
Using a general-purpose Mixed-Integer Linear
Programming solver for the practical solution of

real-time train rescheduling

Matteo Fischetti
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Abstract

At a planning level, train scheduling consists of optimizing the routing
and scheduling for a set of trains on a railway network. In real-time oper-
ations, however, the planned schedule constantly needs to be verified and
possibly updated due to disruptions/delays that may require train rerout-
ing or cancelation. In practice, an almost immediate reaction is required
when unexpected events occur, meaning that trains must be rescheduled
in a matter of seconds. This makes the time-consuming optimization tools
successfully used in the planning phase completely inadequate, and ad-hoc
(heuristic) algorithms have to be designed.

In the present paper we develop a simple approach based on Mixed-
Integer Linear Programming (MILP) techniques, that uses an ad-hoc heuris-
tic preprocessing on the top of a general-purpose commercial solver applied
to a standard event-based MILP formulation. A computational analysis
on real cases shows that our approach can be successfully used for prac-
tical real-time train rescheduling, as it is able to deliver (almost) optimal
solutions within the very tight time limits imposed by the real-time envi-
ronment.

Key words: (O) Combinatorial optimization; railways optimization; train
rescheduling; mixed-integer linear programming; real-time optimization.

1 Introduction

Train scheduling consists of routing and scheduling a set of trains traveling on
a railway network, satisfying some operational constraints and optimizing some
measure of the efficiency of the infrastructure. Different models have been
proposed in the literature for describing this problem: the reader is referred
to Szpigel (1973), Jovanovic and Harker (1991), Oliveira and Smith (2000),
Caprara et al. (2002) and Mascis and Pacciarelli (2002), among others, and to
Caprara et al. (2007), D’Ariano et al. (2014) for recent surveys on this topic.

In principle, the above models could be used not only for planning but also at
an operational real-time level. In this latter context, the nominal train timetable
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is fixed but some unexpected events (e.g., delays and/or disruptions) occur on
the network, introducing possible conflicts and making the nominal schedule
infeasible. In this case, suitable repair operations must be quickly decided and
implemented to recover feasibility, a task that often involves several trains with
a redefinition of their timetable and/or routing.

Typically, rescheduling has the main objectives to produce a conflict-free
schedule that is as close as possible to the ideal (or nominal) planned timetable,
while minimizing operational costs related to the rescheduled trains. To restore
the timetable within a reasonable time horizon, rescheduling usually needs to
consider only a subset of the trains, meaning that the size of the rescheduling
problem is not as large as in the planning phase. However, a main complication
is that recovery actions must be decided in a very short time, as they must be
validated by a human operator and henceforth implemented. Thus, an auto-
matic support decision system must be able to propose conflict-free solutions in
real-time. Typically, the available time for producing a new schedule after the
originating event has been detected ranges from 2 to 10 seconds, depending on
the time-window size and of the number of affected trains.

In this paper we describe the outcome of our collaboration with Alstom
Ferroviaria SpA (just Alstom in what follows), a global leader in the world for
railways infrastructure. Alstom developed in recent years a proprietary decision
support system, called ICONIS, to monitor and control railway traffic in sta-
tions and railway lines. In 2013, Alstom activated international collaborations
with experts in the field, with the aim of improving its dispatching system. In
particular, a set of real instances has been provided to all collaborators, repre-
senting simulated disruption within a given time horizon for a line nearby the
city of London.

The test bed is made by 29 instances: 10 small (disruption time horizon of
15 minutes), 9 medium (30 minutes) and 10 large (60 minutes) instances. Even
the small instances involve reordering and rerouting of several trains (up to 41),
so they are far from trivial. The interested reader is referred to (D’Ariano et al.,
2014) for a description of this project and of its challenges. Reasonable time
limits for computation were set by Alstom to 2 seconds (small instances), 5 sec-
onds (medium instances), and 10 seconds (large instances), on “any reasonable
hardware”—meaning even a local cluster with tens PCs running in parallel, if
required.

In view of our specific integer programming expertize, we were asked to pro-
vide a feasibility study to answer a challenging question: In view of the greatly
improved technology, can a modern general-purpose Mixed-Integer Linear Pro-
gramming (MILP) solver be successful in performing real-time rescheduling in
a practically effective way? This paper answers to that question essentially in
the affirmative. We found that, even for the small instances, modern MILP
technology is still not able to solve the rescheduling models within the few-
second time frame required. However, to our own pleasant surprise we found
that simple heuristic preprocessing operations have a dramatic effect in the
MILP performance, and allow one to achieve the orders-of-magnitude speedup
required in practice.

We want to stress here that we do not claim that our approach beats all the
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sophisticated ad-hoc methods from the literature, and in fact we do not compare
it with any such methods (many of which are proprietary). As a matter of fact,
similar methods have already been considered; see, e.g., (Cacchiani et al., 2014,
Fang et al., 2015, Pellegrini et al., 2015). Rather, we want to share with the
reader the lesson we learnt from this project—train rescheduling can become
much easier once an apparently trivial preprocessing step is applied. We are
confident that, in spite of its simplicity, this is an important message that will
attract the attention of researchers and practitioners working in the field.

The remaining part of the paper is organized as follows. In Section 2 we
sketch the MILP model proposed by Mascis and Pacciarelli (2002), D’Ariano
et al. (2008) and Mannino and Mascis (2009) that we used in our experiments,
and computationally analyze it in by using a state-of-the-art commercial MILP
solver (IBM ILOG Cplex 12.6.2). In Section 3, we introduce two heuristic
preprocessing procedures based on bound tightening and variable fixing, and
analyze their practical performance in Section 4. Some comments are finally
drawn in Section 5.

2 State of the art

As already mentioned, train (re)scheduling can be modeled by using the MILP
paradigm. In our approach, we use a standard event-based model for job-shop
scheduling problems (Balas, 1969) where variables are associated with the time
instant in which relevant operations take place.

The model, specialized for train scheduling by Mascis and Pacciarelli (2002),
is based on the definition of an alternative graph used to model event incom-
patibilities and involves big-M coefficients to express disjunctive terms. Main
variables of the model are binary variables y selecting at most one of the possi-
ble routes for each train to be rescheduled, binary variables x associated with
(unknown) precedences between events using a same unsplittable resource (e.g.,
a track or a platform), and continuous variables t expressing the unknown time
instant when a certain event will be rescheduled. The model also involves ad-
ditional continuous variables zj giving the delay of some relevant events j with
respect to planned time. The objective function used in our experiments is the
average of all such zj ’s. As customary in scheduling models, the alternative
graph contains a dummy node ω (say) that represents the end of the sched-
ule. By construction, variable zω gives the maximum delay in the schedule—a
feature that plays an important role in our approach. The reader is referred
to Mascis and Pacciarelli (2002), D’Ariano et al. (2008), Mannino and Mas-
cis (2009) and D’Ariano et al. (2014) for details on the alternative-graph model
and on the corresponding MILP model, and to Lamorgese and Mannino (2015),
Lamorgese et al. (2016) for a recent solution approach based on advanced de-
composition techniques. For the sake of completeness, the full model we used
in our study is reported in the Appendix.

A possible way for rescheduling trains on a rail network is of course to solve
the model above by using a general-purpose MILP solver. To the best of our
knowledge, however, this approach was never used for real applications as the
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associated computing times would be by far too large for the real-time setting.
Actually, computational experiences reported in the literature (see, e.g, Lam-
orgese and Mannino (2015), Lamorgese et al. (2016)) show that this approach
is not suitable for real-time applications. To verify whether this is still the
case when using the most recent and powerful MILP solvers, we performed a
preliminary set of experiments aimed at directly solving the instances in our
testbed. As mentioned, our dataset includes 10 “small” instances associated
with a time horizon of 15 minutes (numbered from 1 to 10), 9 “medium” in-
stances with a 30-minute horizon (numbered from 11 to 19), and 10 “large”
instances for which the time horizon is 60 minutes (numbered from 20 to 29).
For these instances, a good (almost optimal) solution needs to be computed
within 2, 5 and 10 seconds, respectively.

Instance Cplex Cplex heu
ID NT NR #cols #rows zBST tTOT zFIN t1 z1 tTOT zFIN t1 z1

1 33 55 4508 8528 0.90 1.57 0.90 1.52 13.46 1.37 0.90 1.16 49.55
2 37 46 3499 6289 15.76 0.89 15.76 0.51 68.57 0.36 15.76 0.21 30.49
3 41 62 5331 10127 151.02 8.86 151.02 2.41 290.28 9.28 151.02 1.61 159.23
4 38 58 10056 19653 8.52 27.22 8.52 4.41 9.08 42.99 8.52 2.91 14.01
5 40 43 2867 4548 15.51 0.50 15.51 0.47 15.51 0.55 15.51 0.34 95.93
6 34 42 5742 10606 8.82 2.55 8.82 2.55 8.82 2.03 8.82 1.99 8.82
7 36 44 4994 9187 13.44 1.42 13.44 1.03 58.46 1.51 13.44 1.46 13.67
8 32 40 4462 8216 3.86 0.71 3.86 0.62 3.86 1.00 3.86 0.97 3.86
9 33 45 9363 17827 40.50 51.44 40.50 51.39 40.50 18.92 40.50 16.14 52.85

10 37 48 6994 13226 90.78 17.69 90.78 12.80 128.78 9.96 90.78 3.30 90.78

11 40 73 14506 28139 3.41 31.88 3.41 6.11 29.26 9.00 3.41 4.11 34.93
12 48 79 15182 197594 44.11 490.36 44.11 20.17 223.53 485.57 44.11 9.46 241.85
13 54 72 16232 30958 25.36 1410.71 25.36 197.49 194.66 948.29 25.36 8.48 41.45
14 52 59 8529 15181 10.75 23.10 10.75 3.96 66.17 9.95 10.75 2.63 20.63
15 49 53 7318 12559 24.30 33.19 24.30 3.88 140.66 10.05 24.30 2.80 24.59
16 42 51 11996 22459 67.53 90.12 67.53 13.59 141.47 34.68 67.53 7.34 1024.36
17 44 57 12683 24020 23.84 116.57 23.84 18.21 54.42 51.62 23.84 27.92 135.25
18 43 54 9081 16778 11.91 18.61 11.91 2.26 45.98 10.65 11.91 2.85 116.00
19 41 55 15145 28876 58.81 170.77 58.81 147.36 69.41 123.07 58.81 61.85 97.15

20 59 65 16431 30025 189.35 109.98 189.35 11.64 198.49 33.23 189.35 4.52 237.52
21 57 83 34339 67124 7.36 265.14 7.36 28.86 19.78 94.92 7.36 17.80 10.92
22 58 87 58036 114982 14.62 2529.88 14.62 710.88 31.06 1938.17 14.62 332.58 65.21
23 64 80 26061 49277 37.14 656.77 37.14 105.01 38.64 523.92 37.14 187.67 38.92
24 58 91 41827 81587 8.11 542.45 8.11 469.67 22.49 174.25 8.11 90.17 20.82
25 66 97 34052 762030 44.75 3600.00 121.53 355.92 121.53 3600.01 45.48 103.59 299.78
26 90 128 52542 101789 69.11 3600.00 98.87 1141.91 98.87 3600.04 69.11 51.64 95.23
27 59 64 19014 34616 34.57 234.90 34.57 17.45 120.74 258.49 34.57 17.19 68.56
28 85 105 56520 108630 – 3600.00 – – – 3600.00 – – –
29 52 59 8529 15181 10.75 23.08 10.75 4.04 66.17 9.93 10.75 2.64 20.63

Table 1: Solution of our instances using Cplex in two different settings by using
10 quadcore PCs (1h time limit). Boldface entries meet the target computing
time of 2/5/10 sec.s

Table 1 reports the main characteristics of each instance, namely the num-
ber of trains (NT) to be rescheduled, the total number of alternative routes
(NR), the number of variables and constraints in the associated MILP model
(#rows and #cols, respectively), and the value zBST of the best known solu-
tion. (Using the notation in the Appendix, NT = |Θ| and NR =

∑
θ∈Θ |Rθ|.)

Computational results refer to one of the best commercial solvers on the mar-
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ket, namely IBM ILOG Cplex in its version 12.6.2 (Cplex in the following),
with a time limit of 1 hour on a quadcore Intel Xeon E3-1220V2 running at 3.1
GHz, with 16 GB of RAM.

We report results for Cplex in its default settings as well as in a heuris-
tic version that proved to be more effective in our experiments, in which all
cut-generation procedures are disabled. To take advantage of the effects of
erraticism of the MILP solver (Fischetti and Monaci, 2014, Lodi and Tramon-
tani, 2014), each version of Cplex was run 10 times using 10 different random
seeds. For each algorithm, we report the best result obtained among the 10
executions, namely: the minimum computing time tTOT required to solve the
instance, the value zFIN of the best solution found, the minimum time t1 re-
quired to compute a feasible solution and the associated value z1. All times are
expressed in wall-clock seconds; entries in bold face in column z1 refer to the
cases where this solution was found within the target computing time of 2/5/10
seconds. Observe that our experiments simulate the behavior of an architecture
in which 10 identical PCs are available and used in parallel to solve the same
instance, and all PCs are halted whenever one solves the instance to optimality
or reaches the 1-hour time limit (columns tTOT and zFIN ) or when one finds
its first feasible solution (columns t1 and z1).

The results of Table 1 confirm that, even using a state-of-the-art MILP
solver and 10 fast quadcore PCs, the direct solution of the model above is not a
viable option for real-life applications. Indeed, in some cases Cplex is not even
able to compute a feasible solution within 5 minutes. Even restricting to the
smallest instances, there are cases with less than 40 trains for which computing
a feasible solution takes more than 10 seconds. Results are slightly better for
the heuristic version of Cplex, but even in this case a feasible solution can be
found within the target computing time only in 13 out of 29 cases. Though
the use of faster computers could in principle reduce the reported times, it is
clear that a speedup of 1-2 orders of magnitude would be required to make this
approach sufficiently reliable to be used in operation.

Finally, note that none of the 10+10 Cplex runs could find a feasible solution
for instance 28 even within the 1-hour time limit, hence we removed this instance
from our testbed in our next experiments.

3 Model preprocessing

In the attempt of improving Cplex’s heuristic performance, we implemented and
tested a number of ideas. Eventually, we found a satisfactory implementation
that allowed us to meet the tight real-time time limits imposed by Alstom. We
then followed an inverse path and disabled/simplified the new features until we
found which are the ideas that really made a difference. It turned out that the
performance boost was due to just two very simple preprocessing operations,
that we describe in the following.
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3.1 Heuristic bound tightening

A main reason for the hardness of the MILP model is the presence of big-M
coefficients that are used to activate/deactivate constraints according to the
alternative arcs and/or train routes that are selected in the solution. It is well
known that the presence of such large coefficients may lead to weak continuous
relaxations, making the model unsolvable in practice. Indeed, reducing the
value of these coefficients may be highly beneficial for a MILP solver; see, e.g.,
the very recent experience reported in (Belotti et al., 2016).

In event-based models for scheduling applications, big-M reduction boils
down to the determination of tight lower and upper bound on variables tj
giving the time instant in which operations take place. As a matter of fact,
modern MILP solvers are quite successful in tightening the model coefficients
(including variable bounds) by using sophisticated probing and propagation
algorithms akin to those successfully used in Constraint Programming.

During our preliminary experience, we performed a number of tests to eval-
uate the sensitivity of the MILP solver with respect to the imposed variable
bounds. We soon discovered that the single upper bound on variable zω has a
prominent role, in that imposing a tight upper bound on zω triggers the tight-
ening of the domain of many other variables, which can be further exploited
during the automatic preprocessing phase of the MILP solver to fix many bi-
nary variables and to greatly reduce big-M coefficients. Indeed, as we already
observed, in our MILP model, variable zω gives the maximum delay in the
schedule among all relevant events, hence its upper bound immediately affects
all the delay variables zj ’s.

We therefore implemented a simple scheme where we heuristically define a
value UBω (say) and impose an upper bound to the time of the last operation
with through the (possibly invalid) constraint zω ≤ UBω. Reasonably small
values of UBω likely produce good heuristic solutions, as the objective function
for rescheduling problems is naturally driven towards the case where zω is close
to its smallest-possible value. (This is in fact what happens in the Alstom’s
instances addressed in our computational study.) In addition, small values of
UBω allow for large variable fixings and bound tightenings, hence they can
have a dramatic effect in reducing computing times. Of course, if UBω is too
small, the resulting problem becomes infeasible—a property that is typically
discovered almost immediately by MILP preprocessing.

As one is interested in automatically estimating the smallest UBω that
does not lead to infeasibility, in our code we perform a number of iterations
starting with a “small” value for UBω and increasing this value until a feasible
solution is found and the MILP solver is applied with the given time limit. As
already observed, infeasible UBω’s are typically detected very quickly by MILP
preprocessing, so the overhead spent in the initial trials with too-small UBω’s
is acceptable and the overall approach is quite effective in practice.

It is worth mentioning that, in a first version of our code, we implemented
an ad-hoc heuristic check (based on longest-path computations on an acyclic
digraph) to determine whether a given value of UBω would produce an infea-
sible instance, thus quickly discarding too-small values for UBω. According to
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our computational experience, however, the MILP-solver internal preprocess-
ing (that also implements propagation for bound tightening) was equally fast
in detecting this kind of infeasibility, so in the end we decided to remove our
ad-hoc check to simplify our implementation as much as possible.

3.2 Heuristic variable fixing

The second complication in our MILP model is the presence of many binary
variables y associated with alternative routes for each train. These variables
appear in big-M constraints, as the precedence constraints must be disabled for
paths that are not used in the solution. Therefore, to reduce the complexity of
the model one can heuristically reduce, for each train, the number of available
routes.

Without loss of generality, we assume that the first available route for each
train is the ideal route, i.e., the route corresponding to the nominal schedule
before disruption. Routing each train along its ideal route is a desirable op-
tion, denoted as non-rerouting by the planners, as this does not require major
changes in the resources required by the train but only adds appropriate delays
in the planned timetable. Using different routes, instead, introduces many more
complications—though it can be unavoidable in case of major disruptions.

A natural heuristic choice is to force non-rerouting for all trains, meaning
that one is allowed to delay some trains at some points but cannot change their
paths. However, this choice may lead to problems that are infeasible with re-
spect to the actual UBω value, i.e., it may be impossible to reschedule all trains
within the given time horizon without rerouting some of them. Thus, an alter-
native strategy is to choose one route for each train, in a random way, removing
all the remaining routes and checking the resulting problem for feasibility.

4 Computational experiments

In this section we report on the performance of our heuristic approach built
on top of IBM ILOG Cplex 12.6.2. All the experiments in this section were
performed on a set of identical computers, each equipped with the Intel Core
i7-2820QM quadcore processor running at 2.3 Ghz and with 16 GB ram. This
processor is a second-generation Intel Core i7 launched at the beginning of
2011. Note that significantly faster Intel Core i7 seventh-generation processors
are available at the time of writing (February 2017), that are about twice as
fast as the one used in our tests.

All runs are executed by using Cplex in its default mode (including cut
generation) unless otherwise specified. In case of multi-thread runs, we selected
the opportunistic parallel mode as this is most appropriate in a real-time setting
where speed is more important than reproducibility of the results.

To obtain diversified results, we ran our heuristic in parallel on NPC (say)
independent computers, without communication between the single runs. For
example, case NPC = 4 simulates a situation in which 4 identical computers are
available and the same instance is solved in parallel on each computer, without
any communication: when the time limit is reached, all runs are stopped, the
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individual solutions are compared and the best one is selected. We report results
for NPC = 1, 4 and 8.

Each run has an input parameter s = {1, 2, · · · , NPC} that is used both as
the “random seed” for Cplex (parameter CPX PARAM RANDOMSEED, that ensures
different runs for each computer), and to produce diversified route-fixing strate-
gies according to the scheme described below. To further diversify the runs, for s
odd an aggressive presolve strategy is selected (parameter CPX PARAM PRESLVND

= 3). The runs with s ∈ {1, 8} are executed without any route-fixing. Run with
s = 2 fixes the first (i.e., ideal) path for each train, while for s ∈ {3, · · · , 7} the
path is selected in a random way using s to initialize the internal random se-
quence.

Each run uses the mechanism outlined in Subsection 3.1 to automatically
determine a suitable upper bound for zω by trying, in sequence, values UBω =
600, 900, 1200, 2000, 2500, 3000, 4000, 5000, +∞, until the problem becomes
feasible or the time limit is exceeded. To be more specific, at the very beginning
of the run we read the input file containing the MILP model, and define the
Cplex’s parameters (and possibly fix a certain path for each train) according
to the input parameter s. Then we fix UBω = 600, and invoke the Cplex’s
MILP solver on the resulting model for the allowed time limit reduced by the
wall-clock time spent so far. On return from Cplex, if the time limit was not
exceeded we check whether the current model was proved to be infeasible by
Cplex, in which case we consider the next UBω value in the sequence (900, 1200
etc.) and repeat; otherwise we just stop. According to our computational tests,
for each instance in our testbed (except of course the removed instance 28), at
least one among the parallel runs was able to determine the first feasible UBω
in very short computing time. Indeed, for the runs on NPC = 8 parallel PCs,
for 2/3 of our instances the very first attempt (i.e., UBω = 600) produced a
feasible solution and preprocessing took no time. For some hard instances, one
had to try several UBω values (at most 7, in our experiments) but the required
preprocessing time was always below 0.2 seconds.

It is worth observing that preprocessing time is included in the reported
runtimes, hence this phase is taken into account in the time limit. As already
explained, each parallel run on a different PC autonomously computes its own
UBω value, that also depends on the different routes that are fixed. Again,
we stress that in our scheme there is absolutely no communication among the
parallel runs—such a communication would in fact require some kind of syn-
chronization, and could even result into a slow-down of the overall computation.

Table 2 gives the summary of the results for our heuristic algorithm with
different configurations, assuming a time limit of 2 (for the small instances 1-
10), 5 (for the medium instances 11-19) or 10 (for the large instances 20-29)
wall-clock seconds. For each instance and configuration of our algorithm, we
report the ratio between the best solution found within the time limit and the
optimal (or best known) solution value for the given instance, the latter value
being reported in column zBST . The left-hand-side part of the table (columns
labeled “Standard PC”) refers to experiments performed on our (relatively old)
hardware. As already noticed, computing times could be significantly reduced
by using a more recent processor. So in the columns labeled “50% Faster PC”
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we also report the results obtained after 3, 7 and 15 seconds on our hardware,
which would meet the Alstom’s requirement assuming the use of a more recent
processor with a modest 50% speedup.

Reported results are obtained by using NPC = 1, 4 and 8 computers, in
parallel. On each computer, we consider both the 4-thread option (which is the
default setting on our quadcore PCs) as well as the 1-thread option, the latter
being interesting for very short time limits as single-thread runs have a faster
access to memory and can trigger automatic overclocking of the processor (the
so-called “turbo boost” feature of Intel Core i7).

To better evaluate the practical impact of our preprocessing and train-path
fixing strategies, Table 2 also reports the performances of our code when these
two latter features are disables, but all remaining Cplex’s parameters are set as
in our own code. The two columns labeled “‘cpx 8/cpx 4” in the table (one for
“Standard PC” and the other for “50% Faster PC”) refer to runs with NPC = 8
PCs and #threads = 4, and are intended be compared with the two columns
labeled “8/4” that appear on their left in the same table.

Results for NPC = 1 (hence s = 1) clearly show the impact of the variable
bound zω ≤ UBω described in Subsection 3.1: using a single PC (4 threads)
already allows one to compute, within the given time limit, a feasible solution
in 16 cases out of 29—remind that this figure was equal to 13 for the heuristic
version of Cplex executed on 10 PCs. Further improvements are obtained when
heuristically fixing some paths in the solution. Using NPC = 8 standard PCs,
we are able to compute a feasible solution within the given time limit for 26
instances. In addition, in most cases the value of the solution found is very
close to the optimal (or best known) solution value. In only 3 cases the ratio is
about 2, which is considered acceptable by Alstom’s experts.

Using a more recent architecture (columns “50% Faster PC”) and NPC ∈
{4, 8} PCs (both 1-thread and 4-threads), we were able to find a very good
solution in most of the cases within the time limit—except for instance 28, for
which no feasible solution could be found even by the best-tuned Cplex on 10
PCs with a one-hour time limit, hence it is not reported in the table. The
solution quality at the time limit is very good in all cases.

A comparison of columns “‘cpx 8/cpx 4” with their “8/4” counterpart clearly
shows the very significant performance improvement obtained by the prepro-
cessing and path-fixing strategies described in the present paper. Indeed, re-
moving these latter features leads to a much less effective heuristic that is able
to find a feasible solution in 12 (out of 28) cases only, even in the most pow-
erful “50% Faster PC” hardware setting with 8 4-thread computers—while our
proposed heuristic was successful in all those 28 instances.

Note that, as expected, using more PCs typically improves the heuristic
performance. However, it can be the case that a worse solution is obtained
with a larger number of PCs, due to the use of the opportunistic parallel mode
(compare, e.g., the “50% Faster PC” entries associated with instance 16).

Though the motivation for our study was to evaluate the possible use of
MILP technology to solve the train rescheduling problem, we mention here that
alternative approaches that do not make an explicit use of a MILP model have
been tested on our benchmark. In particular, the results reported in (D’Ariano
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et al., 2014) show that the integration of the branch-and-bound algorithm of
D’Ariano et al. (2007) with the tabu search scheme of Corman et al. (2010),
allows for the solution of all our instances within 30 seconds of computation on a
Intel Core 2 Duo E6550@2.33GHz. However, D’Ariano et al. (2014) only report
the time needed to compute the best solution found (9 seconds, on average)
and provide no detailed information about the quality of the solution found
within the required time limit of 2, 5 and 10 sec.s. As a consequence, a direct
comparison with our approach is not possible, not even to report the number
of instances for which a feasible solution was found within the tight given time
limits. In any case, we believe it is fair to conclude that both our method and
the one by D’Ariano et al. (2014) are viable options in a practical setting.

5 Conclusions

We have addressed the possibility of using a black-box MILP solver for the
train rescheduling problem in a real-time context. Our computational experi-
ence, as well as that reported by many other authors including D’Ariano et al.
(2014), Lamorgese and Mannino (2015), Lamorgese et al. (2016), has shown
that the direct usage of such a solver may require a computing time that is not
compatible with the allowed time limits.

In the present paper, we have presented a simple heuristic preprocessing
framework (to be implemented on the top of the MILP solver), that leads to a
dramatic performance improvement and makes the black-box MILP approach
viable in practice. We have also shown how our heuristic can be effectively run
in parallel on a set of independent computers.

We have reported experiments on a real-world testbed provided by Alstom
Ferroviaria SpA (a global leader in the world for railways infrastructure) for
an UK railway network. Our results show that the proposed approach quali-
fies as an effective way to solve the rescheduling problem in real-time. Indeed,
our heuristic algorithm has been able to compute high-quality solutions within
computing times of just few seconds, which are compatible with real-time re-
quirements. Finally, we have also shown that the same MILP solver (run on
the same hardware and with exactly the same parameter configuration) without
our preprocessing phase has a much degraded performance, in that it failed in
even finding any feasible solution in many cases—hence it cannot be considered
a reliable tool to be used in practice.

Future work should address the applicability of similar ideas to different
real-time train rescheduling contexts. Indeed, in our preprocessing phase we
did not take into account the relative importance of trains (e.g., passenger
trains against freight trains), while in practice one can allow for large delays
for one category in order to reduce delays for the other. Also of interest is the
generalization of our approach to more complex objective functions, e.g., to
the non-convex step functions that are often used by train operators to assess
punctuality.
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Appendix: mathematical model

We next sketch the alternative graph model for train rescheduling, and refer
to Mascis and Pacciarelli (2002), D’Ariano et al. (2008), Mannino and Mascis
(2009), D’Ariano et al. (2014) for details.

Let us denote by Θ = {1, . . . , NT} the index set of the trains to be resched-
uled, e.g., those that are traveling on a certain area within a given time horizon.
Each train θ has an associated set Rθ of alternative routes, characterized by
different operations to be performed in different points of the network. In the
corresponding alternative graph G = (N,F ∪ A), node set N contains a node
for each operation associated with any alternative routes of the trains, plus two
dummy nodes α and ω that act as source and terminal nodes, respectively. The
arc set F ∪A is instead constructed as follows. For each train θ ∈ Θ and route
r ∈ Rθ, we have a set Frθ of fixed arcs, each arc corresponding to a pair of
operations that must be executed according to a given order (fixed and known
in advance). In addition, for each pair of routes (r1, r2) associated with two dif-
ferent trains, there is a set Ar1r2 of pairs of alternative arcs, each pair including
an arc associated with route r1 and an arc associated with r2. These arcs are
mutually incompatible in that they require the use of a same resource, hence
they must be scheduled according to a certain precedence (to be decided by the
optimizer). In the arc set, F =

⋃
θ∈Θ,r∈Rθ Frθ contains all the fixed arcs and

models all known precedences among operations (including the obvious ones
that define the journey of a train along a certain route), whereas A includes all
the alternative arcs and corresponds to unknown precedences.

The MILP model we use is based on the definition of the following decision
variables:

yrθ =

{
1 if train θ is routed through route r;
0 otherwise

θ ∈ Θ; r ∈ Rθ (1)

xkjhi =

{
1 if arc (k, j) is selected while arc (h, i) is not;
0 otherwise

{(k, j), (h, i)} ∈ A

(2)
where A =

⋃
θ1,θ2∈Θ,θ1<θ2,r1∈Rθ1 ,r2∈Rθ2

Ar1r2 contains all the pairs of incompat-

ible arcs.
In addition the model uses, for each operation j, the two variables tj and

zj to represent the time instant in which the operation takes place and the
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associated delay, respectively. As to the dummy event ω, variable zω is actually
used to indicate the maximum delay among all operations.

The model can be stated as follows:

min f(z) (3)∑
r∈Rθ

yrθ = 1, θ ∈ Θ (4)

zj ≥ tj − pj , j ∈ N (5)

tα = 0 (6)

tj − ti +M(1− yrθ) ≥ dij , θ ∈ T, r ∈ Rθ, (i, j) ∈ Frθ (7)

ti − th +M(1− yr1θ1) + (8)

M(1− yr2θ2) +Mxkjhi ≥ dhi, θ1, θ2 ∈ Θ, θ1 < θ2, r1 ∈ Rθ1 , r2 ∈ Rθ2 ,
{(k, j), (h, i)} ∈ Ar1r2

tj − tk +M(1− yr1θ1) + (9)

M(1− yr2θ2) +M(1− xkjhi) ≥ dkj , θ1, θ2 ∈ Θ, θ1 < θ2, r1 ∈ Rθ1 , r2 ∈ Rθ2 ,
{(k, j), (h, i)} ∈ Ar1r2

zω ≤ UBω (10)

xkjhi ∈ {0, 1}, {(k, j), (h, i)} ∈ A (11)

yrθ ∈ {0, 1}, θ ∈ Θ, r ∈ Rθ (12)

where f(·) denotes some linear objective function, to be defined by the user, and
M denotes a very large positive value (big-M). In the model, each arc (i, j) has
an associated duration dij representing the minimum time difference between
operations i and j, in case both are executed. In addition, each operation j
has associated an input “release time” pj that is used to define the associated
delay zj in (5). In our experiments, the objective function f(z) = 1

N

∑
j∈N zj

measures the average delay in the final solution.
Constraints (4) ensure that exactly one route is selected for each train, while

(5) define the delay variables zj used in the objective function. Constraints (7)
model the implications “yrθ = 1→ tj ≥ ti+dij”, i.e., they force the precedences
related to the fixed arcs for selected routes, while they are deactivated in case
yrθ = 0. Similarly, because of the big-M coefficients constraints (9)–(10) are
only active when yr1θ1 = yr2θ2 = 1, in which case they impose the disjunction
“(ti ≥ th + dhi) ∨ (tj ≥ tk + dkj)” corresponding to the incompatible arc pair
{(k, j), (h, i)} ∈ Ar1r2 . Finally, (10) imposes an input upper UBω ∈ <+∪{+∞}
on variable zω representing the maximum delay occurred in the schedule—this
is due to an ad-hoc definition of the duration diω of the arcs (i, ω) entering the
terminal node ω.

13



References

Balas, E. (1969). Machine sequencing via disjunctive graphs: An implicit enu-
meration algorithm. Operations Research, 17(6):941–957.

Belotti, P., Bonami, P., Fischetti, M., Lodi, A., Monaci, M., Nogales-Gómez, A.,
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