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Abstract

Given the integer polyhedron Pj := conv{z € Z" : Az < b}, where A € Z™*"
and b € Z™, a Chvdtal-Gomory (CG) cut is a valid inequality for P; of the type
M Az < |ATbh] for some A € R7! such that ATA € Z". In this paper we study
{0,3}-CG cuts, arising for A € {0,1/2}™. We show that the associated separa-
tion problem, {0, %}-SEP, is equivalent to finding a minimum-weight member of a
binary clutter. This implies that {0, %}-SEP is NP-hard in the general case, but
polynomially solvable when A is related to the edge-path incidence matrix of a
tree. We show that {0, %}-SEP can be solved in polynomial time for a convenient
relaxation of the system Az < b. This leads to an efficient separation algorithm
for a subclass of {0, %}-CG cuts, which often contains wide families of strong in-
equalities for P;. Applications to the Clique Partitioning, Asymmetric Traveling
Salesman, Plant Location, Acyclic Subgraph and Linear Ordering polytopes are
briefly discussed.

1 Introduction

Given an m X n integer matrix A = (a;;) and an m-dimensional integer vector b, let
P :={zx € R*": Az < b}, P; := conv{z € Z" : Az < b}, and assume P; # P.
We assume, without loss of generality, that each row of (A4,b) contains at least one
odd coefficient. A Chvdtal-Gomory (CG) cut is a valid inequality for P; of the form
ATAz < [A"b], where A € RT is such that ATA € Z", and |-| denotes lower integer
part. Notice that undominated CG cuts only arise for A € [0,1)™.

The rank-1 closure of P is defined as P, := {z € P : M Az < |ATb|, for A €
[0,1)™ s.t. ATA € Z"}. We define a {0, 5 }-Chvdtal-Gomory cut ({0, 5 }-cut, for short) as
a CG cut with A € {0,1/2}™, and define

Pyi={z € P: XAz < |ATb|, for A € {0,1/2}" s.t. ATA € 2"},



the polyhedron obtained by intersecting P with the half-spaces induced by all {0, %}—cuts.
There is an important difference in how P, and P/, depend on A and b. P, depends
only on the polyhedron P, so not on the actual system Az < b describing it, whereas
P, ; is a function of A and b. Notice that neither P, nor P/, are uniquely determined
by P;. Moreover, P C P, C P/, C P.

Although P, = P holds if and only if P = Py, one can have P/, = P evenif P # Pr;
this case occurs, e.g., when b/2 € Z™. Nevertheless, {0, %}—cuts play an important role
in polyhedral theory, in that the following results hold.

It is well known that an » x n {0, +1}-matrix @ is totally unimodular if and only if
P =P foralde Z", where P := {z € R": [_QI] z < [g]} Similarly, an » x n {0,1}-
matrix @) is balanced if and only if P = P; for all d € {1,400} (see, e.g., Schrijver,
1986).

Theorem 1 Let Q) be an r x n {0, +1}-matriz, and let P := {z € R" : [_QI] z < [g]} Q
is totally unimodular +f and only if P = Py, for alld € Z.

Proof. If @) is totally unimodular, then P = P/, = Py for all d € Z". Assume now
@ is not totally unimodular. Then, because of a result of Camion (1965), there exists
a square submatrix B of ) with even row and column sums, such that the sum of the
entries of B is not divisible by four. Let Iz and Jp index the rows and columns of
B, respectively, and define d € Z" as follows: d; := Y., qj/2if i € Ip; d; := M
otherwise, where M > max;gr, {[>;c, 4j/2]}. We next construct a point & € P and
a {0,1}-cut (associated say with X € {0,1/2}"*") which separates Z from Py/,, thus
proving P # Pyj,. For j = 1,...,n,let 2; := 1/2 if j € Jp; Z; := 0 otherwise. For
i=1,...,r, let X := 1/2 if ¢ € Ip; A := 0 otherwise. Moreover, for j = 1,...,n let
S\H_j = 1/2if 33,/ gi; is odd; A := 0 otherwise. By construction, A7 [_QI] € Z", and
AT [3] &= 1 Yier, Diesy Ui > 1§ Tiers Siesy 6l = [Ad). =

Theorem 2 Let Q be an r x n {0,1}-matriz, and let P := {z € R" : [_QI] z < [g]} Q
is balanced if and only if P = P, for all d € {1,400}".

Proof. If () is balanced then P = Py, = P; for all d € {1,4+00}". Assume now @ is not
balanced. Then, by definition of balancedness, there exists a square submatrix B of @)
of odd order, with row and column sums equal to two. By using the same construction
as in the proof of Theorem 1, one can define a vector d € {1, +00}" such that P # Py,

as claimed. O



In some relevant cases one has P/, = P, # Py, as, e.g., when P is defined by the
edge inequalities and the nonnegativity constraints of the stable set problem. Moreover,
sometimes P, /, = P, = Py as, for example, when P is the solution set of the nonnegativity
constraints and the degree constraints for the matching problem; see Edmonds (1965),
Edmonds and Johnson (1970). Even in case P; # Py, the family of {0, ;}-cuts often
contains several classes of (facet-inducing) valid inequalities for Py, which are of valuable
use within cutting-plane algorithms for optimization over P;. This gives us motivation
for studying P;/,. In particular, we address the following {0, %}-cut separation problem
({0, 3}-SEP), in its recognition version: Given z* € P, find A € {0,1/2}™ such that
MAc Z" and AT Az* > |ATb|, or prove that no such ) ezists. Because of the well-known
equivalence between optimization and separation, the availability of a polynomial-time
algorithm for {0,%}—SEP would allow one to optimize, in polynomial time, a linear
objective function over P;/,; see Grotschel, Lovasz and Schrijver (1981).

The paper is organized as follows. In Section 2 we describe the notation and basic
definitions used in the sequel. In Section 3 we show that {0, %}—SEP is equivalent to
finding a minimum-weight member of a binary clutter. The latter problem is known to
be NP-hard, hence so is {0, %}—SEP. We describe some simple reduction procedures for
{0, %}—SEP, and discuss two relevant polynomially-solvable special cases, arising when
A is related to the edge-path incidence matrix of a tree. In Section 4 we show that
{0, %}—SEP can be solved in polynomial time for a convenient relaxation of the system
Az < b. This leads to an efficient separation algorithm for a subclass of {0, ;}-cuts that
often contains large families of strong inequalities for P;. Applications to the Clique
Partitioning, Asymmetric Traveling Salesman, Plant Location, Acyclic Subgraph and
Linear Ordering polytopes are briefly discussed in Section 5, leading to new efficient

separation algorithms. Section 6 draws some conclusions.

2 Notation and basic definitions

For any given z € Z and q € Z,, let z mod ¢ := z — |2/q| q. As customary, notation
a = b (mod q) stands for a mod g = b mod g.

Given an integer matrix @ = (g;;), let @ = (¢;;) := @ mod 2 be the binary support of
Q,i.e., g; = 1if g;; is odd; §;; = 0 otherwise.

Given an undirected (not necessarily simple) graph G = (V, E) and a node set S, we
define §(S):={ijec E:i€ S5,5¢ S} and E(S):={ij€ E:i€ S5,5 € §}. To simplify
notation, for 2 € V we write §(z) instead of §({z}).

A cycle of G is a subset C of E such that |CNé(v)|isevenforallv e V. Let TC E



induce a maximal forest of G. Every edge e € E \ T is then contained in a fundamental
cycle, say C., of the subgraph induced by T'U {e}. We denote by M ,q.(G,T) the {0,1}-
matrix whose rows are the characteristic vectors of the fundamental cycles of G with
respect to T'.

A cut of G is a subset F of E of the form F = §(S5) for some SC V. Let TCV xV
be any tree spanning V (possibly T ¢ E). For each t € T, let S; C V be any of the
two components of the graph with node set V and edge set T\ {t}. The cuts §(5:),
t € T, are called the fundamental cuts of G (with respect to T'). Let M..(G,T) denote
the {0, 1}-matrix whose rows are the characteristic vectors of the fundamental cuts of G
with respect to T. Notice that cuts and cycles intersect in an even number of edges.

Let a parity label f. € {0,1} be assigned to each e € E. A given F C E is called odd
if ¥.cr fe =1 (mod 2), even otherwise.

A p x ¢ {0,1}-matrix M is the edge-path incidence matriz of a tree (EPT matriz, for
short) if there is a tree T on p+ 1 nodes such that each column of M is the characteristic
vector of the edges of a path in 7. Every EPT matrix M can be represented by a graph
G and a tree T such that M = M,.,.(G,T). EPT matrices play an important role in
the theory of network matrices, and can be recognized in polynomial time; see, e.g.,
Schrijver (1986) and Nemhauser and Wolsey (1988). Examples of EPT matrices include
the {0, 1}-matrices having no more than two 1’s per column, and those in which the 1’s
in a column occur consecutively. It is well known that EPT matrices are closed under
row and column permutations, deletions and duplications. Moreover, if M is an EPT
matrix (represented, say, by G = (V,E) and T), then M’ := [é\?] also is, where el
denotes the i-th row of the identity matrix. Indeed, let uv be the edge of G associated
with the i-th column of M. Then M’ can be represented by G' = (V', E’) and T, where
V=V U{w}, E':=(E\ {w})U{uw}, and 7" := T U {vw}.

Let @ be an r x t {0,1}-matrix, and d € {0,1}", d # 0. The binary clutter associated
with (@, d) is defined as

C(Q,d) :={z€{0,1} : Qz = d (mod 2)}.

Associated with every binary clutter is the following minimum-weight binary clutter

problem (MW-BCP):
MW-BCP: Given w € R', solve min{w’z:z € C(Q,d)}.

Well known binary clutters are those associated with odd cycles and odd cuts in a

parity labeled graph, and with complements of cuts in a graph. Indeed, the set of the
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characteristic vectors of the odd cycles of G is the binary clutter C(Q,d) defined by

S P ) g

where T C V x V is an arbitrarily chosen tree spanning V (e.g., T := {15 : j € V\ {1}).
In this case MW-BCP can be solved in polynomial time, as it amounts to finding a
minimum-weight odd cycle of Gj see, e.g., Grotschel and Pulleyblank (1981) and Gerards
and Schrijver (1986) for efficient algorithms.

Analogously, the set of the characteristic vectors of the odd cuts of G is the binary
clutter C(Q,d) defined by

Q:= [Mcyd{(TG,T)] = [o]. 2)

where T is any maximal forest of G. MW-BCP can be solved efficiently also in this
case. Indeed, we first move the parity information from the edges to the nodes of G by
defining, for each v € V, the {0,1}-label p, := (X.cs(s) fe) mod 2. With this definition,
Yees(s) fe = Xves Loees(v) fe — 2 X cer(s) fer hence §(S) is odd if and only if S contains an
odd number of nodes with p, = 1. MW-BCP then amounts to finding a minimum-weight
such cut, and can be solved efficiently through the algorithm of Padberg and Rao (1982).

More generally, the decomposition theorem of Seymour (1980) for regular matroids
implies that MW-BCP can be solved in polynomial time when Q = U for some totally
unimodular matrix U.

Finally, the complements of the cuts of G define a binary clutter, arising when @ =
M. yie(G,T) for any maximal forest T of G, and d; := 1 if the fundamental cycle C.
associated with the 2-th row of @) has odd cardinality; d; := 0 otherwise. Unlike in
the previous examples, MW-BCP is known to be NP-hard in this case, as it calls for
a minimum-weight complement of a cut, i.e., for a maximum-weight cut in a graph -
the well-known MAX-CUT problem. Moreover, the recognition version of MAX-CUT
is NP-complete, see Garey and Johnson (1979), hence so is the recognition version of

MW-BCP.

3 {0,1}-SEP and binary clutters

CG cuts can be thought of as being obtained in the following way. Let p € Z" and g € Z,
be such that u” A = 0 (mod q) and p’b = kq+r with k € Z and r € {1,...,g—1}. Then
pT Az < kq is a valid inequality for P;. This inequality can equivalently be written as
pT(b— Az) > r, hence a given z* € P violates u” Az < kq if and only if p” (b— Az™) < 7.



Observe that, for every g, it is enough to consider multipliers u; € {0,...,g—1}: alarger
ii leaves the modulo ¢ arithmetic unchanged, but decreases the violation. Furthermore,
given the slack vector s := b — Az* the violation only depends on (4,b) mod q. {0, 3}
cuts are produced by the above procedure when ¢ = 2. Therefore, {0, %}—SEP (in its

optimization version) can be re-phrased as follows.

{0,1}-SEP: Given z* € P, solve min{s*"p : p € F(A,b)}, where
s*:=b— Az >0, and

F(A,b) :={pc {0,1}" :ET,u =1 (mod 2),ZT,u =0 (mod 2)}.

By construction, there exists a {0, %}—cut violated by the given point z* if and only if
min{s* p : p € F(4,0)} < L.
It is then clear that {0,1}-SEP and MW-BCP are closely related to each other.

Indeed, we have the following result.
Theorem 3 Problems {0,1}-SEP and MW-BCP are equivalent.

Proof. The transformation of any instance of {0, %}—SEP to an equivalent instance of
MW-BCP is trivial: just define w := s*, d := [1]0,...,0]7, and Q := EZT .

Consider now any instance of MW-BCP. We define n := » 4+t + 1, m := t + 1,
b:=1[2,...,2|1]7, and A := [dQTT
Az* <b:letzj:=0forj=1,...,r 27, :=1—-w;/2fori=1,...,t;and z;,,,, := 1/2.
By construction, s* := b — Az* equals [wy,...,w|0]T and, for every p € {0,1}'*!,
ET,u = 1 (mod 2) if and only if p;1 = 1. Therefore {0, 5}-SEP calls for z € {0,1}" such
that @z = d (mod 2) and w’ z is a minimum, i.e., it coincides with MW-BCP. O

21 ] We then construct the following point z* with

Corollary 1 The recognition version of {0,3}-SEP is NP-complete.

3.1 Reductions

The size of an instance of {0, %}—SEP can in some cases be reduced by applying reduction
criteria, which are well known in the context of binary clutters. Some of these criteria

are listed below.

(a) Every row ¢ of Az < b with s7 > 1 can be removed.



(b) If (4,b) contains identical rows, only the one with the smallest s} need to be

considered.

(c) Let the row intersection graph G(A) be defined as the graph having a node v; for each
row i of A, and an edge [v;, v;] if and only if A has a column j with @;; = @;; = 1. Let
Ci,...,C; be the connected components of G(A). Ift > 2, A can be brought to the
form of a block diagonal matrix, hence {0, %}—SEP decomposes into ¢ independent

subproblems.

(d) Suppose there exists a row h of A such that, for some j € {1,...,n}, @,; = 1 and
an, = 0 for all k € {1,...,n}, k # j. This situation arises, e.g., when the system
Az < b contains a lower/upper bound constraint of the form +; < b,. Moreover,

suppose this constraint is tight for the given point z*, i.e., s; = 0. Assuming

w.l.o.g. h =m and j = n, the input (4,b,s*) for {0, 1}-SEP has the form:

— [ M |d] + [P . |o"

A= [ 1]=[g, s e =[]
Observe that any feasible solution p € {0,1}™ of {0,1}-SEP has p,, = >7"7" pid;
(mod 2). We then define a reduced instance of {0, 5}-SEP, whose input is given
by (M, f,o*), where f := Bif b,, = 0, f := (B + d) mod 2 otherwise. One can
easily see that there is a one-to-one correpondence between the feasible solutions
p € {0,1}™ and v € {0,1}™! to the original and reduced {0, ; }-SEP, respectively,
where pup, = v for k=1,...,m — 1, and p,,, = d’ v (mod 2).

3.2 Polynomially-solvable special cases of {0,1}-SEP

The first polynomially-solvable special case we consider, arises when 4" is an EPT

matrix.
Theorem 4 {0,1}-SEP can be solved in polynomial time if A" is an EPT matriz.

Proof. Let G = (V,E) and T represent ZT, where |V| = n+ 1, |E| = m, and A =
M,.;(G,T). By construction, F(4,b) = C(Q,d), where @ and d are defined as in (1),
with f := b. Hence {0,%}—SEP can be solved in polynomial time, as it calls for a
minimum-weight odd cycle of G in which s? and b; play the role of the weight and the
parity label for the edge associated with the i-th row of A, respectively. a

Gerards and Schrijver (1986) gave a polynomial-time algorithm for {0, ;}-SEP when

A is an integer matrix satisfying -, |a;;| < 2 for each row index i. More generally,
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Theorem 4 implies that {0, %}—SEP can be solved efficiently when A has, at most, two
odd coeflicients in each row. Indeed, A" is in this case the EPT matrix associated with
the graph G = (V, E) and the star T, where V := {1,...,n+ 1}, T:={[n + 1,j] : j =
1,...,n}, and E has an edge jk for each row i of A with @;; = @;;, = 1, and an edge
[n + 1, 7] for each row 7 having a single nonzero entry @;;.

We next consider the situation arising when A = []\ﬂ, as in the case in which z > 0

is part of the system Az < b.

Theorem 5 {0,3}-SEP can be solved in polynomial time if A = []\ﬂ , and M 1is an EPT

matriz.

Proof. Let G = (V, E) and T represent M, i.e., M = M.(G,T). The rows of M are
indexed by the edges of T, whereas the other rows of A can be thought of as being
indexed by E. The columns of A can then be viewed as the characteristic vectors of
the fundamental cycles (with respect to T') of the graph G = (V,EUT), i.e., A=
M_,uo(G,T). Tt follows that F(4,b) = C(Q,d), where Q and d are defined as in (2),
with f := b. Therefore {0, %}—SEP can be solved in polynomial time, as it calls for a
minimum-weight odd cut of G, in which s¥ and b; play the role of the weight and the
parity label for the edge of G associated with the i-th row of A, respectively. O

Padberg and Rao (1982) gave a polynomial-time algorithm for {0, 1}-SEP when P :=
{z € R" : Dz <d,0 <z < g}, and D is the node-edge incidence matrix of a graph, i.e.,
when Py is the capacitated b-matching polytope. More generally, Theorem 5 implies that
{0, 3}-SEP can be solved efficiently when P := {x € R" : d' < Dz < d?,¢' <z < g°},

D

and D is an EPT matrix. Indeed, in this case A = []\ﬂ, where M = l?l is an EPT

matrix (this follows from the fact that M is obtained from D by duplicating rows, and
by adding rows of the identity matrix).

4 Optimizing over a relaxation of P

In view of Corollary 1, it is unlikely that a polynomial-time algorithm for optimizing a
linear objective function over P/, exists. Now let P’ := {z € R" : A’z < ¥’} DO P be
a relaxation of P obtained by “weakening” the system Az < binto A’z < ¥/, in such
a way that the {0,1}-SEP associated with (A’,b’) can be solved in time polynomial in
the size of (A,b). Then clearly one can optimize in polynomial time over the polyhedron

PP,



There are several possible relaxations that meet the requirements above. Among
them, we study the one obtained by making a systematical use of lower and upper
bounds on the variables so as to produce a weakened system A’z < b’ in which A’ has,
at most, two odd coefficients per row. To be specific, let us assume that the bound
constraints 0 < z < d are part of the system Az < b (possibly d; = +oco for some j).
For each row index ¢, let O, := {j : a;; is odd}.

L-weakening

The simplest weakening arises when the lower bound constraints —z; < 0 for 5 =
1,...,n are systematically added to the inequalities of Az < b so as to reduce to, at
most, two the number of odd coefficients in each row. This amounts to replacing each
inequality }°; a;;z; < b; with |O;] > 3, by the ('2”) L-weakenings

ainTh + aipTr + Z a;;T; + Z (a;j — Dz; <b;
J#0; J€0\{h,k}
for all Ak € O;, h < k. In this way, the weakened system A’z < b’ has O(mn?)
rows. However, in view of Reduction (b) of Section 3, for any given z* only O(n?) such

inequalities need to be considered explicitly.

U-weakening
Analogously, by making use of the upper bound constraints z; < d; one can weaken
Az < b by replacing each inequality }°;a;;z; < b; with |O;] > 3, by the (lg”) U-

weakenings

a;pTh + ATy + Z a;;je; + Z (aij + D)z; < b; + Z d;
J¢0i JEO\{h,k} Jj€0\{h.k}

for all A,k € O;, h < k.

LU-weakening

More generally, one can use both lower and upper bounds on the variables to produce
A’z < V. This amounts to replacing each inequality >, a;;z; < b; with |0;| > 3, by the
LU-weakenings

ainth + @i + Y agz;+ Yy (ai; — Dzj+ Y (aij+ Da; <bi+ Y d;
J#0; JEL Jjeu Jeu

for all h,k € O;, h < k, and for all partitions (L,U) of O, \ {h, k}.

Although A’z < ¥ has, in general, an exponential number of rows, still {0, %}—SEP

can be solved in polynomial time. Indeed, for each triple (%, h, k) only two LU-weakenings

are worth considering for the given point z*, namely those with even and odd right-hand



side having minimum slack. These two weakenings can be computed, in O(n) time,
through a simple dynamic programming scheme that considers, for each j € O; \ {h, k},
the two possibilities j € L or j € U.

As a consequence of the above discussion, one has the following result.

Theorem 6 One can optimize in polynomial time over the relazation of P/, given by
PNP|,, where P':={z € R : A'z <¥'} and A’z <V is obtained from Az < b through
LU-weakening.

5 Applications

Let ‘H be the family of the {0, %}—cuts that can be derived from the weakened system
A’z < b obtained from Az < b through LU-weakening. For several widely-studied
polyhedra, H contains large classes of inequalities, some of which are known to be
facet-inducing for the integer polyhedron P;. Hence P N P/, hopefully gives a tight

approximation of P;. Some relevant cases are next briefly discussed.

5.1 The Clique Partitioning Polytope

The clique partitioning problem arises in optimal clustering. We are given a complete
undirected graph G = (V, E). An edge set A is called a cliqgue partitioning of G if V can
be partitioned into disjoint sets Wi,..., Wj such that 4 = U*_, E(W;). Let

Pr:=conv{z € {0,1}F :z;; + x5 —aip < 1 for all 4,5,k € V,|{3,5,k}| = 3}

denote the clique partitioning polytope. The constraints z;; + ;1 — z;x < 1 are called
triangle wnequalities. Several classes of facet-inducing inequalities for P; have been
studied by Grotschel and Wakabayashi (1990). These include the following 2-chorded
odd cycle inequalities. Let C = {ey,...,er}, k > 5 and odd, be a cycle of G, with
e, = vviy1 (1 = 1,...,k — 1) and e = vgvy. To simplify notation, let vxyy := vy and
Vkyo := vy. The set C := {vw;ys : 4 = 1,...,k} is called the set of the 2-chords of C.
The 2-chorded odd cycle inequality associated with C' is then defined as

D i — Z%'_kz;l-

ijeC T
To our knowledge, no separation algorithm for these constraints has been proposed in
the literature. Recently, Miiller, 1993, proposed an odd cycle separation algorithm for a

related class of inequalities for the so-called transitive acyclic subdigraph polytope.
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2-chorded odd cycle inequalities are {0, %}—cuts obtained by combining the following
constraints:

Toiviy T Toivigs — 2Tuwi, <1 fori=1,... k,

each of which is an L-weakening of a triangle inequality. We observe here that these are
not the only {0, %}—cuts one can obtain from weakened triangle inequalities of the form
z;; + ;1 — 2z, < 1. For instance, let C = {e1,...,ex}, k > 3 and odd, be a cycle of G

with e; = vu;4q fori =1,...,k. Given z € V' \ {vy,...,v;}, one can add
Tyio + Loy — 2Ty, <1 fori=1,...,k,

weighted by 1/2, and obtain through rounding the odd wheel inequality

k
kE—1
;mviz — Z ml-j ~ T
1= 1jeC
These inequalities are facet-inducing for P; (Chopra and Rao, 1993), and can be sepa-
rated in polynomial time (Deza, Grotschel and Laurent, 1992).
Since the weakened triangle inequalities belong to family H, one can optimize in

polynomial time over a relaxation of P/, whose inequality set contains all 2-chorded

odd cycle and odd wheel inequalities.

5.2 The Asymmetric Traveling Salesman Polytope

Let G = (V,A) be a complete and loop-free directed graph. The Asymmetric Trav-
eling Salesman (ATS) polytope, Py, is the convex hull of the incidence vectors of the

Hamiltonian circuits (tours) of G, i.e.,
P; := conv{z € {0,1}*:

Zmijzl, ’LEV (3)

jev
dozij=1, jEV (4)
%
S Y es<ISI-1, SCV[s|>2}. (5)
1€S JES
Inequalities (5) are called Subtour Elimination Constraints (SEC’s). Although there are
exponentially many SEC’s, one can optimize in polynomial time over P := {z € Rﬁ :

¢ satisfies (3)-(5)} since these constraints can be handled efficiently through max-flow

separation algorithms.
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Let two arcs (¢,7) and (h, k) be called incompatibleif 1 = h, or j = k, or (¢,7) = (k, k).
It is easy to see that the L-weakening of (3)-(5) consists of the inequalities z;; + zpr < 1
for all pairs (z,5) and (h,k) of incompatible arcs. Therefore, the family H contains
the following valid inequalities, introduced by Balas (1989). A Closed Alternating Trail
(CAT) is an arc sequence T := {a1,...,as} such that each a; is incompatible with a;_4
and a1, and compatible with all the other arcs of T (here, ao := a5 and as1 = a1).
The CAT is odd if the cardinality s of T' is odd. By adding one half (and rounding)

the constraints z,, + z,;,,, <1 forv=1,...,s, one obtains the following weak odd CAT

i1
mequality:
¥ T|—1

(1,9)eT

The computational experience reported in Fischetti and Toth (1994) has shown that
these inequalities are useful to speed-up the convergence of a branch-and-cut algorithm
for solving hard ATS real-world instances.

Weak odd CAT inequalities can be lifted to become facet-defining for P; (except in
few pathological cases arising for small values of |V|). The resulting constraints are the
{0, %}—cuts obtained by replacing, in the Chvatal-Gomory derivation, each z;; + zpr < 1
having ¢ = h or j = k, by the corresponding equation (3) or (4), respectively. These
inequalities generalize comb inequalities. The complexity of the separation problem for

lifted odd CAT inequalities (as well as that for comb inequalities) is open.

5.3 The Uncapacitated Plant Location Polytope

The uncapacitated (or simple) plant location problem has several applications in location
and has been extensively studied; see, e.g., Cornuéjols, Nemhauser and Wolsey (1990).
Let G = (V4 U V5, E) be a complete bipartite graph. A feasible solution of the plant
location problem is a subset E’ of E with |[E' N §(2)| =1 for all 7 € V4.

The uncapacitated plant location polytope is then defined as

P; := conv{ (z,y) € {0,1}F" :
z,; —y; <0, forallee V1,5 €V, (6)
Z z; =1, foralteV; }. (7)

i5€8(3)
Here, z,; = 1 iff the edge 77 is chosen in E’, and y; = 1 iff |E' N §(5)| # 0.
{0, 3}-cuts include the following odd cycle inequalities

k-1
domij— Y, ijT,

1j€C JEV2(C)
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where C is a cycle of G of length 2k, with £ > 3 and odd, and V;(C) contains the %k
nodes of V; visited by C (z = 1,2). Clearly, |Vi(C)| = |Va(C)| = k as G is bipartite.
These inequalities are indeed obtained by adding one half (and rounding) the following
constraints

z;,;—y; <0, forzjeC

Z z;; <1, for:e Vi(C), (8)

1j€8(i)NC

Notice that (8) is an L-weakening of (7), hence the odd-cycle inequalities belong to the
family H.

5.4 The Acyclic Subgraph and Linear Ordering Polytopes

Let G = (V, A) be a complete and loop-free directed graph, and Psc be the convex hull

of the incidence vectors of the acyclic subgraphs of G, i.e.,
Pyc := conv{ z € {0,1}" :
Z z;; < |C|—1, for all directed cycles C C A }. (9)
(7,.7)eC
P,¢ is called the acyclic subgraph polytope, and has been studied by Grotschel, Jinger and
Reinelt (1984, 1985a, 1985b). Let C4,...,C} be distinct directed cycles of G. For each
(i,7) € A, let
Hij += |{h : ('LaJ) S Ch}|a

and

k
M = UCh,

h=1
M~ :={(¢,7) € M : p;; is odd}.
Moreover, let (M, M) be a partition of M*, with M; or M possibly empty, and assume
Sk _ |Ch| + |M;| — k to be odd. By adding one half and rounding the constraints

Z a:l-j§|Ch|—1 fOI‘hzl,...,k

(lvj)ech
z;; <1 for (3,7) € My
—z,; <0 for (z,7) € M,

one obtains the cut

13



is pij + 1 pij — 1
> 713%' + ) 12 zij+ Y, 12 z;; <
(1.4)€M\M* (t.5)eM; (1.9) €M
- Shoi O]+ (M|~ 1
[— 2 .

(10)
To our knowledge, this class of inequalities is new.
Notice that the left-hand side of (10) may have coefficients greater than 1. If, however,
the additional restriction
pij <2 forall (z,57) e M

is imposed (i.e., no more than two cycles overlap in the same arc), when choosing M} =
M* and M; = () the inequality (10) becomes

Y. =i < M| - k2i, (11)
(7,7)eM

with k odd since ¥¥_, |Ch| 4 |M*| — k = 2|M| — k is required to be odd. If the chosen
Ci,...,Cy satisfy some additional technical requirements, see conditions (2.15) to (2.17)
in Grétschel, Jinger and Reinelt (1985a), constraint (11) is a so-called Mébius ladder
inequality. The class of M6bius ladder inequalities contains however members not covered
by (10), arising when w,; > 3 for some (i,5) € M. As for the separation problem for
(11), we observe that these constraints can equivalently be derived from the following

weakening of (9):
oo+ Y. @i <|CWl+|ChN M| =1 for h=1,...,k. (12)

(1,5)€Ch (2,7)eCpnM*

In the special case in which |C, \ M*| < 2 holds for all h, these latter inequalities
have, at most, 2 odd left-hand side coeflicients each. Hence the {0, %}—SEP associated
with the system (12) can be solved efficiently, provided we heuristically restrict ourselves
to considering a polynomial number of inequalities (12), e.g., those derived from the
inequalities (9) with |Ch| <t for some fixed ¢, e.g., t = 4.

We next address the so-called linear ordering polytope, defined as

Pro :=conv{ z € {0,1}* : (9) and

z;;+ ;= 1, for1<g <j < |V| } (13)

It is well known that, in the definition of Pro, (9) can be replaced by the triangle
iequalities

a:”—l—mjk—l—mm§2 fOI"L,],kEV,’L<],’L<k,]7ﬁk (14)

14



Figure 1: Two Mobius ladders.

Indeed, every cycle-breaking inequality (9) associated with a cycle C with |C| > 4,
say C = {(41,%2), (42,%3), - - -, (4|¢|, 1) }, can be obtained by adding 3", jycc #i; < |C'] 1,
T i+ Tigiy + Tigi, < 2,and —z;;, — 2y, = —1, where C" := {(41,13), (33, %4), - - -, (¢)c), 1) }
(s0, C"] = C] — 1).

We observe that (13) have 2 odd left-hand side coeflicients each, whereas (14) admit

the U-weakenings:
zi; + 2z + 2 <3 fori,j,k € V,|{i,5,k}| = 3. (15)

Therefore one can separate in polynomial time over the family of the {0, %}—cuts obtained
by combining (13) and (15). This family contains, among others, the Mobius ladder
inequalities covered by Theorem 3.11 in Grétschel, Jinger and Reinelt (1985b). For
instance, the Mobius ladder inequality whose support graph is depicted in Figure 1.a is

obtained by combining
Tio + 2xa3 + @31 < 3, T3y +2xT4 + 213 <3, —xTy3— @3 = —1
T34 + 2245 + ©53 < 3, Ts6 + 2Tez + T35 <3, —T35 — @53 = —1
Tse + 2¢e7 + 75 < 3, Trg + 2xgs + 57 <3, —wsr — w75 = —1
Trg + 2xg9 + o7 < 3, Tojo+ 2Ti07 + 79 <3, —Tyg — Tgr = —1
Zg 10 + 22101 + 219 < 3, Ti2 + 2% + 291 <3, —T19 — To = —1,
whereas that associated with the graph of Figure 1.b is derived from
T12 +2¢o3 + 31 <3, ZTyg+2zy3+ @3 <3
T4+ T45 + 2251 <3, Tyg+ Tas + 2me1 < 3

Tos + Tes + 2252 < 3, Tas + Tse + 2264 < 3, —Tes — Tss = —1.
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6 Conclusions

We have considered the family of {0, %}—cuts, and have studied the associated separation
problem, {0,1}-SEP. We have shown that {0, }-SEP does not depend on the actual
values of the coefficients of the inequalities used to derive the cut, but only on their
parity. This provides a unifying framework for studying some classes of inequalities
for different problems such as, e.g., Linear Ordering and Clique Partitioning. We have
shown that {0, %}—SEP is equivalent to the problem of finding a minimum-weight member
of a binary clutter. This implies that {0, %}—SEP is NP-hard in the general case, but
polynomially solvable in two relevant cases that generalize those considered by Gerards
and Schrijver (1986) and by Padberg and Rao (1982). We also proved that {0,1}-SEP
can be solved in polynomial time for a convenient relaxation of the original polyhedron.
Applications to several important problems have been discussed. In some cases, we have
discovered exact polynomial separation schemes for large classes of (sometimes new)
inequalities. An outcome of the research is that separation sometimes becomes easier if
one does not insist in detecting violated cuts belonging to a restricted (and sometimes
complicated) class of inequalities, but concentrates on the way these cuts can be derived

from the original formulation.
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