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Abstract

Given the integer polyhedron PI �� convfx � Zn � Ax � bg� where A � Zm�n

and b � Zm� a Chv�atal�Gomory �CG� cut is a valid inequality for PI of the type
�TAx � b�Tbc for some � � Rm

� such that �TA � Zn� In this paper we study
f�� ��g�CG cuts� arising for � � f�� 	�
gm� We show that the associated separa�
tion problem� f�� ��g�SEP� is equivalent to �nding a minimum�weight member of a
binary clutter� This implies that f�� ��g�SEP is NP�hard in the general case� but
polynomially solvable when A is related to the edge�path incidence matrix of a
tree� We show that f�� ��g�SEP can be solved in polynomial time for a convenient
relaxation of the system Ax � b� This leads to an ecient separation algorithm
for a subclass of f�� ��g�CG cuts� which often contains wide families of strong in�
equalities for PI � Applications to the Clique Partitioning� Asymmetric Traveling
Salesman� Plant Location� Acyclic Subgraph and Linear Ordering polytopes are
brie�y discussed�

� Introduction

Given an m � n integer matrix A � �aij� and an m�dimensional integer vector b� let

P �� fx � Rn � Ax � bg� PI �� convfx � Zn � Ax � bg� and assume PI �� P 	

We assume� without loss of generality� that each row of �A� b� contains at least one

odd coe
cient	 A Chv�atal�Gomory �CG� cut is a valid inequality for PI of the form

�TAx � b�T bc� where � � Rm
� is such that �TA � Zn� and b�c denotes lower integer

part	 Notice that undominated CG cuts only arise for � � ��� ��m	

The rank�� closure of P is dened as P� �� fx � P � �TAx � b�T bc� for � �

��� ��m s�t� �TA � Zng	 We dene a f�� ��g�Chv�atal�Gomory cut �f�� ��g�cut� for short� as

a CG cut with � � f�� ���gm� and dene

P��� �� fx � P � �TAx � b�T bc� for � � f�� ���gm s�t� �TA � Zng�

�



the polyhedron obtained by intersecting P with the half�spaces induced by all f�� �
�
g�cuts	

There is an important di�erence in how P� and P��� depend on A and b	 P� depends

only on the polyhedron P � so not on the actual system Ax � b describing it� whereas

P��� is a function of A and b	 Notice that neither P� nor P��� are uniquely determined

by PI 	 Moreover� PI � P� � P��� � P 	

Although P� � P holds if and only if P � PI � one can have P��� � P even if P �� PI �

this case occurs� e	g	� when b�� � Zm	 Nevertheless� f�� ��g�cuts play an important role

in polyhedral theory� in that the following results hold	

It is well known that an r � n f����g�matrix Q is totally unimodular if and only if

P � PI for all d � Zr� where P �� fx � Rn �
h
Q
�I

i
x �

h
d
�

i
g	 Similarly� an r � n f�� �g�

matrix Q is balanced if and only if P � PI for all d � f����gr �see� e	g	� Schrijver�

�����	

Theorem � Let Q be an r�n f����g�matrix� and let P �� fx � Rn �
h
Q
�I

i
x �

h
d
�

i
g� Q

is totally unimodular if and only if P � P��� for all d � Zr�

Proof� If Q is totally unimodular� then P � P��� � PI for all d � Zr	 Assume now

Q is not totally unimodular	 Then� because of a result of Camion ������� there exists

a square submatrix B of Q with even row and column sums� such that the sum of the

entries of B is not divisible by four	 Let IB and JB index the rows and columns of

B� respectively� and dene d � Zr as follows� di ��
P

j�JB
qij�� if i � IB� di �� M

otherwise� where M 	 maxi��IBfd
P

j�JB qij��eg	 We next construct a point �x � P and

a f�� ��g�cut �associated say with �� � f�� ���gr�n� which separates �x from P���� thus

proving P �� P���	 For j � �� � � � � n� let �xj �� ��� if j � JB� �xj �� � otherwise	 For

i � �� � � � � r� let ��i �� ��� if i � IB� ��i �� � otherwise	 Moreover� for j � �� � � � � n let
��r�j �� ��� if

P
i�IB qij is odd� ��i �� � otherwise	 By construction� ��T

h
Q
�I

i
� Zn� and

��T
h
Q
�I

i
�x � �

�

P
i�IB

P
j�JB qij � b��

P
i�IB

P
j�JB qijc � b��Tdc	 �

Theorem � Let Q be an r � n f�� �g�matrix� and let P �� fx � Rn �
h
Q
�I

i
x �

h
d
�

i
g� Q

is balanced if and only if P � P��� for all d � f����gr�

Proof� If Q is balanced then P � P��� � PI for all d � f����gr	 Assume now Q is not

balanced	 Then� by denition of balancedness� there exists a square submatrix B of Q

of odd order� with row and column sums equal to two	 By using the same construction

as in the proof of Theorem �� one can dene a vector d � f����gr such that P �� P����

as claimed	 �

�



In some relevant cases one has P��� � P� �� PI � as� e	g	� when P is dened by the

edge inequalities and the nonnegativity constraints of the stable set problem	 Moreover�

sometimes P��� � P� � PI as� for example� when P is the solution set of the nonnegativity

constraints and the degree constraints for the matching problem� see Edmonds �������

Edmonds and Johnson ������	 Even in case P� �� P���� the family of f�� �
�
g�cuts often

contains several classes of �facet�inducing� valid inequalities for PI � which are of valuable

use within cutting�plane algorithms for optimization over PI 	 This gives us motivation

for studying P���	 In particular� we address the following f�� �
�
g�cut separation problem

�f�� �
�
g�SEP�� in its recognition version� Given x� � P � �nd � � f�� ���gm such that

�TA � Zn and �TAx� � b�T bc� or prove that no such � exists� Because of the well�known

equivalence between optimization and separation� the availability of a polynomial�time

algorithm for f�� �
�
g�SEP would allow one to optimize� in polynomial time� a linear

objective function over P���� see Gr�otschel� Lov�asz and Schrijver ������	

The paper is organized as follows	 In Section � we describe the notation and basic

denitions used in the sequel	 In Section � we show that f�� �
�
g�SEP is equivalent to

nding a minimum�weight member of a binary clutter	 The latter problem is known to

be NP�hard� hence so is f�� �
�
g�SEP	 We describe some simple reduction procedures for

f�� ��g�SEP� and discuss two relevant polynomially�solvable special cases� arising when

A is related to the edge�path incidence matrix of a tree	 In Section � we show that

f�� ��g�SEP can be solved in polynomial time for a convenient relaxation of the system

Ax � b	 This leads to an e
cient separation algorithm for a subclass of f�� �
�
g�cuts that

often contains large families of strong inequalities for PI 	 Applications to the Clique

Partitioning� Asymmetric Traveling Salesman� Plant Location� Acyclic Subgraph and

Linear Ordering polytopes are brie�y discussed in Section �� leading to new e
cient

separation algorithms	 Section � draws some conclusions	

� Notation and basic de�nitions

For any given z � Z and q � Z�� let z mod q �� z 
 bz�qc q	 As customary� notation

a � b �mod q� stands for a mod q � b mod q	

Given an integer matrix Q � �qij�� let Q � �qij� �� Q mod � be the binary support of

Q� i	e	� qij � � if qij is odd� qij � � otherwise	

Given an undirected �not necessarily simple� graph G � �V�E� and a node set S� we

dene ��S� �� fij � E � i � S� j �� Sg and E�S� �� fij � E � i � S� j � Sg	 To simplify

notation� for i � V we write ��i� instead of ��fig�	

A cycle of G is a subset C of E such that jC � ��v�j is even for all v � V 	 Let T � E
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induce a maximal forest of G	 Every edge e � E n T is then contained in a fundamental

cycle� say Ce� of the subgraph induced by T feg	 We denote byMcycle�G�T � the f�� �g�

matrix whose rows are the characteristic vectors of the fundamental cycles of G with

respect to T 	

A cut of G is a subset F of E of the form F � ��S� for some S � V 	 Let T � V � V

be any tree spanning V �possibly T �� E�	 For each t � T � let St � V be any of the

two components of the graph with node set V and edge set T n ftg	 The cuts ��St��

t � T � are called the fundamental cuts of G �with respect to T �	 Let Mcut�G�T � denote

the f�� �g�matrix whose rows are the characteristic vectors of the fundamental cuts of G

with respect to T 	 Notice that cuts and cycles intersect in an even number of edges	

Let a parity label fe � f�� �g be assigned to each e � E	 A given F � E is called odd

if
P

e�F fe � � �mod ��� even otherwise	

A p� q f�� �g�matrix M is the edge�path incidence matrix of a tree �EPT matrix� for

short� if there is a tree T on p�� nodes such that each column of M is the characteristic

vector of the edges of a path in T 	 Every EPT matrix M can be represented by a graph

G and a tree T such that M � Mcut�G�T �	 EPT matrices play an important role in

the theory of network matrices� and can be recognized in polynomial time� see� e	g	�

Schrijver ������ and Nemhauser and Wolsey ������	 Examples of EPT matrices include

the f�� �g�matrices having no more than two ��s per column� and those in which the ��s

in a column occur consecutively	 It is well known that EPT matrices are closed under

row and column permutations� deletions and duplications	 Moreover� if M is an EPT

matrix �represented� say� by G � �V�E� and T �� then M � ��
h
M
eT
i

i
also is� where eTi

denotes the i�th row of the identity matrix	 Indeed� let uv be the edge of G associated

with the i�th column of M 	 Then M � can be represented by G� � �V �� E �� and T �� where

V � �� V  fwg� E� �� �E n fuvg�  fuwg� and T � �� T  fvwg	

Let Q be an r� t f�� �g�matrix� and d � f�� �gr� d �� �	 The binary clutter associated

with �Q� d� is dened as

C�Q� d� �� fz � f�� �gt � Qz � d �mod ��g�

Associated with every binary clutter is the following minimum�weight binary clutter

problem 	MW�BCP
�

MW�BCP� Given w � Rt
�� solve minfwTz � z � C�Q� d�g�

Well known binary clutters are those associated with odd cycles and odd cuts in a

parity labeled graph� and with complements of cuts in a graph	 Indeed� the set of the
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characteristic vectors of the odd cycles of G is the binary clutter C�Q� d� dened by

Q ��
�

fT

Mcut�G�T �

�
� d ��

�
�
�

�
� ���

where T � V � V is an arbitrarily chosen tree spanning V �e	g	� T �� f�j � j � V n f�g�	

In this case MW�BCP can be solved in polynomial time� as it amounts to nding a

minimum�weight odd cycle of G� see� e	g	� Gr�otschel and Pulleyblank ������ and Gerards

and Schrijver ������ for e
cient algorithms	

Analogously� the set of the characteristic vectors of the odd cuts of G is the binary

clutter C�Q� d� dened by

Q ��
�

fT

Mcycle�G�T �

�
� d ��

�
�
�

�
� ���

where T is any maximal forest of G	 MW�BCP can be solved e
ciently also in this

case	 Indeed� we rst move the parity information from the edges to the nodes of G by

dening� for each v � V � the f�� �g�label pv �� �
P

e���v� fe� mod �	 With this denition�P
e���S� fe �

P
v�S

P
e���v� fe
�

P
e�E�S� fe� hence ��S� is odd if and only if S contains an

odd number of nodes with pv � �	 MW�BCP then amounts to nding a minimum�weight

such cut� and can be solved e
ciently through the algorithm of Padberg and Rao ������	

More generally� the decomposition theorem of Seymour ������ for regular matroids

implies that MW�BCP can be solved in polynomial time when Q � U for some totally

unimodular matrix U 	

Finally� the complements of the cuts of G dene a binary clutter� arising when Q �

Mcycle�G�T � for any maximal forest T of G� and di �� � if the fundamental cycle Ce

associated with the i�th row of Q has odd cardinality� di �� � otherwise	 Unlike in

the previous examples� MW�BCP is known to be NP�hard in this case� as it calls for

a minimum�weight complement of a cut� i	e	� for a maximum�weight cut in a graph �

the well�known MAX�CUT problem	 Moreover� the recognition version of MAX�CUT

is NP�complete� see Garey and Johnson ������� hence so is the recognition version of

MW�BCP	

� f�� �
�g�SEP and binary clutters

CG cuts can be thought of as being obtained in the following way	 Let � � Zm
� and q � Z�

be such that �TA � � �mod q� and �T b � kq� r with k � Z and r � f�� � � � � q
�g	 Then

�TAx � kq is a valid inequality for PI 	 This inequality can equivalently be written as

�T �b
Ax� 	 r� hence a given x� � P violates �TAx � kq if and only if �T �b
Ax�� 	 r	

�



Observe that� for every q� it is enough to consider multipliers �i � f�� � � � � q
�g� a larger

�i leaves the modulo q arithmetic unchanged� but decreases the violation	 Furthermore�

given the slack vector s� �� b
 Ax� the violation only depends on �A� b� mod q	 f�� �
�
g�

cuts are produced by the above procedure when q � �	 Therefore� f�� �
�
g�SEP �in its

optimization version� can be re�phrased as follows	

f�� �
�
g�SEP� Given x� � P � solve minfs�T� � � � F�A� b�g� where

s� �� b
Ax� 	 �� and

F�A� b� �� f� � f�� �gm � b
T
� � � �mod ��� A

T
� � � �mod ��g�

By construction� there exists a f�� �
�g�cut violated by the given point x� if and only if

minfs�T� � � � F�A� b�g 	 �	

It is then clear that f�� ��g�SEP and MW�BCP are closely related to each other	

Indeed� we have the following result	

Theorem � Problems f�� �
�
g�SEP and MW�BCP are equivalent�

Proof� The transformation of any instance of f�� �
�g�SEP to an equivalent instance of

MW�BCP is trivial� just dene w �� s�� d �� ��j�� � � � � ��T � and Q ��
�
b
T

A
T

�
	

Consider now any instance of MW�BCP	 We dene n �� r � t � �� m �� t � ��

b �� ��� � � � � �j��T � and A ��
h
QT

dT

��� �I
i
	 We then construct the following point x� with

Ax� � b� let x�j �� � for j � �� � � � � r� x�r�i �� �
wi�� for i � �� � � � � t� and x�r�t�� �� ���	

By construction� s� �� b 
 Ax� equals �w�� � � � � wtj��
T and� for every � � f�� �gt���

b
T
� � � �mod �� if and only if �t�� � �	 Therefore f�� ��g�SEP calls for z � f�� �gt such

that Qz � d �mod �� and wT z is a minimum� i	e	� it coincides with MW�BCP	 �

Corollary � The recognition version of f�� ��g�SEP is NP�complete�

��� Reductions

The size of an instance of f�� �
�
g�SEP can in some cases be reduced by applying reduction

criteria� which are well known in the context of binary clutters	 Some of these criteria

are listed below	

�a� Every row i of Ax � b with s�i 	 � can be removed	

�



�b� If �A� b� contains identical rows� only the one with the smallest s�i need to be

considered	

�c� Let the row intersection graphG�A� be dened as the graph having a node vi for each

row i ofA� and an edge �vi� vk� if and only ifA has a column j with aij � akj � �	 Let

C�� � � � � Ct be the connected components of G�A�	 If t 	 �� A can be brought to the

form of a block diagonal matrix� hence f�� �
�
g�SEP decomposes into t independent

subproblems	

�d� Suppose there exists a row h of A such that� for some j � f�� � � � � ng� ahj � � and

ahk � � for all k � f�� � � � � ng� k �� j	 This situation arises� e	g	� when the system

Ax � b contains a lower�upper bound constraint of the form �xj � bh	 Moreover�

suppose this constraint is tight for the given point x�� i	e	� s�h � �	 Assuming

w	l	o	g	 h � m and j � n� the input �A� b� s�� for f�� ��g�SEP has the form�

A �
�

M
� � � � �

���� d�
�
� b �

�


bm

�
� and s� �

�
��

�

�
�

Observe that any feasible solution � � f�� �gm of f�� �
�g�SEP has �m �

Pm��
i�� �idi

�mod ��	 We then dene a reduced instance of f�� ��g�SEP� whose input is given

by �M�f� ���� where f �� 
 if bm � �� f �� �
 � d� mod � otherwise	 One can

easily see that there is a one�to�one correpondence between the feasible solutions

� � f�� �gm and � � f�� �gm�� to the original and reduced f�� ��g�SEP� respectively�

where �k � �k for k � �� � � � �m
 �� and �m � dT� �mod ��	

��� Polynomially�solvable special cases of f��

�

�
g�SEP

The rst polynomially�solvable special case we consider� arises when A
T

is an EPT

matrix	

Theorem � f�� �
�
g�SEP can be solved in polynomial time if A

T
is an EPT matrix�

Proof� Let G � �V�E� and T represent A
T
� where jV j � n � �� jEj � m� and A

T
�

Mcut�G�T �	 By construction� F�A� b� � C�Q� d�� where Q and d are dened as in ����

with f �� b	 Hence f�� ��g�SEP can be solved in polynomial time� as it calls for a

minimum�weight odd cycle of G in which s�i and bi play the role of the weight and the

parity label for the edge associated with the i�th row of A� respectively	 �

Gerards and Schrijver ������ gave a polynomial�time algorithm for f�� �
�
g�SEP when

A is an integer matrix satisfying
P

j jaijj � � for each row index i	 More generally�

�



Theorem � implies that f�� �
�
g�SEP can be solved e
ciently when A has� at most� two

odd coe
cients in each row	 Indeed� A
T
is in this case the EPT matrix associated with

the graph G � �V�E� and the star T � where V �� f�� � � � � n � �g� T �� f�n� �� j� � j �

�� � � � � ng� and E has an edge jk for each row i of A with aij � aik � �� and an edge

�n� �� j� for each row i having a single nonzero entry aij	

We next consider the situation arising when A �
h
M
I

i
� as in the case in which x 	 �

is part of the system Ax � b	

Theorem 	 f�� ��g�SEP can be solved in polynomial time if A �
h
M
I

i
� and M is an EPT

matrix�

Proof� Let G � �V�E� and T represent M � i	e	� M � Mcut�G�T �	 The rows of M are

indexed by the edges of T � whereas the other rows of A can be thought of as being

indexed by E	 The columns of A can then be viewed as the characteristic vectors of

the fundamental cycles �with respect to T � of the graph �G �� �V�E  T �� i	e	� A
T

�

Mcycle� �G�T �	 It follows that F�A� b� � C�Q� d�� where Q and d are dened as in ����

with f �� b	 Therefore f�� ��g�SEP can be solved in polynomial time� as it calls for a

minimum�weight odd cut of �G� in which s�i and bi play the role of the weight and the

parity label for the edge of �G associated with the i�th row of A� respectively	 �

Padberg and Rao ������ gave a polynomial�time algorithm for f�� �
�g�SEP when P ��

fx � Rn � Dx � d� � � x � gg� and D is the node�edge incidence matrix of a graph� i	e	�

when PI is the capacitated b�matching polytope	 More generally� Theorem � implies that

f�� ��g�SEP can be solved e
ciently when P �� fx � Rn � d� � Dx � d�� g� � x � g�g�

and D is an EPT matrix	 Indeed� in this case A �
h
M
I

i
� where M �

�
D

D

I

�
is an EPT

matrix �this follows from the fact that M is obtained from D by duplicating rows� and

by adding rows of the identity matrix�	

� Optimizing over a relaxation of P���

In view of Corollary �� it is unlikely that a polynomial�time algorithm for optimizing a

linear objective function over P��� exists	 Now let P � �� fx � Rn � A�x � b�g � P be

a relaxation of P obtained by  weakening! the system Ax � b into A�x � b�� in such

a way that the f�� �
�g�SEP associated with �A�� b�� can be solved in time polynomial in

the size of �A� b�	 Then clearly one can optimize in polynomial time over the polyhedron

P � P �
���	

�



There are several possible relaxations that meet the requirements above	 Among

them� we study the one obtained by making a systematical use of lower and upper

bounds on the variables so as to produce a weakened system A�x � b� in which A� has�

at most� two odd coe
cients per row	 To be specic� let us assume that the bound

constraints � � x � d are part of the system Ax � b �possibly dj � �� for some j�	

For each row index i� let Oi �� fj � aij is oddg	

L�weakening

The simplest weakening arises when the lower bound constraints 
xj � � for j �

�� � � � � n are systematically added to the inequalities of Ax � b so as to reduce to� at

most� two the number of odd coe
cients in each row	 This amounts to replacing each

inequality
P

j aijxj � bi with jOij 	 �� by the
�
jOij
�

�
L�weakenings

aihxh � aikxk �
X
j ��Oi

aijxj �
X

j�Oinfh�kg

�aij 
 ��xj � bi

for all h� k � Oi� h 	 k	 In this way� the weakened system A�x � b� has O�mn��

rows	 However� in view of Reduction �b� of Section �� for any given x� only O�n�� such

inequalities need to be considered explicitly	

U�weakening

Analogously� by making use of the upper bound constraints xj � dj one can weaken

Ax � b by replacing each inequality
P

j aijxj � bi with jOij 	 �� by the
�
jOij
�

�
U�

weakenings

aihxh � aikxk �
X
j ��Oi

aijxj �
X

j�Oinfh�kg

�aij � ��xj � bi �
X

j�Oinfh�kg

dj

for all h� k � Oi� h 	 k	

LU�weakening

More generally� one can use both lower and upper bounds on the variables to produce

A�x � b�	 This amounts to replacing each inequality
P

j aijxj � bi with jOij 	 �� by the

LU�weakenings

aihxh � aikxk �
X
j ��Oi

aijxj �
X
j�L

�aij 
 ��xj �
X
j�U

�aij � ��xj � bi �
X
j�U

dj

for all h� k � Oi� h 	 k� and for all partitions �L�U� of Oi n fh� kg	

Although A�x � b� has� in general� an exponential number of rows� still f�� ��g�SEP

can be solved in polynomial time	 Indeed� for each triple �i� h� k� only two LU�weakenings

are worth considering for the given point x�� namely those with even and odd right�hand

�



side having minimum slack	 These two weakenings can be computed� in O�n� time�

through a simple dynamic programming scheme that considers� for each j � Oi n fh� kg�

the two possibilities j � L or j � U 	

As a consequence of the above discussion� one has the following result	

Theorem 
 One can optimize in polynomial time over the relaxation of P��� given by

P �P �
���� where P

� �� fx � Rn � A�x � b�g and A�x � b� is obtained from Ax � b through

LU�weakening�

� Applications

Let H be the family of the f�� ��g�cuts that can be derived from the weakened system

A�x � b� obtained from Ax � b through LU�weakening	 For several widely�studied

polyhedra� H contains large classes of inequalities� some of which are known to be

facet�inducing for the integer polyhedron PI 	 Hence P � P �
��� hopefully gives a tight

approximation of PI 	 Some relevant cases are next brie�y discussed	

��� The Clique Partitioning Polytope

The clique partitioning problem arises in optimal clustering	 We are given a complete

undirected graph G � �V�E�	 An edge set A is called a clique partitioning of G if V can

be partitioned into disjoint sets W�� � � � �Wk such that A �
Sk
i��E�Wi�	 Let

PI �� convfx � f�� �gE � xij � xjk 
 xik � � for all i� j� k � V� jfi� j� kgj � �g

denote the clique partitioning polytope	 The constraints xij � xjk 
 xik � � are called

triangle inequalities	 Several classes of facet�inducing inequalities for PI have been

studied by Gr�otschel and Wakabayashi ������	 These include the following ��chorded

odd cycle inequalities	 Let C � fe�� � � � � ekg� k 	 � and odd� be a cycle of G� with

ei � vivi�� �i � �� � � � � k 
 �� and ek � vkv�	 To simplify notation� let vk�� �� v� and

vk�� �� v�	 The set C �� fvivi�� � i � �� � � � � kg is called the set of the ��chords of C	

The ��chorded odd cycle inequality associated with C is then dened as

X
ij�C

xij 

X
ij�C

xij �
k 
 �

�
�

To our knowledge� no separation algorithm for these constraints has been proposed in

the literature	 Recently� M�uller� ����� proposed an odd cycle separation algorithm for a

related class of inequalities for the so�called transitive acyclic subdigraph polytope	

��



��chorded odd cycle inequalities are f�� �
�
g�cuts obtained by combining the following

constraints�

xvivi�� � xvi��vi�� 
 �xvivi�� � � for i � �� � � � � k�

each of which is an L�weakening of a triangle inequality	 We observe here that these are

not the only f�� �
�
g�cuts one can obtain from weakened triangle inequalities of the form

xij � xjk 
 �xik � �	 For instance� let C � fe�� � � � � ekg� k 	 � and odd� be a cycle of G

with ei � vivi�� for i � �� � � � � k	 Given z � V n fv�� � � � � vkg� one can add

xviz � xzvi�� 
 �xvivi�� � � for i � �� � � � � k�

weighted by ���� and obtain through rounding the odd wheel inequality

kX
i��

xviz 

X
ij�C

xij �
k 
 �

�
�

These inequalities are facet�inducing for PI �Chopra and Rao� ������ and can be sepa�

rated in polynomial time �Deza� Gr�otschel and Laurent� �����	

Since the weakened triangle inequalities belong to family H� one can optimize in

polynomial time over a relaxation of P��� whose inequality set contains all ��chorded

odd cycle and odd wheel inequalities	

��� The Asymmetric Traveling Salesman Polytope

Let G � �V�A� be a complete and loop�free directed graph	 The Asymmetric Trav�

eling Salesman 	ATS
 polytope� PI � is the convex hull of the incidence vectors of the

Hamiltonian circuits �tours� of G� i	e	�

PI �� convfx � f�� �gA �

X
j�V

xij � �� i � V ���

X
i�V

xij � �� j � V ���

X
i�S

X
j�S

xij � jSj 
 �� S � V� jSj 	 � g� ���

Inequalities ��� are called Subtour Elimination Constraints 	SEC�s
	 Although there are

exponentially many SEC�s� one can optimize in polynomial time over P �� fx � RA
� �

x satises �������g since these constraints can be handled e
ciently through max��ow

separation algorithms	

��



Let two arcs �i� j� and �h� k� be called incompatible if i � h� or j � k� or �i� j� � �k� h�	

It is easy to see that the L�weakening of ������� consists of the inequalities xij � xhk � �

for all pairs �i� j� and �h� k� of incompatible arcs	 Therefore� the family H contains

the following valid inequalities� introduced by Balas ������	 A Closed Alternating Trail

	CAT
 is an arc sequence T �� fa�� � � � � asg such that each ai is incompatible with ai��

and ai��� and compatible with all the other arcs of T �here� a� �� as and as�� �� a��	

The CAT is odd if the cardinality s of T is odd	 By adding one half �and rounding�

the constraints xai � xai�� � � for i � �� � � � � s� one obtains the following weak odd CAT

inequality� X
�i�j��T

xij �
jT j 
 �

�
�

The computational experience reported in Fischetti and Toth ������ has shown that

these inequalities are useful to speed�up the convergence of a branch�and�cut algorithm

for solving hard ATS real�world instances	

Weak odd CAT inequalities can be lifted to become facet�dening for PI �except in

few pathological cases arising for small values of jV j�	 The resulting constraints are the

f�� ��g�cuts obtained by replacing� in the Chv�atal�Gomory derivation� each xij � xhk � �

having i � h or j � k� by the corresponding equation ��� or ���� respectively	 These

inequalities generalize comb inequalities	 The complexity of the separation problem for

lifted odd CAT inequalities �as well as that for comb inequalities� is open	

��� The Uncapacitated Plant Location Polytope

The uncapacitated �or simple� plant location problem has several applications in location

and has been extensively studied� see� e	g	� Cornu�ejols� Nemhauser and Wolsey ������	

Let G � �V�  V�� E� be a complete bipartite graph	 A feasible solution of the plant

location problem is a subset E� of E with jE� � ��i�j � � for all i � V�	

The uncapacitated plant location polytope is then dened as

PI �� convf �x� y� � f�� �gE�V� �

xij 
 yj � �� for all i � V�� j � V� ���X
ij���i�

xij � �� for all i � V� g� ���

Here� xij � � i� the edge ij is chosen in E�� and yj � � i� jE� � ��j�j �� �	

f�� ��g�cuts include the following odd cycle inequalities

X
ij�C

xij 

X

j�V��C�

yj �
k 
 �

�
�

��



where C is a cycle of G of length �k� with k 	 � and odd� and Vi�C� contains the k

nodes of Vi visited by C �i � �� ��	 Clearly� jV��C�j � jV��C�j � k as G is bipartite	

These inequalities are indeed obtained by adding one half �and rounding� the following

constraints

xij 
 yj � �� for ij � CX
ij���i�	C

xij � �� for i � V��C�� ���

Notice that ��� is an L�weakening of ���� hence the odd�cycle inequalities belong to the

family H	

��� The Acyclic Subgraph and Linear Ordering Polytopes

Let G � �V�A� be a complete and loop�free directed graph� and PAC be the convex hull

of the incidence vectors of the acyclic subgraphs of G� i	e	�

PAC �� convf x � f�� �gA �

X
�i�j��C

xij � jCj 
 �� for all directed cycles C � A g� ���

PAC is called the acyclic subgraph polytope� and has been studied by Gr�otschel� J�unger and

Reinelt ������ ����a� ����b�	 Let C�� � � � � Ck be distinct directed cycles of G	 For each

�i� j� � A� let

�ij �� jfh � �i� j� � Chgj�

and

M ��
k	

h��

Ch�

M� �� f�i� j� �M � �ij is oddg�

Moreover� let �M�
� �M

�
� � be a partition ofM�� withM�

� orM�
� possibly empty� and assumePk

h�� jChj� jM�
� j 
 k to be odd	 By adding one half and rounding the constraints

X
�i�j��Ch

xij � jChj 
 � for h � �� � � � � k

xij � � for �i� j� �M�
�


xij � � for �i� j� �M�
�

one obtains the cut

��



X
�i�j��MnM�

�ij
�
xij �

X
�i�j��M�

�

�ij � �

�
xij �

X
�i�j��M�

�

�ij 
 �

�
xij �

�

Pk
h�� jChj� jM�

� j 
 k 
 �

�
� ����

To our knowledge� this class of inequalities is new	

Notice that the left�hand side of ���� may have coe
cients greater than �	 If� however�

the additional restriction

�ij � � for all �i� j� �M

is imposed �i	e	� no more than two cycles overlap in the same arc�� when choosing M�
� �

M� and M�
� � � the inequality ���� becomes

X
�i�j��M

xij � jM j 

k � �

�
� ����

with k odd since
Pk

h�� jChj� jM�j 
 k � �jM j 
 k is required to be odd	 If the chosen

C�� � � � � Ck satisfy some additional technical requirements� see conditions ��	��� to ��	���

in Gr�otschel� J�unger and Reinelt �����a�� constraint ���� is a so�called M�obius ladder

inequality	 The class of M�obius ladder inequalities contains however members not covered

by ����� arising when �ij 	 � for some �i� j� � M 	 As for the separation problem for

����� we observe that these constraints can equivalently be derived from the following

weakening of ����

X
�i�j��Ch

xij �
X

�i�j��Ch	M�

xij � jChj� jCh �M�j 
 � for h � �� � � � � k� ����

In the special case in which jCh n M�j � � holds for all h� these latter inequalities

have� at most� � odd left�hand side coe
cients each	 Hence the f�� �
�g�SEP associated

with the system ���� can be solved e
ciently� provided we heuristically restrict ourselves

to considering a polynomial number of inequalities ����� e	g	� those derived from the

inequalities ��� with jChj � t for some xed t� e	g	� t � �	

We next address the so�called linear ordering polytope� dened as

PLO �� convf x � f�� �gA � ��� and

xij � xji � �� for � � i 	 j � jV j g� ����

It is well known that� in the denition of PLO� ��� can be replaced by the triangle

inequalities

xij � xjk � xki � � for i� j� k � V� i 	 j� i 	 k� j �� k� ����

��
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Figure �� Two M�obius ladders	

Indeed� every cycle�breaking inequality ��� associated with a cycle C with jCj 	 ��

say C � f�i�� i��� �i�� i
�� � � � � �ijCj� i��g� can be obtained by adding
P

�i�j��C� xij � jC �j
��

xi�i��xi�i��xi�i� � �� and 
xi�i�
xi�i� � 
�� where C � �� f�i�� i
�� �i
� i��� � � � � �ijCj� i��g

�so� jC �j � jCj 
 ��	

We observe that ���� have � odd left�hand side coe
cients each� whereas ���� admit

the U�weakenings�

xij � �xjk � xki � � for i� j� k � V� jfi� j� kgj � �� ����

Therefore one can separate in polynomial time over the family of the f�� �
�
g�cuts obtained

by combining ���� and ����	 This family contains� among others� the M�obius ladder

inequalities covered by Theorem �	�� in Gr�otschel� J�unger and Reinelt �����b�	 For

instance� the M�obius ladder inequality whose support graph is depicted in Figure �	a is

obtained by combining

x�� � �x�
 � x
� � �� x
� � �x�� � x�
 � �� 
x�
 
 x
� � 
�

x
� � �x�	 � x	
 � �� x	� � �x�
 � x
	 � �� 
x
	 
 x	
 � 
�

x	� � �x�� � x�	 � �� x� � �x	 � x	� � �� 
x	� 
 x�	 � 
�

x� � �x� � x�� � �� x���� � �x���� � x�� � �� 
x��
 x�� � 
�

x���� � �x���� � x�� � �� x�� � �x�� � x�� � �� 
x�� 
 x�� � 
��

whereas that associated with the graph of Figure �	b is derived from

x�� � �x�
 � x
� � �� x�� � �x�
 � x
� � �

x�� � x�	 � �x	� � �� x�� � x�� � �x�� � �

x�� � x�	 � �x	� � �� x�	 � x	� � �x�� � �� 
x�	 
 x	� � 
��

��



	 Conclusions

We have considered the family of f�� �
�
g�cuts� and have studied the associated separation

problem� f�� ��g�SEP	 We have shown that f�� ��g�SEP does not depend on the actual

values of the coe
cients of the inequalities used to derive the cut� but only on their

parity	 This provides a unifying framework for studying some classes of inequalities

for di�erent problems such as� e	g	� Linear Ordering and Clique Partitioning	 We have

shown that f�� �
�
g�SEP is equivalent to the problem of nding a minimum�weight member

of a binary clutter	 This implies that f�� �
�
g�SEP is NP�hard in the general case� but

polynomially solvable in two relevant cases that generalize those considered by Gerards

and Schrijver ������ and by Padberg and Rao ������	 We also proved that f�� �
�
g�SEP

can be solved in polynomial time for a convenient relaxation of the original polyhedron	

Applications to several important problems have been discussed	 In some cases� we have

discovered exact polynomial separation schemes for large classes of �sometimes new�

inequalities	 An outcome of the research is that separation sometimes becomes easier if

one does not insist in detecting violated cuts belonging to a restricted �and sometimes

complicated� class of inequalities� but concentrates on the way these cuts can be derived

from the original formulation	
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