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 0-1 Mixed-Integer Programs 
 

We consider generic Mixed-Integer Linear Programming problems  

(MIP’s) with 0-1 variables 

 

 
Relevant cases: 

•  0-1 ILP’s  (generic or with a special structure)  

•  set partitioning/covering models (crew scheduling etc.)  

•  TSP, VRP , etc. 

 

•  MIP’s with no “general integer” variables 

 

•  MIP’s with both general integer and binary variables, the latter 
being often used to activate/deactivate costs/constraints (possibly 
using BIG-M tricks…) 

 

 

Assumption: once the binary variables have been fixed, 

the problem becomes (relatively) easy to solve 
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Hard-to-solve 0-1 MIP’s (in practice) 
 

•  In many practical cases, generic 0-1 MIP’s can be solved in a 
satisfactory way by general-purpose commercial software which 
delivers: 

 

•  Provably optimal solution  

•  Heuristic solutions with a practically-acceptable error 

 

Most MIPlib instances are of this type! 

  

•  Unfortunately, in other cases general-purpose software is not adequate 
and one has to: 

 

•  Play with the MIP solver parameters (“emphasize integrality” 
etc.)  so as to  convince the $#$#?@# solver to deliver, at least, a 
good solution 

 

•  Design and use ad-hoc heuristics—thus loosing the advantage of 
working in a generic MIP framework 

 

Many real-world instances are of this type! 

 

 

 

Better heuristics for general 0-1 MIP’s strongly required! 
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A general heuristic framework 
 

•  We aim at embedding a black-box (general-purpose or specific) 0-1 
MIP solver within an overall heuristic framework that “helps” the 
solver to deliver improved heuristic solutions  

 

 
The available black-box module 

 

 

 

The desired “Italian flag” 
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The Local Branch heuristic on a hard MIPLIP problem  (seymour.lp) 
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MIPLIP problem  seymour.lp  
 

CPLEX 7.0: MIP emphasis: optimality 

 

Ø Elapsed b&b time =  151.02 sec. :    435.0 

Ø Final Sol. after 18000.0 sec.s  :    435.0 

 

CPLEX 7.0: MIP emphasis: integer feasibility 

 

Ø Elapsed b&b time =  118.85 sec. :    459.0 

Ø Elapsed b&b time =  202.98 sec. :    456.0 

Ø                                     455.0 

Ø                                      454.0 

Ø Elapsed b&b time =  222.97 sec. :    453.0 

Ø Elapsed b&b time =  304.97 sec. :    435.0 

Ø Elapsed b&b time =  479.85 sec. :    432.0 

Ø Elapsed b&b time = 2380.52 sec. :    431.0 

Ø Elapsed b&b time = 2772.62 sec. :    430.0 

Ø Elapsed b&b time = 3162.93 sec. :    429.0 

Ø Elapsed b&b time = 4507.88 sec. :    428.0 

Ø Elapsed b&b time = 7605.32 sec. :    427.0 

Ø Final Sol. after 18000.0 sec.s  :    427.0 

 

CPLEX 7.0 & Local Branching (k=10) 

 

Ø Local Branch Time =    151.8 sec. :    435.0 

Ø Local Branch Time =    392.1 sec. :     430.0 

Ø Local Branch Time =    404.8 sec. :     427.0 

Ø Local Branch Time =    826.6 sec. :    426.0 

Ø Local Branch Time =   1122.3 sec. :     425.0 

Ø Local Branch Time =   1608.5 sec. :     424.0 

Ø Local Branch Time =   2470.9 sec. :     423.0 
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MIPLIP: problem arki001.lp 
  

CPLEX 7.0: MIP emphasis: optimality 

  

Ø Elapsed b&b time =   21.12 sec.  7,594,629.2   

Ø                                    7,590,295.2   

Ø                                    7,590,247.2   

Ø Elapsed b&b time =  212.32 sec.    7,585,194.4   

Ø Elapsed b&b time = 1897.90 sec.    7,584,116.1   

Ø Elapsed b&b time = 2088.58 sec.    7,583,895.3   

Ø            7,583,878.4   

Ø Elapsed b&b time = 2450.85 sec.    7,582,953.8   

Ø Elapsed b&b time = 2613.20 sec.    7,582,840.6   

Ø Elapsed b&b time = 4160.22 sec.   7,582,751.4   

Ø Elapsed b&b time = 6216.88 sec.  7,582,634.8   

Ø Elapsed b&b time = 7161.85 sec.  7,582,414.4   

Ø Elapsed b&b time = 7161.85 sec.    7,582,302.6   

Ø Elapsed b&b time = 14322.80 sec.  7,582,202.7   

Ø Elapsed b&b time = 16237.02 sec.   7,582,031.3   

Ø Elapsed b&b time = 16237.02 sec.   7,582,024.4   

                                                                               

CPLEX 7.0 & Local Branching (k=10) 

                                                                                                                                         

Ø Time =     21.6         best sol = 7,594,629.28                       

Ø Time =    471.9         best sol = 7,581,831.57                       

Ø Time =    922.0         best sol = 7,581,267.36                       

Ø Time =   2279.9         best sol = 7,580,980.56                       

Ø Time =   2730.1         best sol = 7,580,947.53                       

Ø Time =   3630.4         best sol = 7,580,937.90                       

Ø Time =   4080.5         best sol = 7,580,925.20     
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Variable-fixing strategy (hard version) 

 

•  A commonly-used (often quite effective) heuristic framework 

•  Let 
Hx  be an (almost) feasible “target solution”, and let   

}1:{ =∈= H
jxBjS  

denote its  binary support (binary var.s at value 1).  

 

•  Heuristic depth-first search 
of the branching tree: 

 

•  iteratively  fix to 1  certain 
“highly efficient” variables 
in  S  (green nodes) 

 

•  apply the black-box 
module to some green 
nodes only 

 

•  only limited backtracking 
allowed 

 

Advantages:  

 

•  Problem size quickly reduced: the black-box solver can 
concentrate on smaller and smaller “core problems” 

•  The black-box solver is applied over and over on different 
subproblems (diversification)  
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Example:  

Black-box = Crew scheduling solver based on a set covering model 
(dynamic column-generation & Lagrangian heuristics)  

0

200

400

600

800

1000

1200

0.0
0

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

1.0
0

1.1
0

1.2
0

Heu. Sol.
Fixed var.s

 

Crew scheduling heuristic TURNI using variable fixing 

 

Disadvantages:  

•  How to choose the “highly efficient variables in  S ” to be fixed? 

•  Wrong choices at early levels are typically very difficult to 
detect, even when lower bounds are computed along the way 

 

Feasible solutions only 
available after several 
fixings, at a deep level 
in the branching tree 

 

 

The lower bound does not help at early 
levels: it often stays quiet for several 

fixings, and bumps suddenly after an 
apparently innocent late fixing 

How to reach a sufficiently-deep branching level  

with a good lower bound?  
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Variable-fixing strategy (soft version): local branching 

 

•  As before, let 
Hx  be a (almost) feasible “target solution” and denote 

by   }1:{ =∈= H
j

H xBjS   its  binary support 

•  Don’t decide the actual variables in  
HS  to be fixed (a difficult task!), 

but just their number kS H −||  

•  Introduce the local branching constraint  

 

so as to define a convenient k-OPT neighbourhood  ),( kxN H
 of 

the target solution 
Hx (the larger k, the larger the neighbourhood) 

“Akin to k-OPT for TSP” 

•  Search 
),( kxN H

 by means of the black-box module 

•  Repeat with a different target solution (if available) and/or with a 
modified k (basic idea: to be elaborated in the sequel…) 

 

Conjecture: a small value of k drives the black-box solver 
towards integrality as effectively as fixing a large number of 
variables, but with a much larger degree of freedom è better 
solutions can be found. 
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Local branching in an exact solution framework 

 

•  Black-box module = generic exact branch-and-cut (or branch-and-
bound) MIP solver , e.g. Cplex or XPRESS 

 

•  General scheme (sketch) 

1. set 0:=h  and choose a convenient value for parameter k  

2. run the MIP solver (initial upper bound = ∞+ ) for a while, until a 

first feasible solution 
)(hx  is found, and let   

}1:{: )()( =∈= h
j

h xBjS  

be its binary support 

3. add the local branching constraint kSSx hh −≥ ||)( )()(
 to the 

current MIP, and try to solve it exactly within a certain time limit 

(initial upper bound = 
)(hT xc )  

4. let 
)1( +hx be the best solution found so far 

5. remove the last local branching constraint kSSx hh −≥ ||)( )()(
 

6.  GREEN flag  : if current problem solved to proven 
optimality or infeasible, then  

add the “valid cut” 1||)( )()( −−≤ kSSx hh
, set 

1: += hh and repeat from step 3 (increase k if pr. infeas.) 

7. if you feel lucky, reduce k   and repeat from step 3 

8.   RED flag  : give-up and run the MIP solver on the current 
problem 
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Example: local branching in an exact solution framework 
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Local branching in a heuristic solution framework 

 

 

•  Easy adaptation of the previous framework: when the RED FLAG 
situation occurs, use a diversification mechanism to find a (worse) 

solution
)1( +hx to replace the current-best solution, and continue. 

 

 

•  Diversification by Variable Neighbourhood Search (Hansen & 
Mladenovic, 1998):  

 

Find a solution 
)1( +hx close enough to 

)(hx , but outside 
the current k-OPT neighbourhood, e.g. 

),(\)2/,( )()()1( kxNkkxNx hhh +∈+
 

 

Ø Run the MIP solver (initial upper bound = ∞+ ) to find 

the first feasible solution 
)1( +hx of the current problem 

amended by the diversification constraint 

 

2/)(||1 )()( kkSxSk hh +≤−≤+  

 

“Akin to a random 3-OPT move after several 2-OPT  

moves for TSP” 
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Variants and extensions (under investigation) 

 

•  Tabu search by branch-and-cut:  

 

•  The black-box MIP solver is used to explore a suitable 

neighbourhood   ),( kxN H
 of the current target solution 

Hx  

•  the neighbourhood is defined by a restricted  MIP model 
defining a proper subset of the feasible solution space, e.g. 

 

•  not too far from the current target solution: 

 

 

• tabu moves: 
 

  

 

•  big-M coefficient reductions of the type 

 
 

•  possibly: problem-specific constraints … 
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• Working with percentage gap closed 

 

 

• Smart backtracking 
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MIPLIP problem  seymour.lp 

 
CPLEX 7.0: MIP emphasis: optimality 

 

Ø Elapsed b&b time =  151.02 sec. :    435.0 

Ø Final Sol. after 18000.0 sec.s  :    435.0 

 

CPLEX 7.0: MIP emphasis: integer feasibility 

 

Ø Elapsed b&b time =  118.85 sec. :    459.0 

Ø Elapsed b&b time =  202.98 sec. :    456.0 

Ø                                     455.0 

Ø                                      454.0 

Ø Elapsed b&b time =  222.97 sec. :    453.0 

Ø Elapsed b&b time =  304.97 sec. :    435.0 

Ø Elapsed b&b time =  479.85 sec. :    432.0 

Ø Elapsed b&b time = 2380.52 sec. :    431.0 

Ø Elapsed b&b time = 2772.62 sec. :    430.0 

Ø Elapsed b&b time = 3162.93 sec. :    429.0 

Ø Elapsed b&b time = 4507.88 sec. :    428.0 

Ø Elapsed b&b time = 7605.32 sec. :    427.0 

Ø Final Sol. after 18000.0 sec.s  :    427.0 

 

CPLEX 7.0 & Local Branching (k=10) 

 

Ø Local Branch Time =    151.8 sec. :    435.0 

Ø Local Branch Time =    392.1 sec. :     430.0 

Ø Local Branch Time =    404.8 sec. :     427.0 

Ø Local Branch Time =    826.6 sec. :    426.0 

Ø Local Branch Time =   1122.3 sec. :     425.0 

Ø Local Branch Time =   1608.5 sec. :     424.0 

Ø Local Branch Time =   2470.9 sec. :     423.0 
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MIPLIP: problem arki001.lp 
  

CPLEX 7.0: MIP emphasis: optimality 

  

Ø Elapsed b&b time =   21.12 sec.  7,594,629.2   

Ø                                    7,590,295.2   

Ø                                    7,590,247.2   

Ø Elapsed b&b time =  212.32 sec.    7,585,194.4   

Ø Elapsed b&b time = 1897.90 sec.    7,584,116.1   

Ø Elapsed b&b time = 2088.58 sec.    7,583,895.3   

Ø            7,583,878.4   

Ø Elapsed b&b time = 2450.85 sec.    7,582,953.8   

Ø Elapsed b&b time = 2613.20 sec.    7,582,840.6   

Ø Elapsed b&b time = 4160.22 sec.   7,582,751.4   

Ø Elapsed b&b time = 6216.88 sec.  7,582,634.8   

Ø Elapsed b&b time = 7161.85 sec.  7,582,414.4   

Ø Elapsed b&b time = 7161.85 sec.    7,582,302.6   

Ø Elapsed b&b time = 14322.80 sec.  7,582,202.7   

Ø Elapsed b&b time = 16237.02 sec.   7,582,031.3   

Ø Elapsed b&b time = 16237.02 sec.   7,582,024.4   

                                                                               

CPLEX 7.0 & Local Branching (k=10) 

                                                                                                                                         

Ø Time =     21.6         best sol = 7,594,629.28                       

Ø Time =    471.9         best sol = 7,581,831.57                       

Ø Time =    922.0         best sol = 7,581,267.36                       

Ø Time =   2279.9         best sol = 7,580,980.56                       

Ø Time =   2730.1         best sol = 7,580,947.53                       

Ø Time =   3630.4         best sol = 7,580,937.90                       

Ø Time =   4080.5         best sol = 7,580,925.20     
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Hard nesting problem (broken glass) glass4.lp   
 

CPLEX 7.0: MIP emphasis: optimality 

 

Ø Elapsed b&b time =    4.42 sec.    2.9334e+09            

Ø Elapsed b&b time =   14.83 sec.  2.8334e+09            

Ø Elapsed b&b time =   68.20 sec.  2.3000e+09            

Ø Elapsed b&b time =  100.58 sec  2.2800e+09            

Ø Elapsed b&b time =  354.20 sec.   2.1000e+09            

Ø Elapsed b&b time = 1062.98 sec.      2.0867e+09            

Ø Elapsed b&b time = 1257.15 sec.  2.0500e+09            

Ø Elapsed b&b time = 3436.65 sec.      2.0125e+09            

Ø          1.9500e+09                      

Ø Elapsed b&b time = 3922.70 sec.     1.9334e+09            

Ø Elapsed b&b time = 5711.65 sec.     1.8625e+09            

Ø Elapsed b&b time = 6119.68 sec.     1.8500e+09            

Ø Elapsed b&b time = 10770.95 sec.      1.8133e+09            

Ø Elapsed b&b time = 14460.53 sec.      1.8000e+09                                                                       

 

CPLEX 7.0 & Local Branching (k=10) 

 

Ø Time =      1.9    best sol =  2,933,355,933.33                  

Ø Time =    302.1    best sol =  1,850,015,600.00                  

Ø Time =    602.3    best sol =  1,800,015,033.33                  

Ø Time =    902.5    best sol =  1,750,015,100.00                  

Ø Time =   1202.7    best sol =  1,744,458,422.22                  

Ø Time =   1803.0    best sol =  1,640,013,670.00                  

Ø Time =   7137.6    best sol =  1,600,015,950.00                  

Ø Time =  17513.9    best sol =  1,600,013,400.00                                     
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Example:  800+ driver duties at NSR (the Dutch railways) computed by TURNI without local branch 

<-- New Pass …. 
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Example: 800+ driver duties at NSR (the Dutch railways) computed by TURNI  with local branch  

<-- New Pass …. 
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Hard crew scheduling (NSR): nsr8k.lp   
 

Just the TURNI core problem of the previous real-world crew scheduling instance  

 

CPLEX 7.0: MIP emphasis: optimality 

 

Root relaxation solution time = 6509.12 sec.                                                                                                                                               

        Nodes                                         Cuts/                                         

   Node  Left     Objective  IInf  Best Integer     Best Node   Gap                       

                                                                                               

      0     0    1.7501e+07  3653                  1.7501e+07                          

                 1.7501e+07  3673              Fractcuts:  41                                

*     0+    0    4.1831e+08     0    4.1831e+08    1.7501e+07   95.82%                      

     10    10    1.7507e+07  3680    4.1831e+08    1.7501e+07   95.82%                      

*    10+   10    3.2858e+08     0    3.2858e+08    1.7501e+07   94.67%                      

     20    20    1.7523e+07  3658    3.2858e+08    1.7501e+07   94.67%                      

     30    30    1.7531e+07  3618    3.2858e+08    1.7501e+07   94.67%                      

  

  Final Sol. after  36,000.0 sec.s       328,581,877.40  
                                                                                 

 

CPLEX 7.0 & Local Branching (k=10) 

 

Ø Time =  12,820.0       best sol = 418,308,979.25                                                    

Ø Time =  13,956.1       best sol = 123,196,426.17                                                    

Ø Time =  16,356.4       best sol =  51,215,212.14                                                    

Ø Time =  18,759.4       best sol =  42,812,004.17                                                    

Ø Time =  21,160.0       best sol =  24,064,072.04                                                    

Ø Time =  23,561.2       best sol =  23,189,634.03      

Ø Time =  28,362.8       best sol =  22,812,458.03                                                    

Ø Time =  33,167.6       best sol =  22,757,539.03        
 

TURNI: 809-duty sol. in about 5,400 sec.s  18,257,835.61                                                                                             


