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ABSTRACT

The Set Covering Problem �SCP� is a main model for several important
applications� including crew scheduling in railway and mass�transit companies�
In this survey� we focus our attention on the most recent and e�ective algo�
rithms for SCP� considering both heuristic and exact approaches� outlining
their main characteristics and presenting an experimental comparison on the
test�bed instances of Beasley�s OR Library�

�� Introduction

The Set Covering Problem �SCP� is a main model for several important applications� It
is out of the scope of this survey to try to give a comprehensive list of all the practical
problems which have been formulated and solved as SCP�s� We refer the interested reader
to the survey by Balas �	
 and to the annotated bibliography by Ceria� Nobili and Sassano
�	�
� Nevertheless� as of now� one of the most relevant applications of SCP is given by
crew scheduling problems in railway and mass�transit transportation companies� where a
given set of trips has to be covered by a minimum�cost set of pairings� a pairing being
a sequence of trips that can be performed by a single crew� see� e�g�� Caprara� Fischetti�
Toth� Vigo and Guida �		
�

In this survey� we focus our attention on the most recent and e
ective algorithms
for SCP� considering both heuristic and exact approaches� For a comprehensive list of
the algorithms proposed for the problem from the late ���s up to the late ���s� which
are now out�to�date but have the merit of having inspired the current best approaches�
we refer the reader to Ceria� Nobili and Sassano �	�
� The most e
ective algorithms
presented in the literature �with few exceptions� have been computationally evaluated on
the test�bed instances of Beasley�s OR Library ��
� As the main aim of this work is to give
an experimental comparison of existing SCP algorithms� a large part of it is devoted to
illustrate the performance of these algorithms on the OR Library instances� Accordingly�
we will not describe the methods which have not been tried on these instances�

SCP can formally be de�ned as follows� Let A � �aij� be a ��	 m � n matrix� and
c � �cj� be an n�dimensional integer vector� In the following we refer to the rows and
columns of A simply as rows and columns� Let M � f	� � � � �mg and N � f	� � � � � ng� The
value cj �j � N� represents the cost of column j� and we assume without loss of generality
cj � � for j � N � We say that a column j � N covers a row i � M if aij � 	� SCP calls
for a minimum�cost subset S � N of columns� such that each row i �M is covered by at
least one column j � S� A natural mathematical model for SCP is

v�SCP� � min
X
j�N

cjxj �	�

subject to X
j�N

aijxj � 	 i �M ���

xj � f�� 	g j � N ���

where xj � 	 if j � S� xj � � otherwise� For notational convenience� for each row i � M
let

Ji � fj � N � aij � 	g



be the set of columns covering row i� Analogously� for each column j � N let

Ij � fi �M � aij � 	g

be the row subset covered by column j� Moreover� let q �
P

i�M

P
j�N aij denote the

number of nonzero entries of A� and note that generally q is much smaller than mn�
SCP is NP�hard in the strong sense� see Garey and Johnson �	�
� and also di�cult

from the point of view of theoretical approximation� see� e�g�� Lund and Yannakakis ���
�
Nevertheless� due to the structure of the real�world instances of the problem and to the
considerable e
orts spent to derive algorithms which perform better and better on these
instances� the current state of the art on the problem is that instances with� say� a few
hundred rows and a few thousand columns can be solved to proven optimality� and in�
stances with� say� a few thousand rows and a few millions columns can be solved within
about 	� of the optimum in a reasonable computing time�

The survey is organized as follows� Section �� illustrates the linear programming and
related relaxations of SCP� which are tackled by many among the most e
ective heuristic
and exact methods for the problem� We also give a comparison of a special�purpose
approach to solve the linear programming relaxation of SCP with the state�of�the�art
general�purpose linear programming solvers� In Section �� we describe the state�of�the�art
heuristic approaches to the problem� comparing their results both considering the quality
of the solutions and the running time� In Section �� we consider the best exact algorithms�
all based on the branch�and�bound approach� comparing their execution times�

Many procedures are illustrated in the literature which reduce the size of an SCP
instance by removing redundant columns and rows� The most commonly used procedures
consider the removal of a column j such that there exists a column k �� j for which Ij � Ik
and cj � ck� the removal of a column j such that cj �

P
i�Ij minfck � k � Jig� the removal

of a row i such that there exists a row h �� i for which Jh � Ji� and the inclusion in the
solution of column j whenever Ji � fjg for some row i� These rules have to be applied in
a careful way� as the straightforward implementation of the corresponding checks may be
very time consuming for large scale instances� on the other hand they may considerably
reduce the size of the instance at hand� Most of the algorithms we will present contain
some preprocessing phase in which part of the above rules �or new ones� are used� Since
we would like to point out the essential structure of the various algorithms� we will not
give the details of the preprocessing phase of each of them�

All sections present computational results� and in particular report running times ex�
pressed in DECstation �������� CPU seconds� For the algorithms by the authors and
the packages CPLEX and MINTO these are the actual running times measured in experi�
ments carried out by the authors� For the algorithms by other authors� the times of other
machines are converted into DECstation �������� CPU seconds according to the perfor�
mance reported in Dongarra �	�
� This leads to some unavoidable approximation when
comparing codes running on di
erent computers� anyway� even taking into account this
very crude approximation� the running times reported give in most cases clear indications�

The OR Library contains 	� classes of SCP instances� namely Classes �� �� �� e� A�
B� C� D� E� F� G and H� According to the results reported in the literature and to our
computational experiments� the instances in classes �� �� � and e are quite easy� in the sense
that in almost all cases the state�of�the�art heuristic algorithms �nd an optimal solution�
and the state�of�the�art exact algorithms require a very short computing time� Therefore�
we decided to give comparative results only for the �� instances in Classes A� B� C� D� E�
F� G and H� In the tables� we report for each instance its name �column �Name��� its size
in the format m � n ��Size��� its density� i�e�� the percentage value of q��mn� ��Dens���
and the minimum and maximum value of an entry of cost vector c ��Range���

�� Linear Programming and Other Relaxations

As we will see� many among the most e
ective heuristic and exact approaches to SCP are
based on the solution of the Linear Programming �LP� relaxation of SCP� de�ned as �	�



and ��� subject to
� � xj � 	 j � N� ���

Nevertheless� as the exact solution of this relaxation by general�purpose LP codes is typi�
cally rather time consuming� many SCP algorithms resort to Lagrangian relaxation com�
bined with subgradient optimization in order to determine near�optimal solutions u of the
dual of the LP relaxation� given by

max

��
�
X
i�M

ui �
X
i�Ij

ui � cj �j � N�� ui � � �i �M�

��
� � ���

The Lagrangian relaxation of model �	����� is de�ned as follows� We assume the reader
is familiar with Lagrangian relaxation theory �see� e�g�� Fisher �	�
 for an introduction��
For every vector u � Rm

� of Lagrangian multipliers associated with the constraints ���� the
Lagrangian subproblem reads�

L�u� � min
X
j�N

cj�u�xj �
X
i�M

ui ���

subject to
xj � f�� 	g j � N� ���

where cj�u� � cj�
P
i�Ij ui is the Lagrangian cost associated with column j � N � Clearly�

an optimal solution to ������� is given by xj�u� � 	 if cj�u� � �� xj�u� � � if cj�u� � ��
and xj�u� � f�� 	g when cj�u� � �� Note that� given u� x�u� can be determined in
O�q� time� The Lagrangian dual problem associated with ������� consists of �nding a
Lagrangian multiplier vector u� � Rm

� which maximizes the lower bound L�u�� As �������
has the integrality property� any optimal solution u� of the dual of the LP relaxation of
SCP is also an optimal solution of the Lagrangian dual problem �see Fisher �	�
�� As the
only requirement of the Lagrangian multipliers is to be nonnegative� not all Lagrangian
multiplier vectors correspond to feasible dual solutions� On the other hand� given any
multiplier vector it is possible to compute a lower bound by taking into account the
negative Lagrangian costs� which correspond to violated dual constraints� Moreover� given
a multiplier vector it is easy to modify it so as to obtain a feasible dual solution without
decreasing �and possibly by increasing� the associated lower bound� This is done in a
greedy way by selecting a column j such that cj�u� � �� suitably decreasing the value of
ui for i � Ij� one after the other� until cj�u� � �� and repeating the procedure until no
column having negative Lagrangian cost exists� For details� see� e�g�� Balas and Carrera
��
� Therefore� the determination of near�optimal Lagrangian multipliers corresponds in
some sense to a heuristic solution of the dual of the LP relaxation�

A well�known approach for �nding near�optimal multiplier vectors within a short com�
puting time uses the subgradient vector s�u� � Rm� associated with a given multiplier
vector u and the corresponding relaxed solution x�u�� de�ned by�

si�u� � 	�
X
j�Ji

xj�u�� i �M� ���

The approach generates a sequence u�� u�� � � � of nonnegative Lagrangian multiplier vectors�
where u� is de�ned arbitrarily� As to the de�nition of uk� k � 	� a possible choice �Held
and Karp �	�
� consists of using the following simple updating formula�

uk��i � max

�
uki � �

UB � L�uk�

jjs�uk�jj�
si�u

k�� �

	
for i �M� ���

where UB is an upper bound on v�SCP�� and � � � is a parameter that controls the
step�size along the subgradient direction s�uk�� The classical Held�Karp approach halves
parameter � if for p consecutive iterations no lower bound improvement occurs�



A commonly�used technique to reduce the size of an SCP instance is based on the
observation that the Lagrangian cost cj�u� gives a lower bound on the increase of lower
bound L�u� if xj is �xed to 	� Accordingly� one can �x xj to � whenever L�u��cj�u� � UB�
The same reasoning shows that one can �x xj to 	 whenever L�u� � cj�u� � UB �recall
that the Lagrangian cost may be negative�� This technique is called Lagrangian cost �xing�

The above described standard subgradient optimization procedure can be improved
in several ways� so as to achieve a faster convergence to a near�optimal multiplier vector�
Below we illustrate a few variations presented in the literature�

Balas and Carrera ��
� instead of relaxing the constraints ��� corresponding to all the
rows in M � keep explicitly in the relaxed problem the rows in a subset M such that
Ji � Jh � 	 for all i� h � M� i �� h� and relax in a Lagrangian way the rows in M nM � It
is easy to show that this relaxed problem can be solved in O�q� time� and that the best
lower bound obtainable through this relaxation is still equal to the LP relaxation value�
Moreover� in ��
 a so�called dynamic subgradient procedure is proposed� in which� at each
iteration� the Lagrangian multiplier vector u is transformed into an LP dual feasible �and
maximal� solution� as described above� By using Lagrangian cost �xing� the values of
some variables are possibly �xed within the subgradient optimization procedure�

When very large instances are tackled� the computing time spent within subgradient
optimization becomes very large� To overcome this di�culty� Caprara� Fischetti and Toth
��
 de�ne a core problem containing a suitable set of columns� chosen among those having
the lowest Lagrangian costs� and use a variable pricing scheme to iteratively update the
core problem in a vein similar to that used for solving large scale linear programs� The
use of pricing within subgradient optimization drastically reduces computing time� and is
one of the main ingredients for the success of the overall heuristic scheme proposed in ��
�
see the next section� Moreover� Caprara� Fischetti and Toth ��
 present improvements on
the standard way of de�ning the step�size and the ascent direction within the subgradient
optimization procedure�

A primal�dual subgradient approach is proposed by Ceria� Nobili and Sassano �	�
�
In particular� one can restate the LP dual problem ��� by explicitly imposing the upper
bound �ci � maxfcj � j � Jig to each dual variable ui� i �M � If constraints

P
i�Ij ui � cj �

j � N � are relaxed in a Lagrangian way through a multiplier vector x� one obtains a
Lagrangian dual problem which is equivalent to the primal LP relaxation of SCP� in the
sense that an optimal primal solution yields an optimal multiplier vector� Accordingly�
Ceria� Nobili and Sassano propose a subgradient optimization procedure which computes�
at the same time� Lagrangian multiplier vectors for the original and the new Lagrangian
problem� yielding both a lower bound and an upper bound on the LP value�

An alternative to Lagrangian relaxation is surrogate relaxation� which is used by Lorena
and Lopes ��	
� For a vector v � Rm

� of surrogate multipliers� the surrogate relaxed problem
of SCP has the form�

S�u� � min
X
j�N

cjxj �	��

subject to X
j�N



�X
i�Ij

vi

�
Axj �

X
i�M

vi �		�

xj � f�� 	g j � N� �	��

i�e�� it is a knapsack problem� which is still NP�hard� but solvable in pseudo�polynomial
time� and� in practice� quite e
ectively� see� e�g�� Martello and Toth ���
� Nevertheless�
Lorena and Lopes further relax the integrality constraint �	�� and solve� in O�n� time�
the continuous relaxation of the knapsack problem� Though the latter relaxation is still
equivalent to the LP relaxation of SCP� the experimental results reported in Lorena and
Lopes suggest that the use of surrogate instead of Lagrangian relaxation within subgradient
optimization allows one to obtain near�optimal multipliers in a shorter computing time�

Wedelin ���
 presents a method alternative to subgradient optimization to compute
near�optimal multipliers� This method considers one row i at the time� and updates the



associated multiplier ui as follows� For all j � Ji one computes the modi�ed Lagrangian
cost c�j�u� � cj�u� � ui� takes the �rst and second smallest modi�ed Lagrangian costs� say

c���u� and c���u�� and sets the new value of ui to �c���u� � c���u����� The idea is to have
exactly one column j � Ji with negative Lagrangian cost� By applying this operation to
each row �in turn� several times� one may get near�optimal multipliers� The actual method
used by Wedelin is a variation of this� in which two di
erent values u�i and u�i are used
in place of ui� The Lagrangian cost of the column j � Ji with negative Lagrangian cost
after the last iteration on row i is computed by using u�i � whereas the Lagrangian costs of
the remaining columns in Ji are computed by using u�i � This latter approach guarantees
much better performance if embedded within a heuristic algorithm for SCP�

Most of the methods presented above are used within heuristic algorithms� i�e�� their
main objective is not to compute the tightest possible lower bound� but to drive the search
of near�optimal SCP solutions� Therefore� it is not interesting to compare these methods
according to the lower bound value they produce� rather we will compare the performance
of the associated heuristic algorithms in the next section�

For several instances� the lower bound determined by Lagrangian or alternative relax�
ations is sensibly worse than the optimal solution value of the LP relaxation� According
to our opinion� this is not a drawback within heuristic algorithms� where the main objec�
tive is to determine good SCP solutions without insisting in proving optimality� On the
other hand� exact algorithms may behave much better if the LP relaxation is solved to
optimality� as seen in Section ���

In Caprara� Fischetti and Toth �	�
� a new approach to compute the exact solution
of the LP relaxation of SCP is presented� The main idea is taken from the SPRINT
approach descibed� e�g�� in Chu� Gelman and Johnson �	�
� namely one solves a sequence
of LP relaxations associated with core problems� and uses a pricing procedure to test the
possible optimality of the core problem solution for the whole problem� rede�ning the core
problem if the solution is not optimal� The main novelties of the approach are the use of
Lagrangian relaxation in order to initialize the core problem and the dual variables� and a
multiplier adjusting technique which ensures a sequence of increasing lower bound values
throughout the procedure�

In Table 	 we report a computational comparison of the approach described above with
the state�of�the�art LP solver CPLEX ����� on the instances of the OR Library� All the
four LP algorithms provided by CPLEX have been tested� namely primal simplex �column
�Primal��� dual simplex ��Dual��� network simplex ��Network��� and barrier method
followed by crossover ��Barrier��� For each of these algorithms� we tuned the parameters
so as to guarantee the best overall performance on the �� instances of the OR library� We
report the computational times of each of these algorithms in the corresponding column�
as well as the time required by the approach of Caprara� Fischetti and Toth �	�
 �column
�CFT�� along with the corresponding time spent within internal calls to the CPLEX LP
solver ��Simplex��� The average computing time is about ��� seconds for �Primal�� ���
seconds for �Barrier�� �� seconds for �Dual� and �Network�� and 	� seconds for �CFT�
�with about � seconds for the CPLEX calls�� Therefore� on average� the new approach is
faster than the best CPLEX algorithms by a factor of almost ��

�� Heuristic Algorithms

In this section� we illustrate the most e
ective heuristic algorithms for SCP which have
been experimentally evaluated on the test problems of the OR Library� Many of these
heuristics are based on the following observation� For a near�optimal Lagrangian multi�
plier vector u� the Lagrangian cost cj�u� gives reliable information on the overall utility
of selecting column j� Based on this property� the Lagrangian �rather than the original�
costs are used to compute� for each j � N � a score �j ranking the columns according to
their likelihood to be selected in an optimal solution� These scores are given on input to
a simple heuristic procedure� that �nds in a greedy way a hopefully good SCP solution�
Computational experience shows that almost equivalent near�optimal Lagrangian multi�
pliers can produce SCP solutions of substantially di
erent quality� In addition� for a given



Lagrangian multiplier vector u� no strict correlation exists between the lower bound value
L�u� and the quality of the SCP solution found� Therefore it is worthwhile applying the
heuristic procedure for several near�optimal Lagrangian multiplier vectors�

The greedy approach which is common to all the algorithms below is the following� A
solution S is initialized to be empty� and the set M � of uncovered rows is set equal to M �
Then� iteratively� the column j with the best value of a score �j is added to S� and M � is
updated� Score �j is typically a function of the original cost cj � of the number of rows in
M � covered by column j� and of the multipliers associated with these rows� At the end of
this procedure� set S typically contains a set R of redundant columns� i�e�� columns j such
that S nfjg is still a feasible SCP solution� The optimal removal of the redundant columns
amounts to solving an SCP de�ned by the columns in R and the rows in M n �

S
j�SnR Ij��

The algorithm proposed by Beasley ��
 computes� at every iteration of a subgradient
optimization procedure� a feasible SCP solution as follows� A set S is initialized with
all the columns selected in the solution of the Lagrangian problem� Then� for each row
i not covered by S� the column with smallest original cost in Ji is added to S� Finally�
the columns in S are considered in decreasing order of original costs� and a column j is
removed from S if S n fjg is a feasible SCP solution� At each iteration� Lagrangian cost
�xing is performed in the attempt of removing some columns from the problem�

The algorithm by Balas and Carrera ��
 is based on the dynamic subgradient procedure
described in the previous section� The version producing the best heuristic solutions
applies� at every iteration� a greedy heuristic similar to the one used by Beasley ��
� Recall
from the previous section that in ��
 not all the constraints are relaxed in a Lagrangian
way� and that the subgradient procedure works with multiplier vectors which are feasible
dual solutions� Accordingly� the solution of the relaxed problem contains all the columns
with zero Lagrangian costs and the columns with smallest cost covering the rows which are
not relaxed� This solution� say S� is completed by either adding the columns with smallest
Lagrangian cost covering each row uncovered by S� or by adding columns in decreasing
order of cj�kj values� where kj is the number of uncovered rows covered by column j�
Finally� redundant columns are removed in an order which is not speci�ed in the paper�

The heuristic algorithm of Lorena and Lopes ��	
 uses the surrogate relaxation de�
scribed in the previous section� and embeds within the subgradient optimization procedure
a greedy heuristic identical to the one proposed by Beasley ��
�

The approach of Ceria� Nobili and Sassano �	�
 is mainly intended for large scale SCP
instances� Initially� a subgradient optimization procedure is applied to the whole problem
so as to de�ne a good core problem� Di
erently from Caprara� Fischetti and Toth ��
�
where the initial selection of the core problem is not a critical issue since this is updated
dynamically� Ceria� Nobili and Sassano determine the core problem at the beginning in
a careful way and never change it afterwards� The heuristic algorithm performed on the
core problem applies primal�dual subgradient optimization� �xes to 	 a variable chosen
accordingly to its Lagrangian cost and its value in the primal multiplier vector� �nds in
a greedy way a feasible solution starting from the one containing the variables �xed to 	�
and iterates� When the columns corresponding to the variables �xed to 	 yield a feasible
solution� the process is restarted� without rede�ning the core problem� by changing some
parameters for the variable selection and the greedy heuristic parts�

The heuristic approach proposed by Haddadi �	�
 is a variation of the one by Beasley ��
�
In particular� at each iteration of the subgradient optimization procedure� the solution of
the Lagrangian problem is made feasible by a greedy heuristic based on the original costs�
Then� the redundant columns are removed from the solution by solving the associated
SCP� It is not speci�ed in the paper if this �typically small� SCP is solved to proven
optimality� or a heuristic procedure is used�

The approach by Caprara� Fischetti and Toth ��
 consists of three main phases� The
�rst one is referred to as the subgradient phase� It is aimed at quickly �nding a near�
optimal Lagrangian multiplier vector� by means of an aggressive policy� as outlined in
the previous section� The second one is the heuristic phase� in which a sequence of near�
optimal Lagrangian vectors is determined and� for each vector� the associated Lagrangian
costs are given on input to a greedy heuristic procedure� In the third phase� called column



�xing� one �xes to 	 the value of the variables associated with the �rst k columns selected
by the greedy heuristic� In this way one obtains an SCP instance with a reduced number
of columns and rows� on which the three�phase procedure is iterated� The above three
phases are iterated until the solution obtained cannot be improved further� After each
application of the three phases� a re�ning procedure is used� which in some cases produces
improved solutions� Throughout the algorithm� one works with a core problem de�ned
by a small column subset� which is periodically re�de�ned as described in the previous
section�

Even if most of the successful heuristic approaches to SCP are based on Lagrangian
relaxation� there are some relevant exceptions which are worth mentioning�

Beasly and Chu ��
 follow a genetic approach for the solution of the problem� Their
algorithm maintains a population of SCP solutions encoded as ��	 vectors x� Initially� a
random population of p solutions is generated� Then� at every iteration� two solutions x�

and x� are randomly selected from the current population and combined in a third solution
x� such that x�j � x�j whenever x

�
j � x�j � and x

�
j � x�j with probability c�x����c�x���c�x���

if x�j �� x�j � where c�x� denotes the cost corresponding to x� After the de�nition of x� from

x� and x�� a certain number of randomly�selected components of x� are changed� and
then x� is transformed into a feasible minimal solution in a greedy way� analogous to the
one used by Beasley ��
� Finally� the new solution x� is added to the current population
in place of a randomly�chosen previous solution� The process is stopped after a certain
number of iterations�

Both approaches used by Jacobs and Brusco ���
 and Brusco� Jacobs and Thompson ��

are based on simulated annealing� In the �rst paper ���
� an initial solution S is generated
by a greedy algorithm which� at every iteration� randomly selects an uncovered row and
adds to the solution the column with smallest index covering that row� After this addition�
possible redundant columns in the solution are removed� and the process is iterated until
a feasible �minimal� solution is determined� Then� a number of iterations is performed in
which d randomly�chosen columns are removed from the current solution S� which is then
completed so as to obtain a new �minimal� solution S� in a greedy way� again analogous
to the one used by Beasley ��
� S� becomes the current solution if it is better than S�
otherwise S is replaced by S� with a probability which decreases exponentially with the
di
erence between the values of S and S�� and with the number of iterations performed�
The two main enhancements of Brusco� Jacobs and Thompson ��
 over the approach of
Jacobs and Brusco ���
 are the following� First of all� the selection of the columns to
be removed from the current solution S is randomly performed �as before� every third
iteration� whereas in the remaining two iterations one removes the columns whose removal
leaves the smallest number of uncovered rows� Second� for each column j in the solution
one has a list of so�called morphs� which are columns �similar� to j� After the columns
are removed from the current solution� and after the addition of every fourth column to
complete the partial solution� each column in the solution is replaced by one of its morphs
if this improves the ratio between the cost of the partial solution and the number of rows
covered in the partial solution�

Table � reports the results for instances in Classes A� B� C� and D of the OR Library�
for which the optimal solution value is known �see column �Opt��� In particular� for the
algorithms of Beasley ��
 �column �Be��� Lorena and Lopes ��	
 ��LL��� Balas and Carrera
��
 ��BaCa��� Beasley and Chu ��
 ��BeCh��� Haddadi �	�
 ��Ha�� and Caprara� Fischetti
and Toth ��
 ��CFT��� we report the value of the best solution found �column �Sol��� as
well as the time elapsed when the best solution was found ��Time��� with the exception of
algorithms �BaCa� and �Ha�� for which the time for the execution of the whole heuristic
is given� Ceria� Nobili and Sassano �	�
� Jacobs and Brusco ���
 and Brusco� Jacobs and
Thompson ��
 report no result for these instances� For all the instances� both algorithms
�BeCh� and �CFT� �nd the optimum� Algorithms �Be�� �LL�� �BaCa� and �Ha� give
solution values which are on average slightly worse� The average computing time is about
� seconds for algorithm �LL�� �� seconds for �Ha�� �� seconds for �Be�� �� seconds for
�BaCa�� �� seconds for �CFT�� and 	�� seconds for �BeCh�� Therefore algoritm �CFT�
is much faster than �BeCh�� while its speed is comparable to that of �Be�� �BaCa� and



�Ha�� As to �LL�� it is by far the fastest algorithm� although the computing times reported
in Lorena and Lopes ��	
 do not include the time for the initial reduction� In 	� over ��
cases� however� this algorithm is not capable of �nding the optimal solution�

Table � reports the results for the larger instances of the OR Library �Classes E� F�
G� and H� for which the optimal solution value is known only in a few cases� In columns
�Best� and �LB� we report the best known solution value and the best known lower
bound value� respectively� With respect to Table �� the entry for the algorithm of Lorena
and Lopes ��	
 is missing� as they do not report results for these instances� whereas we
have new entries for the algorithms of Jacobs and Brusco ���
 �column �JaBr��� Brusco�
Jacobs and Thompson ��
 ��BJT�� and Ceria� Nobili and Sassano �	�
 �column �CNS���
The latter authors report results only for the instances in Classes G and H� Moreover�
Jacobs and Brusco ���
 and Ceria� Nobili and Sassano �	�
 give only the time limit for the
execution of their algorithm� which we report in column �Time�� For all these instances�
algorithm �CFT� yields the best solution known in the literature� Algorithms �BeCh�
and �BJT� �nd the same solutions as �CFT� with three and two exceptions� respectively�
Algorithms �CNS� and �JaBr� give solutions which are on average slightly worse than
those of �BeCh�� �BJT� and �CFT�� but better than those of �Be�� �BaCa� and �Ha��
The average computing time is about ��� seconds for algorithms �Be� and �BaCa�� ���
seconds for �BJT�� ��� seconds for �Ha� and �CFT�� and ���� seconds for �BeCh�� No
fair comparison with the computing times of algorithm �CNS� and �JaBr� can be made�

�� Exact Algorithms

The most e
ective exact approaches to SCP are branch�and�bound algorithms in which
lower bounds are computed by solving the LP relaxation of SCP� possibly in a dual heuristic
way� as explained in Section ��� In particular� all the algorithms which have been tested
on the instances from the OR Library are of this type� The main reason for the success
of these approaches is the fact that� despite the LP lower bound is not always very strong
for these instances� it is apparently very di�cult to get signi�cantly stronger lower bounds
by alternative methods which are computationally more expensive� This also explains
the competitiveness of general�purpose ILP packages such as CPLEX or MINTO� which
are based on branch�and�bound with the solution of an LP relaxation at each node of
the branching tree� and include a lot of implementation e
ort in order to speed�up the
parametric re�optimization of the LP�s solved after the root node�

We next describe the state�of�the�art exact algorithms for SCP in some detail� Before
doing this� we would like to cite the algorithm of Nobili and Sassano ���
� which is the
only one� to our knowledge� which tries to obtain stronger lower bounds than the LP
relaxation value by using special�purpose cutting planes� exploiting the structure of the
SCP polytope� Unfortunately� though the algorithm was tested on the same instances
considered by the approaches mentioned below� the authors report only the number of
nodes and not the computing time required by their method� therefore no fair comparison
with the other approaches can be made�

The algorithm proposed by Beasley ��
 solves the LP relaxation of SCP to optimality at
the root node of the branching tree� whereas at the other nodes a lower bound is computed
by using Lagrangian relaxation along with subgradient optimization� starting with the
multiplier vector associated with the parent node� At the root node� in particular� near�
optimal Lagrangian multipliers are computed through a dual ascent procedure followed
by a subgradient procedure� Then the problem is reduced in size by applying Lagrangian
cost �xing� and the LP relaxation of the reduced problem is solved to optimality by the
dual simplex method� Apparently� the solution of the LP relaxation takes no advantage of
the information obtained from the computation of near�optimal Lagrangian multipliers�
Namely� the only reason for computing these multipliers is the smaller LP which has to
be solved after the reduction� Feasible solutions are computed by using simple greedy
heuristics� and several dominance procedures to reduce both the number of rows and
columns are applied� The branching rule selects the uncovered row with the highest
Lagrangian multiplier� and �xes to � and to 	� respectively� the variable associated with



the column having the smallest Lagrangian cost covering the selected row�
An enhancement of the algorithm of Beasley ��
 is given in Beasley and J ornsten ��
� A

main di
erence with respect to the original algorithm concerns the addition of constraints�
not necessarily of the same type as ���� to the problem� Two of these constraints are added
to exclude the best feasible solution found at the end of the subgradient optimization
procedure at the root node� They impose that not all the columns in this solution can
be selected� and that at least one column not in this solution must be selected� After
the addition of these constraints� the LP relaxation is solved as in ��
� and then classical
Gomory fractional cuts� associated with the fractional LP solution� are added� These
constraints are handled by the subgradient optimization procedure applied at the nodes
other than the root� Other enhancements with respect to ��
 concern the use of a the
Lagrangian heuristic of ��
 and a new branching strategy� The latter computes at each
node the Lagrangian solution corresponding to the best multiplier vector u� determines
the row i with maximum jsi�u�uij� where si�u� is the subgradient associated with row i� as
de�ned in ���� and branches by �xing to � and to 	� respectively� the variable associated
with the column j � Ji such that xj�u� � 	 and the value of xj is maximum in the LP
solution at the root node �after the addition of the Gomory cuts��

The most recent exact algorithm for SCP presented in the literature is the one by Balas
and Carrera ��
� This algorithm is based on the embedding of the dynamic subgradient
procedure described in Section �� into a branch�and�bound scheme� and on the applica�
tion of the subgradient optimization procedure at every node of the branching tree� Two
branching schemes based on the dual information associated with the Lagrangian multipli�
ers are used� Notice that the best Lagrangian multiplier vector u computed by the method
of Balas and Carrera always corresponds to a feasible �and maximal� dual solution� i�e��
there are no columns with negative Lagrangian cost� The �rst branching scheme de�nes
the set N� of the columns with zero Lagrangian cost and the set J � N� of the columns
j such that there exists at least one row i with ui � � for which Ji �N� � fjg� If J �� 	�
one branches by �xing to � and to 	� respectively� the variable associated with the column
j � J which maximizes maxfjJi �N�j � i � Ijg� If J � 	� the second branching scheme is
applied� This scheme determines the row i such that Ji�N

� �� Ji with minimum jJi�N
�j�

and on the �rst branch �xes to � all the columns in Ji � N�� and on the second branch
replaces row i by a new row i� with Ji� � Ji �N

�� i�e�� imposes that row i is covered only
by columns in Ji �N��

We next present a comparison of the methods described above on the instances of
Classes A� B� C and D of the OR Library� which are those currently solvable to proven op�
timality in a reasonable computing time� In Table � we report the computing time �column
�Time�� and number of branch�and�bound nodes explored ��Nodes�� by the algorithms by
Beasley ��
 ��Be��� Beasley and J ornsten ��
 ��BeJ o�� and Balas and Carrera ��
 ��BaCa���
We also consider the general�purpose ILP solvers CPLEX ����� and MINTO ���� which
are run by giving them on input both the original instances �see columns �CPLEX� and
�MINTO��� and the instances preprocessed by applying the heuristic algorithm of Caprara�
Fischetti and Toth ��
 �without post�optimization�� the method of Caprara� Fischetti and
Toth �	�
 for the computation of the LP relaxation �see Section ���� and an LP reduced�cost
�xing� This procedure provides on input to the ILP solvers an instance of considerably
smaller size than the original one� along with a near�optimal SCP solution and the optimal
LP solution �see columns �Impr� CPLEX� and �Impr� MINTO��� According to the table�
the average computing time is about ���� seconds for algorithm �Be�� ���� seconds for
�BeJ o�� 	��� seconds for �BaCa�� ��� seconds for �CPLEX�� ��� seconds for �MINTO��
��� seconds for �Impr� MINTO�� and ��� seconds for �Impr� CPLEX�� This shows that
the state�of�the�art general�purpose ILP solvers are competitive with the best exact algo�
rithms for SCP presented in the literature� and that their performance can sensibly be
improved by an external preprocessing procedure�
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