleright	Elapsed	b&b	time	=	21.12	sec.	7,594,629.2
\triangleright							7,590,295.2
\triangleright							7,590,247.2
\triangleright	Elapsed	b&b	time	=	212.32	sec.	7,585,194.4
\triangleright	Elapsed	b&b	time	=	1897.90	sec.	7,584,116.1
\triangleright	Elapsed	b&b	time	=	2088.58	sec.	7,583,895.3
\triangleright							7,583,878.4
\triangleright	Elapsed	b&b	time	=	2450.85	sec.	7,582,953.8
\triangleright	Elapsed	b&b	time	=	2613.20	sec.	7,582,840.6
\triangleright	Elapsed	b&b	time	=	4160.22	sec.	7,582,751.4
\triangleright	Elapsed	b&b	time	=	6216.88	sec.	7,582,634.8
\triangleright	Elapsed	b&b	time	=	7161.85	sec.	7,582,414.4
\triangleright	Elapsed	b&b	time	=	7161.85	sec.	7,582,302.6
\triangleright	Elapsed	b&b	time	=	14322.80) sec.	7,582,202.7
\triangleright	Elapsed	b&b	time	=	16237.02	2 sec.	7,582,031.3
\triangleright	Elapsed	b&b	time	=	16237.02	2 sec.	7,582,024.4

	Time =	21.6	best sol = 7,594,629.28
≻	Time =	471.9	best sol = 7,581,831.57
\triangleright	Time =	922.0	best sol = 7,581,267.36
≻	Time =	2279.9	best sol = 7,580,980.56
\triangleright	Time =	2730.1	best sol = 7,580,947.53
\triangleright	Time =	3630.4	best sol = 7,580,937.90
\triangleright	Time =	4080.5	best sol = 7,580,925.20

Hard nesting problem (broken glass) glass4.lp

CPLEX 7.0: MIP emphasis: optimality

\triangleright	Elapsed	b&b	time	=	4.42	sec.	2.9334e+09
\succ	Elapsed	b&b	time	=	14.83	sec.	2.8334e+09
\succ	Elapsed	b&b	time	=	68.20	sec.	2.3000e+09
\succ	Elapsed	b&b	time	=	100.58	sec	2.2800e+09
\succ	Elapsed	b&b	time	=	354.20	sec.	2.1000e+09
\succ	Elapsed	b&b	time	=	1062.98	sec.	2.0867e+09
\succ	Elapsed	b&b	time	=	1257.15	sec.	2.0500e+09
\succ	Elapsed	b&b	time	=	3436.65	sec.	2.0125e+09
\triangleright							1.9500e+09
\succ	Elapsed	b&b	time	=	3922.70	sec.	1.9334e+09
\succ	Elapsed	b&b	time	=	5711.65	sec.	1.8625e+09
\succ	Elapsed	b&b	time	=	6119.68	sec.	1.8500e+09
\triangleright	Elapsed	b&b	time	=	10770.95	5 sec.	1.8133e+09
\triangleright	Elapsed	b&b	time	=	14460.53	B sec.	1.8000e+09

\triangleright	Time =	1.9	best sol =	2,933,355,933.33
\triangleright	Time =	302.1	best sol =	1,850,015,600.00
\triangleright	Time =	602.3	best sol =	1,800,015,033.33
\triangleright	Time =	902.5	best sol =	1,750,015,100.00
\triangleright	Time =	1202.7	best sol =	1,744,458,422.22
\triangleright	Time =	1803.0	best sol =	1,640,013,670.00
\triangleright	Time =	7137.6	best sol =	1,600,015,950.00
\triangleright	Time =	17513.9	best sol =	1,600,013,400.00

Example: 800+ driver duties at NSR (the Dutch railways) computed by TURNI <u>without local branch</u>

Example: 800+ driver duties at NSR (the Dutch railways) computed by TURNI with local branch

Hard crew scheduling (NSR): nsr8k.lp

Just the TURNI core problem of the previous real-world crew scheduling instance

CPLEX	7.0:	MIP	emphasis:	optimality
-------	------	-----	-----------	------------

Ro	ot rela	xation	solution tim	e = <mark>65</mark>	09.12 sec.		
Nodes			Cut			s/	
	Node	Left	Objective	IInf	Best Integer	Best Node	Gap
	0	0	1.7501e+07	3653		1.7501e+07	
			1.7501e+07	3673	Fr	actcuts: 41	
*	0+	0	4.1831e+08	0	4.1831e+08	1.7501e+07	95.82%
	10	10	1.7507e+07	3680	4.1831e+08	1.7501e+07	95.82%
*	10+	10	3.2858e+08	0	3.2858e+08	1.7501e+07	94.67%
	20	20	1.7523e+07	3658	3.2858e+08	1.7501e+07	94.67%
	30	30	1.7531e+07	3618	3.2858e+08	1.7501e+07	94.67%
	Final	. Sol.	after 3	6,000	.0 sec.s	328,5	81,877.40

CPLEX 7.0 & Local Branching (k=10)

\triangleright	Time =	12,820.0	best sol =	418,308,979.25
\triangleright	Time =	13,956.1	best sol =	123,196,426.17
\triangleright	Time =	16,356.4	best sol =	51,215,212.14
\triangleright	Time =	18,759.4	best sol =	42,812,004.17
\triangleright	Time =	21,160.0	best sol =	24,064,072.04
\triangleright	Time =	23,561.2	best sol =	23,189,634.03
\triangleright	Time =	28,362.8	best sol =	22,812,458.03
\triangleright	Time =	33,167.6	best sol =	22,757,539.03

TURNI: 809-duty sol. in about 5,400 sec.s 18,257,835.61