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Cutting plane methods

• Cutting plane methods widely used in convex optimization and to provide 
bounds for Mixed-Integer Programs (MIPs)

• Made by two equally important components: 

– (i) the separation procedure (oracle) that produces the cut(s) used to 
tighten the current relaxation, and 

– (ii) the overall search framework that actually uses the generated cuts 
and determines the next point to cut

• In the last 50 years, considerable research effort devoted to the study of (i) 
families of cuts, cut selection criteria, etc.

• Search component (ii) much less studied by the MIP community the 
standard approach is to always cut an optimal LP vertex
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The problem

• Consider a generic MIP: z(MIP) := min { cT x : x ε X }

and its LP relaxation 

z(LP) := min {cT x: x ε P }

P := { x : A x ≤ b },        X := { x ε P: xj integer for j ε J }

• We are also given a convex set P1 with conv(X)   ≤ P1  ≤ P (e.g., the first 
GMI closure) described only implicitly through a separation function:

oracle(y) returns a valid linear ineq. for P1 violated by y (if any)

• We want to (approximately) compute  z1 := min {cT x: x ε P1 }
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Kelley’s cutting plane method
• A classical search scheme 

J. E. Kelley. The cutting plane method for solving convex 
programs, Journal of the SIAM, 8:703-712, 1960.

1. Let P’ := { x ε P : x satisfies all cuts generated so far }
2. Find an optimal vertex x* of the current LP: min {cT x: x ε P’ } ,
3. Invoke oracle(x*) and repeat (if a violated cut is found)

• Practically satisfactory only if the oracle is able to find “deep” cuts

• Very ineffective in case shallow cuts are generated

• May induce a dangerous correlation between x* and the returned cut 
(e.g. when the cuts are read from the LP tableau)
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Kelley and Gomory: a problematic 
marriage

exponential determinant 
growth unstable system!

LP bound = 5; ILP optimum = 8
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But… is it all Gomory’s fault?
• Experiment: take a given LP problem (e.g. root node relaxation of a MIP)

min { cT x: A’ x ≤ b’, A’’ x = b’’, l ≤ x ≤ u  }

and define:
– P := { x: A’’ x = b’’, l ≤ x ≤ u  }
– constr. list A’ x ≤ b’ can only be accessed through the separation oracle

• 3 cut selection criteria implemented for separation: for a given x* the oracle 
returns:

A) the deepest violated cut in the list (Euclidean distance) “best” facet

B) a convex combination of the deepest one and of the (at most) first 10 
violated or tight cuts encountered when scanning the list

C)  the cut is first defined as in case B, but then its rhs is weakened so as to 
half the degree of violation
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Output with Kelley’s search (std)

std-A

std-B

std-C
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But other search schemes work better…

e.g. yo-yo search…

yoyo-B
yoyo-A

yoyo-C
std-A

std-B

std-C
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Lessons learned
• Kelley’s method is intrinsically nonrobust

• Other search methods can survive even with weak cuts (analytic center, 
yo-yo search, etc.)

• As to GMI cuts, reading both the vertex x* to cut and the cuts themselves  
from the same tableau soon creates a dangerous feedback (unstable 
dynamic system)

• Kelley + Gomory is problematic in the long run, but … it is not all Gomory’s
fault!

• In fact, F. and Lodi (2007) report very good bounds by separating 
(fractional) Gomory cuts of rank 1 by means of an external MIP solver a 
key ingredient was the new search scheme that decoupled optimization and 
separation

• Results confirmed for GMI cuts by Balas & Saxena and Dash, Gunluk & 
Lodi
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Reading GMIs from LP bases

• If you insist on reading GMI cuts from an LP basis … at least don’t use an 
optimal one!

• Steps in this direction: given an optimal LP vertex x* of the “large LP” 
(original+cuts) and the associated optimal basis B*:

– Balas and Perregaard (2003): perform a sequence of pivots leading to 
a (possibly non-optimal or even infeasible) basis of the large LP
leading to a deeper cut w.r.t. the given x*

– Dash and Goycoolea (2009): heuristically look for a basis B of the
original LP that is “close to B*” in the hope of cutting the given x* with 
rank-1 GMI cuts associated with B
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Back to Lagrangia
• Forget about Kelley: optimizing over the first GMI closure reads

min cT x 
x ε P 

< all rank-1 GMI cuts  >

• Dualize (in a Lagrangian way) the GMI cuts, i.e. …

• … solve a sequence of Lagrangian subproblems

min { c(λ)T x : x ε P }

on the original LP but using the Lagrangian cost vector c(λ)

• Subgradient s at  λ :    si = violation of the i-th GMI cut w.r.t.

x*(λ) := argmin { c(λ)T x : x ε P }
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Back to Lagrangia

• During the Lagrangian dual optimization process, a large number of 
bases of the original LP is traced round of rank-1 GMI cuts can 
easily be generated “on the fly” and stored

• Use of a cut pool to explicitly store the generated cuts, needed to 
compute (approx.) subgradients used by Lagrangian optimization

• Warning:  new GMI cuts added on the fly possible convergence 
issues due to the imperfect nature of the computed “subgradients”

• … as the separation oracle does not return the list of all violated 
GMI cuts, hence the subgradient is truncated somehow …
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Lagrange + Gomory = LaGromory

• Generate cuts and immediately dualize them (don’t wait they become wild!)

• No fractional point x* to cut: separation used to find (approx.) subgrad.s

• Lagrangian optimization as a stabilization filter in the closed loop system 
GMI cuts are loosely correlated with the underlying large LP (original+ 

previously generated GMI cuts) as they don’t even see the large tableau

• The method can add rank-1 GMI cuts on top of nonlinear constraints and of 
any other classes of cuts (Cplex cuts etc.), including branching conditions 

just dualize them!

• Key to success: resist to the “Kelley’s temptation” of reading the GMI 
from the optimal tableau of the large LP!



Aussois, 4-8/1/2010 14

Experiments with LaGromory cuts

• Three preliminary implementations:

– lagr: naïve Held-Karp subgradient opt. scheme (10,000 iter.s)

– hybr: as before, but every 1,000 subgr. iter.s we solve the “large LP” 
just to recompute the optimal Lagrangian multipliers for all the cuts in 
the current pool 

– fast: as before, but faster: only 10 large LPs solved, each followed by 
just 50 subgradient iterations with very small step size 10 short walks 
around the Lagrangian dual optimum to collect bases of the original LP, 
each made by 50 small steps to perturb Lagrangian costs

• Comparision with std (one round of GMI cuts)   
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Preliminary computational results

%gap 
Closed

Time
(sec.s)

std 24.4% 0.01

lagr 63.6% 46.69

hybr 69.6% 36.97

fast 59.1% 1.52

Testbed: 32 instances from MIPLIB 3.0 and 2003

CPU seconds on a standard PC (1GB memory allowed)

Rank 1 GMI cuts                              Rank 2 GMI cuts                

%gap 
closed

Time
(sec.s)

std 33.1% 0.02

lagr 68.9% 72.64

hybr 73.4% 108.00

fast 69.3% 4.79



Aussois, 4-8/1/2010 16

Fast with different parameters 

1 walk 5 walks 10 walks 15 walks 20 walks 25 walks

gap 37.00% 56.60% 60.60% 62.00% 62.60% 63.20%

time 0.01 1.26 2.84 4.29 5.71 7.11

gap 36.50% 55.60% 59.10% 61.00% 61.80% 62.40%

time 0.01 0.69 1.52 2.33 3.03 3.72

50 steps
per walk

100 steps
per walk

Rank 1 GMI cuts (std = 24.4% in 0.01 sec.s)
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… thank you for your attention!
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