Noname manuscript No.
(will be inserted by the editor)

Tree Search Stabilization by Random Sampling

Matteo Fischetti - Andrea Lodi -
Michele Monaci - Domenico Salvagnin -
Andrea Tramontani

Submitted: September 2013

Abstract We discuss the variability in the performance of multiple runs of
Mixed Integer Linear solvers, and we concentrate on the one deriving from
the use of different optimal bases of the Linear Programming relaxations. We
propose a new algorithm exploiting more than one of those bases and we show
that different versions of the algorithm can be used to stabilize and improve
the performance of the solver.

Keywords integer programming, performance variability

1 Introduction

We consider a general Mized Integer linear Program (MIP) in the form
min{c’z : Az > b,x >0, z; € ZVj € I} (1)

where the knowledge of the structure of matrix A (if any) is not directly
exploited and I # (). Thus, the algorithmic approach relies on the solution,
through general-purpose techniques, of the Linear Programming (LP) relax-
ation

min{c’z : Az > b,z > 0}, (2)

Matteo Fischetti
DEI, University of Padova, Italy, E-mail: matteo.fischettiQunipd.it

Andrea Lodi
DEI, University of Bologna, Italy, E-mail: andrea.lodiQunibo.it

Michele Monaci
DEI, University of Padova, Italy, E-mail: michele.monaci@unipd.it

Domenico Salvagnin
DEI, University of Padova, Italy, E-mail: domenico.salvagnin@unipd.it

Andrea Tramontani
IBM S.p.A., Italy, E-mail: andrea.tramontani@it.ibm.com

2 Matteo Fischetti et al.

i.e., the same as problem (1) above but with the integrality requirement on
the x variables in the set I dropped.

State-of-the-art MIP solvers use LP computation as a tool by integrat-
ing the branch-and-bound and the cutting plane algorithms within a general
branch-and-cut scheme (see, e.g., [13] and [12] for an overview of the compu-
tational framework and the MIP software, respectively).

Performance variability. In a highly influential talk in 2008, Danna [5] ana-
lyzed for the first time in an explicit manner some variability in performance
of MIP solvers apparently unrelated to algorithmic reasons, and gave this phe-
nomenon the name of performance variability. Danna’s running example was
the solution of a classical MIP instance called 10teams: by using exactly the
same release of IBM ILOG CPLEX (namely, version 11) the instance was
solved in 0 branch-and-bound nodes and 2,731 Simplex iterations on a Linux
platform, while it needed 1,426 nodes and 122,948 iterations on an AIX one.
That severe and unexpected variability in performance was later explained
in [11] essentially as imperfect tie-breaking. Many crucial decisions within the
branch-and-cut framework implemented by all MIP solvers are guided by the
computation of scores for several candidates and the selection among those
candidates is based on the score. Of course, such a score is generally far
from “perfect”, whatever perfect could mean, and variability is often observed,
when, in case of ties in the score, secondary criteria are used to break it. In
these cases, the selection can be made arbitrarily (although deterministically),
e.g., based on the order in which the candidates are considered, or can be
influenced by (tiny) rounding errors that are different in different computing
environments. Note that the above discussion highlights the fact that per-
formance variability is not restricted to running the same code on different
machines / computing platforms but might appear on the same machine if,
for example, seemingly neutral changes like the mentioned order of the candi-
dates (or variables) are performed. (The reader is referred to [15] for a recent
tutorial on the mechanisms and effects of performance variability in MIP.)

Optimal simplex bases and variability. Among all possible sources of variabil-
ity, a somehow “obvious” one is associated with the degeneracy of the optimal
basis of the (initial) LP relaxation. It is well known that many LPs are indeed
highly dual degenerate, i.e., many equivalent optimal bases can be enumerated
within the optimal face by randomly pivoting on variables with zero reduced
cost. To the best of our knowledge, all current implementations of the sim-
plex algorithm (of any type) as well as the crossover phase of interior point
algorithms for LP, return an arbitrary basis among those that are optimal.
That means, for example, that a random permutation of the variable order
used to express a MIP instance might then very likely determine a different
optimal basis to be returned by the LP solver in case degeneracy exists. Al-
though all theoretically equivalent, these alternative bases have instead a huge
and rather unpredictable impact on the solution of the MIP because they do
affect immediately three of the main ingredients in MIP computation, namely

Tree Search Stabilization by Random Sampling 3

cutting plane generation, primal heuristics and, of course, branching. Recall
indeed that cutting plane generation highly depends on the basis of the simplex
tableau at hand (e.g., Mixed-Integer Gomory cuts, see, e.g., [4]), and most of
the cheap and extensively used primal heuristics perform rounding operations
on the LP fractional solution(s) (see, e.g., [1]). As a matter of fact, the selec-
tion of the optimal basis, even the first one, i.e., that within the optimal face
of the very first LP relaxation, appears as a crucial decision for the evolution
of the whole MIP enumeration. In addition, because it is encountered at the
beginning of the whole branch-and-cut algorithm (after preprocessing only),
that source of variability seems to be the first one that needs to be understood.

Our contribution. Of course, one can optimistically think at performance vari-
ability as an opportunity. More precisely, the execution can be opportunely
randomized so as to exploit variability, especially within a parallel algorithm.
This is essentially what has been tried within the Constraint Programming
and SATisfiability communities, see, e.g., [8], in which restart strategies are
proposed for the solution of satisfiability instances. The basic idea is to exe-
cute the algorithm for a short time limit, possibly restarting it from scratch
with some changes (and possibly with an increased time limit), until a feasi-
ble solution is found. In a similar spirit, within MIP, a heuristic way to take
advantage of erraticism has recently been suggested in [7], where the proposed
algorithm executes for a short time limit a number of different sample runs,
and some criteria are then applied to select a single run that will be executed
for a long(er) computing time. Finally, in [3] multiple threads are used to ex-
ploit variability by running a different parameters’ configuration in each of
them and allowing various degrees of communication.

In this paper we concentrate on the variability associated with the selec-
tion of the optimal basis. We propose an algorithm that essentially samples
the optimal face of the initial LP relaxation(s), and for each of the samples,
executes the solver’s default cutting plane loop and applies the default primal
heuristics. At the end of this process, for each sample (i.e., every different ini-
tial optimal basis) cutting planes and feasible solutions are collected and used
as input for a final run.

This sampling scheme can be implemented in parallel by feeding K threads
with K alternative optimal bases. By changing the value of K we can push in
two somehow opposite directions.

— On the one side, we are interested in reducing variability by stabilizing the
run of a MIP solver. By using a relatively large value of K we are able to
empirically show the strong correspondence between the high variability in
performance of multiple runs of a MIP solver and the degree of degeneracy
of the optimal bases on the MIP instances from the benchmark and primal
sets of the MIPLIB 2010 [11] testbed. The algorithm has a much more
stable computational behavior and is able to:

1. strongly reduce the variability of the root node of MIP executions both
in terms of primal and dual percentage gap closed (value and standard
deviation), and

4 Matteo Fischetti et al.

2. significantly reduce the deterministic time and the number of branch-
and-bound nodes of the same MIP executions.

The stability is also testified by the fact that the algorithm solves to opti-
mality within the time limit more instances than the reference MIP solver.
Finally, as a byproduct, the algorithm is able to (optimally) solve at the
root node, i.e., without enumeration, a significant number of difficult in-
stances in the primal set of the MIPLIB 2010 testbed, thus showing a quite
interesting behavior as a heuristic for instances in which the challenge is
to find the primal solution while the dual bound is already tight.

— On the other hand, the above “stabilized” algorithm might not be so effec-
tive in terms of pure running times because of an unavoidable overhead due
to synchronization and to the fact that the threads used by our algorithm
are subtracted to other (crucial) operations performed by a MIP solver.
A compromise can be obtained by a small value of K, thus achieving the
aim of exploiting variability and getting an algorithm whose performance
in terms of running time compares favorably with the state-of-the-art of
MIP solvers. Indeed, while we started our study on performance variability
with IBM ILOG CPLEX (CPLEX for short) version 12.5.0, the prelimi-
nary results were so encouraging that a commercial implementation of this
second option was made and is now included in the default of the latest
IBM ILOG CPLEX version 12.5.1.

Organization of the paper. The next section is devoted to a detailed analysis of
the variability showing that such a variability is independent on the MIP solver
considered. Section 3 describes our algorithm and the computational setting
we use to assess the results. Section 4 reports the computational experiments
aimed at showing how the scheme can be used to substantially improve the
stability of the solver. In Section 5 we describe the implementation of the
algorithm within the commercial MIP solver CPLEX and the improved per-
formance that are achieved. Finally, in Section 6 we draw some conclusions
and outline open questions and future research directions.

2 Cross-solver Performance Variability

A good variability generator can be obtained by permuting columns and rows
in the original model. This affects all types of problems and all components of
a typical MIP solver. For each instance in the benchmark and primal sets of
the MIPLIB 2010 testbed, we generated 10 different row/columns permuta-
tions and tested the 3 major commercial solvers, namely IBM ILOG CPLEX
12.5.0 [10], GUROBI 5.1 [9] and XPRESS 23 [6]. Indeed, as already mentioned,
changing the order of the variables and constraints of a MIP instance has a
quite direct effect on the optimal basis of the first LP relaxation in case of dual
degeneracy (which is usually the case). For each instance, we computed the
variability score [11] of computing time and branch-and-cut nodes, which is
defined as the ratio between the standard deviation and the arithmetic of the

Tree Search Stabilization by Random Sampling 5

n performance measures obtained with n different permutations of the same
instance.

Scatter plots of the variability scores for all pairwise comparison between
solvers can be found in Figures 1 and 2, whereas detailed results are shown in
Table 9 in the Appendix.

According to the plots, performance variability is clearly not specific to
only a given solver. In particular, all commercial solvers exhibit a comparable
performance variability on our testbed, both in terms of running times and
enumeration nodes. As far as a possible correlation is concerned, the result is
less clear: while there are quite a few instances that are either unstable with
all solvers or with none, many of them behave quite differently with different
solvers. This is not surprising, as performance variability is affected by many
factors including;:

— Problem difficulty: if a problem is consistently easy (or too hard) for a
given solver, then no performance variability can be measured on that
solver. However, the same instance can be easy for a solver and difficult
for another.

— Preprocessing: different solvers apply different preprocessing reductions,
which greatly affect the actual model to be solved. As such, any piece of
information that we can collect on the original formulation (the only one
that is common to all solvers) can be quite uninformative of the formulation
that is actually solved.

3 The Algorithm

A natural and mathematically sophisticated question to be asked about LP
degeneracy within the branch-and-cut algorithm concerns the existence of a
“best” basis among all optimal ones. Although this seems a reasonably well-
posed question, there are a number of reasons why we are far away from
being able to answer it directly. First, the selection of a basis impacts mul-
tiple ingredients of the enumerative algorithm: cutting plane generation and
primal heuristics somehow immediately, as already mentioned, but branching
is also involved later on. Hence, it is conceivable, and actually likely, that a
“good” basis for cutting planes might be not so “good” for primal heuristics
and vice versa. Moreover, the heuristic nature of many components of the al-
gorithmic framework (see, e.g., [14] for a extensive discussion on the topic),
row aggregation in cutting plane generation just to mention one, makes the
characterization of the best basis impossible in the practical setting we are
interested in, i.e., within a real MIP solver.

Thus, the basic idea guiding our algorithm is that, in presence of LP de-
generacy and in the practical impossibility of characterizing the best basis,
a good strategy is to sample the optimal face of the (initial) LP relaxation
and collect both cutting planes and feasible solutions while executing the cut
loop for each of the sampled bases. All collected cuts and solutions are then
put together in a (hopefully) stabilized and enriched root node from which

Matteo Fischetti et al.

GUROBI
-

Fig. 1 Time Variability Comparison

2
2
.
.
.
. ee 8 . . .o .
. . . o S
Y . Lt .
. . L4 .
.
. . .
«n
a
i}
z .
x
1]
o
.
2
2
.
° ° ° . o .
. . o
.
o .
o .
.
n
& c .
o
S . °
.
® .
.
[
° .
®e
S .
. o .
.
1 2
GUROBI

Tree Search Stabilization by Random Sampling

.
° .
.
.
_ .
5
.
21 o .
=3 . .
o - .
* o o
® o
.
.
e ® ° e 0e®
o . o : .
.
- 8% o ° .
¢ .
KA ° P
” o
o toe . .
GO 1
CPLEX
2
.
* .
. B
. .
. e 8 . .
. e ° e . s
% e . V0 :
° . e e ° °
.
. .
. o o, .
s .
B .
o ®
g
x
.
e
.
.
.
.
e .
H
.
.
.
s .
I
&
o L d
g
x
.
.

Fig. 2 Node Variability Comparison

8 Matteo Fischetti et al.

the enumeration is started in a subsequent run. Formally, the above scheme is
turned into Algorithm 1.

Algorithm 1: ksample

Input: a MIP instance
Output: an optimal solution
1 preprocess the MIP instance and store it;
// root-node sampling
fori=1,...,K do
sample an optimal basis B; of the (initial) LP relaxation;
while executing the default root-node cut loop starting from B; do
collect cutting planes in a local cut pool P;;
L collect feasible solutions in a local solution pool S;;

[T N V)

// final run

7 solve the stored MIP instance (without any further preprocessing) by using the
aggregated pools P := UlK:lPi and S := ufilsi;

For multiple reasons discussed in the introduction, there is a tradeoff be-
tween stabilization and (improved) performance. We use a unique parameter
to push for different goals, namely the number of sampled bases K. Roughly
speaking, a higher value of K guarantees a more stable behavior, while a
small one allows one to exploit variability by getting improved performance.
The computational setting in which the above simple scheme is used to obtain
those somehow competing goals is described in the next section with special
emphasis to stability, whereas in Section 5 the performance emphasis is given.

4 Tuning for Computational Stability

We implemented our codes in C++, using IBM ILOG CPLEX 12.5.0 [10] as
black-box MIP solver through the CPLEX callable library APIs. All tests in
this section have been performed on a cluster, where each node is equipped
with a Intel i7-2600 CPU running at 3.40GHz and 16GB of RAM.

We tested our codes on the problem instances from the benchmark and
primal sets in the MIPLIB 2010 testbed, for a total of 121 instances.

4.1 Sampling Procedure

Having assessed that performance variability is common to all commercial
solvers, we will now try to exploit it to improve the stability and performance
of the solution process. From now on, we will only use CPLEX as our testing
framework. Because controlling the load of the nodes of our computational
cluster is not trivial (the cluster being shared), we are not reporting run-
ning times but rather deterministic ticks, which are an abstract unit used by

Tree Search Stabilization by Random Sampling 9

CPLEX to report a deterministic measure of the computational effort that
is independent of the current load of the machine. Each process was given
a deterministic tick limit of 107, which corresponds approximately to a real
time limit of 3 hours on our machines. As far as performance measures are
concerned, we always report shifted geometric means (see, e.g., [1]), with a
shift of 10* for deterministic ticks and of 100 for node numbers.

A possible way to obtain K different root nodes would be to exploit LP
degeneracy and to load into CPLEX K different optimal bases of the first
LP relaxation, obtained by applying some random pivots on the optimal face
of the LP relaxation; see [7] for details. However, for the sake of simplicity,
we decided to mimic this random perturbation by using the “random seed”
CPLEX parameter (CPX_PARAM RANDOMSEED in the CPLEX callable library),
which is publicly available since version 12.5.0, and that CPLEX uses in some
of its internal operations to deal with LP degeneracy. Changing the random
seed can be seen as a way to enforce a random diversification in the root node
and hence in the whole branch-and-cut search.

By using the above random seed parameter, our sampling procedure was
implemented as follows. All instances were preprocessed once at the very be-
ginning, independently of the random seed used, in order to have feasible so-
lutions and cutting planes expressed in the same space. Then, we ran CPLEX
with K different random seeds, stopping each run at the end of the root node,
and collecting all the cutting planes generated in these K root nodes and the
primal feasible solutions (if any).

Finally, we used these pieces of information for a final branch-and-cut run.
Both the sampling phase and the final enumeration were done with traditional
branch and cut (no dynamic search), no preprocessing, and by using 1 thread
only. In order to simulate a real-world implementation, in which the sampling
root nodes are executed in parallel and sampling information is available only
at the end of the root node processing, we implemented the final run in the
following way:

— all warm starting information is discarded and the final run is started from
scratch;

— at the end of the root node, we use CPLEX callbacks to copy all the pieces
of information collected by sampling, i.e., the best feasible solution and
cutting planes;

— the run continues without any further action from callbacks.

We denote with ksample the above procedure, with K > 0. It is easy to
see that we can “simulate” a traditional CPLEX run just by setting K = 0 (in
the following, we will call this method cpxdef). Note that preprocessing the
instances once at the very beginning and disabling presolve in the final run is
only an approximation of a standard default CPLEX run: one side effect, for
example, is that probing is disabled in this way. The effect is usually minor,
but a few pathological instances that are easy with CPLEX default turn out to
be very time consuming with our codes (both cpxdef and ksample): for these
reasons, we removed instances bley x11, ex9 and ex10 from our testbed.

10 Matteo Fischetti et al.

4.2 Root Node Stability

In order to measure the performance variability at the end of the root node, we
ran cpxdef and ksample with 10 different random seeds on all the instances
in our testbed and recorded the final primal and dual bounds, indicated with
Z and z, respectively. Given those values, we compute the integrality gap igap
as

0 fz=2=0
igap(z,z) = (1 ifz-2<0
|z otherwise.

max(|Z,]z[)

This is the integrality gap as reported by many commercial solvers, and has
the advantage of always being a number between 0 and 1. In addition, a similar
formula was used in [2] for measuring the impact of primal heuristics in MIP
solvers. Finally, since we know the optimal value z* of all the instances we
can compute in a similar fashion also the primal gap pgap and the dual gap
dgap. For each measure, we computed the average over the 10 runs and the
corresponding standard deviation.

In order to provide a fair comparison between the methods, we removed
from the testbed the instances that were solved by ksample during the sam-
pling phase (23 instances), instance glass4 for numerical issues (different opti-
mum objectives were reported with different random seeds), and the 3 infeasi-
ble instances ash608gpia-3col, ns1766074 and enlight14 because they have
no integrality gap. Average results on the remaining testbed of 91 instances
are reported in Table 1.

Table 1 Root node comparison on the whole testbed

igap pgap dgap
instance avg st.dev avg st.dev avg st.dev
cpxdef 58.8% 3.9% 52.4% 4.5% 17.8% 0.2%
ksample 43.5% 3.1% 34.4% 3.9% 17.3% 0.1%

Based on the results in Table 1, not only the average integrality gap is
significantly reduced in ksample, but also stability is improved.

4.3 Branch-and-cut Stability

According to the previous section, ksample proves to be effective in improving
performance and stability at the root node. In the current section, we evaluate
if such improvements carry over to the overall solution process. Note that the
results is not obvious, since the sampling phase can do nothing about the
variability induced by branching.

Tree Search Stabilization by Random Sampling 11

We report three performance measures, namely: number of instances solved
and shifted geometric means of deterministic ticks and nodes. Note that the
deterministic ticks reported for ksample are related to the final branch and
cut only. As already mentioned, since the overall idea is to mimic a possible
implementation where the sampling phase is performed in a parallel fashion
by solving the K root nodes concurrently in a multi-thread environment, we
do not report the deterministic ticks spent in the sampling phase. Obviously,
however, even a parallel implementation of the sampling phase would intro-
duce some overhead in the method. Table 2 reports these aggregated results
on the whole testbed for six different random seeds (the default one plus ad-
ditional five). To guarantee a fair comparison, we discarded the 23 instances
that ksample could solve during sampling, and instance glass4, again for
numerical reasons. Thus, we are left with 94 instances.

Table 2 Branch-and-cut performance comparison on the whole testbed

seed method solved ticks nodes
0 cpxdef 81 379,186 17,967
ksample 83 327,901 15,538
1 cpxdef 83 364,170 16,996
ksample 82 286,434 13,735
2 cpxdef 81 356,798 17,316
ksample 82 275,634 12,668
3 cpxdef 84 325,351 15,663
ksample 83 326,020 16,015
4 cpxdef 81 377,064 18,126
ksample 83 290,286 14,077
5 cpxdef 82 417,147 21,018
ksample 84 268,603 13,139

According to Table 2, starting from a “better” root node can indeed im-
prove the performance of the subsequent branch-and-cut run, at least on av-
erage. Indeed, ksample consistently improves upon cpxdef, with a significant
reduction in ticks and nodes in 5 out of 6 cases, while performing the same in
the other case (seed 3).

For the sake of completeness, Table 3 reports average results (again, for
6 different random seeds) for cpxdef on the 23 instances solved by ksample
during the sampling phase. The stabilization by sampling has the positive side
effect of acting as an effective primal heuristic, especially for instances where
the challenge is finding a feasible solution.

12 Matteo Fischetti et al.

Table 3 Performance of cpxdef on the instances solved by ksample during sampling

instance ticks nodes
30.-70_45_095_100 3,894 1
neos-1171692 1,428 1
neos-1224597 131 1
neos-738098 4,725 2
neos-777800 1,796 1
neos-824661 3,720 1
neos-824695 2,164 1
neos-826694 3,373 1
neos-826812 1,060 1
neos-885086 19,188 19
neos-885524 2,688 15
neos-932816 892 1
neos-933638 33,458 6
neos-933966 5,605 1
neos-935769 92,432 21
neos-937511 92,720 24
neos-957389 693 1
neos6 20,170 341
neos808444 7,399 1
netdiversion 22,167 1
ns1116954 169,268 7
ns1758913 112,866 2
triptimi 60,893 1

5 Tuning for Performance: CPLEX Implementation

The ksample algorithm illustrated in the previous sections has been success-
fully implemented within the default of the latest IBM ILOG CPLEX 12.5.1
version [10] for the case K = 2. Precisely, after solving the initial LP relax-
ation, two different cut loops are concurrently applied in a parallel fashion (if
enough threads are available), possibly rooted at two different LP bases (both
optimal for the initial LP relaxation). Each cut loop is performed by enforcing
some random diversification in the solution process, in order to explore differ-
ent regions of the solution space, to collect more cutting planes and (possibly)
better primal solutions. Along the process, the two cut loops are synchronized
on a deterministic basis by sharing feasible solutions and cutting planes. At
the end of the root node, a final synchronization step is applied to collect and
filter the solutions and the cuts generated by the two cut loops, and then the
subsequent branch and cut is started.

The performance impact of the implementation highlighted above is re-
ported in Section 5.1. It is worth noting that an attempt to implement the
ksample idea with K > 2 concurrent cut loops has been made. However, the
computational experiments conducted for the cases K > 2 have shown a per-
formance degradation over the case K = 2. On the one hand, the addition of
any concurrent cut loop introduces some unavoidable overhead in the whole
solution process, and the overhead clearly increases with K. On the other side,

Tree Search Stabilization by Random Sampling 13

the key advantage of ksample is to enforce random diversification, with the
aim of producing more information (i.e., feasible solutions and cutting planes).
However, such a positive effect quickly saturates as K increases. As a matter of
fact, for the specific case of CPLEX and for the specific way we implemented
the ksample idea on it, the benefit obtained by applying more than two con-
current cut loops was not worthy the additional overhead introduced in the
whole root node.

5.1 Computational Results

The testbed used in this section consists of 3,221 problem instances coming
from a mix of publicly available and commercial sources. A time limit of 10,000
seconds was used for all the tests. Additionally, we employed a tree memory
limit of 6 GB. If this tree memory limit was hit, we treated the model as if a
time limit was hit, by setting the solve time to 10,000 seconds and scaling the
number of processed nodes accordingly. All tests in this section were conducted
by running IBM ILOG CPLEX 12.5.1 on a cluster of identical 12 core Intel
Xeon CPU E5430 machines running at 2.66 GHz and being equipped with 24
GB of memory.

Tables 4-8 report the performance impact of our ksample algorithm em-
bedded within IBM ILOG CPLEX 12.5.1 for K = 0 and K = 2. The tables
compare case K = 0 where only the standard cut loop is run (this method is
named no-sample in the tables) against case K = 2 where two different cut
loops are concurrently run in a parallel fashion (2-sample in the tables).

All the tables have the same structure, each giving aggregated results over
the whole testbed obtained with a different random seed. For each seed, the
instances are divided in different subsets, based on the hardness of the models.
To avoid any bias in the analysis, the level of difficulty is defined by taking into
account the two solvers that are compared, namely, 2-sample and no-sample.
First, the set “all” is defined by keeping all the models but the ones for which
one of the solvers encountered a failure of some sort or where numerical diffi-
culties led to different optimal objective values for the two solvers (both values
being correct due to feasibility tolerances). Then, the set “all” is divided in
subclasses “[n, 10k]” (n = 1,10, 100, 1k), containing the subset of “all” models
for which at least one of the solvers took at least n seconds to solve and that
were solved to optimality within the time limit by at least one of the solvers.

Table 4 has the following structure: the first column, “class”, identifies the
group of models. Column “#models” reports the number of problem instances
in each class. Note that only 3,157 out of the 3,221 problem instances are
listed for the class “all” due to the exclusion rules explained above. Columns
“#tilim” give the number of models in each class for which a time (or memory)
limit was hit by the two solvers. Observe that it is not accidental that the
values in the last 5 rows match, because these 13 time-limit models are always
included in the corresponding subsets. Column “time” displays the shifted
geometric mean of the ratios of solution times (see, e.g., [1]) with a shift of

14 Matteo Fischetti et al.

s = 1 second. A value t < 1 in the table indicates that 2-sample is by a
factor of 1/t faster (in shifted geometric mean) than no-sample. Note that
time limit hits are accounted with a value of 10,000 seconds, which introduces
an unavoidable bias against the solver with fewer timeouts. Column “nodes”
is similar to the previous column but shows the shifted geometric mean of the
ratios of the number of branch-and-cut nodes needed for the problems by each
solver, using a shift of s = 10 nodes. When a time limit is hit, we use the
number of nodes at that point, which again introduces a bias. Finally, the last
three columns, under the heading “affected”, repeat some of the information
for the subset of models in each class where the two compared solvers took a
different solution path. For the sake of simplicity, we assume that the solution
path is identical if both the number of nodes and the number of simplex
iterations are identical for the two solvers.

As already stated, Tables 5-8 have the same structure as Table 4, but it is
worth noting that the size of the subclass of models, as well as the models in
each class, are different for each table, because the level of difficulty of a given
model may change with the random seed.

Table 4 Performance impact of parallel cut loop in IBM ILOG CPLEX 12.5.1 (seed 1)

no-sample 2-sample affected
class #models Ftilim #tilim time nodes #models time nodes
all 3,157 84 82 0.99 0.96 1,312 0.98 0.92
[0,10k] 3,086 13 11 0.99 0.96 1,312 0.98 0.92
[1,10K] 1,870 13 11 0.98 0.97 1,090 0.97 0.94
[10,10k] 1,092 13 11 097 0.96 678 0.96 0.94
[100,10K] 559 13 11 0.95 0.92 367 0.92 0.88
[1k,10K] 219 13 11 0.90 0.86 154 0.86 0.81
Table 5 Performance impact of parallel cut loop in IBM ILOG CPLEX 12.5.1 (seed 2)

no-sample 2-sample affected
class #models F#tilim #tilim time nodes #models time nodes
all 3,164 86 82 0.99 0.97 1,345 0.97 0.94
[0,10K] 3,094 16 12 0.99 0.97 1,345 0.97 0.94
[1,10k] 1,875 16 12 0.98 0.96 1,106 0.96 0.93
[10,10Kk] 1,099 16 12 0.96 0.94 696 0.94 0.90
[100,10k] 575 16 12 094 0.92 377 091 0.88
[1k,10K] 223 16 12 0.93 0.90 154 091 0.85

The results reported in Tables 4-8 clearly show that the addition of a
parallel cut loop at the root node of the branch-and-cut algorithm yields a
performance improvement that is consistent across the 5 random seeds con-
sidered, both in terms of computing time and number of branch-and-bound

Tree Search Stabilization by Random Sampling 15

Table 6 Performance impact of parallel cut loop in IBM ILOG CPLEX 12.5.1 (seed 3)

no-sample 2-sample affected
class #models F#tilim #tilim time nodes #models time nodes
all 3,159 81 78 0.97 0.93 1,340 0.92 0.85
[0,10k] 3,091 13 10 097 0.93 1,340 0.92 0.85
[1,10K] 1,864 13 10 0.95 0.90 1,098 0.91 0.84
[10,10k] 1,089 13 10 0.92 0.87 689 0.88 0.80
[100,10K] 565 13 10 0.86 0.81 370 0.80 0.73
[1k,10K] 215 13 10 0.85 0.80 146 0.79 0.72
Table 7 Performance impact of parallel cut loop in IBM ILOG CPLEX 12.5.1 (seed 4)

no-sample 2-sample affected
class #models #tilim #tilim time nodes #models time nodes
all 3,162 89 95 0.99 0.97 1,323 0.98 0.93
[0,10k] 3,084 11 17 0.99 0.97 1,323 0.98 0.93
[1,10K] 1,856 11 17 0.99 0.96 1,094 097 0.93
[10,10k] 1,089 11 17 0.98 0.95 686 0.97 0.92
[100,10K] 557 11 17 0.97 0.93 369 0.95 0.89
[1k,10K] 217 11 17 0.96 0.87 146 0.94 0.82
Table 8 Performance impact of parallel cut loop in IBM ILOG CPLEX 12.5.1 (seed 5)

no-sample 2-sample affected
class #models #tilim #tilim time nodes #models time nodes
all 3,161 94 97 0.99 0.97 1,339 097 0.94
[0,10K] 3,077 10 13 0.99 0.97 1,339 0.97 0.94
[1,10K] 1,856 10 13 0.98 0.96 1,112 0.97 0.93
[10,10K] 1,077 10 13 0.98 0.95 681 0.96 0.93
[100,10K] 569 10 13 0.98 0.95 377 0.96 0.92
[1k,10K] 203 10 13 0.95 0.92 137 0.93 0.89

nodes. Moreover, the results on the different classes of problems indicate that
the harder the models, the larger the performance improvement achieved, and
even this information is consistent across the 5 seeds. Finally, a closer look
at the results of classes “[100,10k]” and “[1k,10k]” also shows the impact
on performance variability. Indeed, the improvement on those subclasses, al-
though consistent, may vary quite substantially by changing the random seed.
Precisely, the improvement on class “[100,10k]” varies from 1/0.98 = 1.02x
with seed 5 to 1/0.86 = 1.16x with seed 3, while the improvement on class
“[1k,10k]” varies from 1/0.96 = 1.04x with seed 4 to 1/0.85 = 1.18x with seed
3. Those quite large differences are not surprising, because (i) the number of
models in those subclasses is pretty small, if compared with the number of
models in the class “all”, and thus these classes of models are less robust to

16 Matteo Fischetti et al.

outliers, and (ii) the hardest models are typically those exhibiting the largest
performance variability.

6 Conclusions

High sensitivity to initial conditions is a characteristic of MIP solvers, that
leads to a possibly very large performance variability of multiple runs per-
formed when starting from slightly-changed initial conditions. A primary source
of variability comes from dual degeneracy affecting the root node LPs, pro-
ducing a large number of alternative choices for the initial (optimal) LP basis
to be used to feed the cutting plane / primal heuristic / branching loops.

In this paper we have studied the above source of variability and proposed
a new sampling scheme that solves—through parallel independent runs—the
root node with diversified initial conditions (random seeds) and uses all the
collected primal and dual information to feed the final complete run to the
same MIP solver. By simply adjusting the number of simultaneous samples,
we can either emphasize stabilization, i.e., devising an algorithm that stabi-
lizes the MIP solver by reducing its sensitivity to initial conditions, or exploit
variability to gain on performance, namely significantly reducing computing
times.

More precisely, computational results on the primal and benchmark sets of
the MIPLIB 2010 testbed clearly show the stabilization effect of our algorithm
when a large number of samples is taken. Namely, the algorithm

1. produces significantly improved primal solutions at the root node;

2. strongly reduces the root-node variability both in terms of primal and dual
gap;

3. for some instances, significantly reduces the computational effort spent in
the final run;

4. solves to optimality within the time limit more instances than the MIP
solver alone.

In addition, on the internal CPLEX testbed composed by 3,221 problem
instances, a version of our algorithm implemented within the commercial solver
IBM ILOG CPLEX 12.5.1 by using only two samples obtains a significant
reduction in both computing times and number of nodes. These impressive
results led to the inclusion of the algorithm as default in the release of the
commercial solver.

Many questions concerning the stabilization of the entire framework remain
open, the main one being the stabilization of the branching tree.

Acknowledgements We thank Hans D. Mittelmann for the use of the cluster at Arizona
State University.

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, ZIB (2007)

Tree Search Stabilization by Random Sampling 17

12.

13.

14.

15.

. Berthold, T.: Measuring the impact of primal heuristics. Tech. rep., ZIB (2013)
. Carvajal, R., Ahmed, S., Nemhauser, G., Furman, K., Goel, V., Shao, Y.: Using di-

versification, communication and parallelism to solve mixed-integer linear programs.
Tech. rep., Optimization Online (2013). URL http://www.optimization-online.org/
DB_HTML/2013/05/3900.html

. Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Mathematical

Programming 112, 3-44 (2008)

. Danna, E.: Performance variability in mixed integer programming. Presentation at

Workshop on Mixed Integer Programming (2008)

. FICO: FICO XPRESS Optimization Suite (2013). http://www.fico.com
. Fischetti, M., Monaci, M.: Exploiting erraticism in search. Tech. rep., University of

Padova (2012)

. Gomes, C.P., Sellmann, B., Kautz, H.: Boosting combinatorial search through ran-

domization. In: Proceedings of the National Conference on Artificial Intelligence, pp.
431-437. AAAT Press (1998)

. GUROBI: GUROBI Optimizer (2013). http://www.gurobi.com
10.
11.

IBM: IBM ILOG CPLEX Optimization Studio (2013). http://www.cplex.com

Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna,
E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T.,
Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010 - Mixed Integer Programming
Library version 5. Mathematical Programming Computation 3, 103-163 (2011)
Linderoth, J.T., Lodi, A.: MILP software. In: J.J. Cochran (ed.) Wiley Encyclopedia
of Operations Research and Management Science, vol. 5, pp. 3239-3248. Wiley (2011)
Lodi, A.: Mixed integer programming computation. In: M. Jinger, T.M. Liebling,
D. Naddef, G.L. Nemhauser, W.R. Pulleyblank, G. Reinelt, G. Rinaldi, L.A. Wolsey
(eds.) 50 Years of Integer Programming 1958-2008, pp. 619-645. Springer (2009)

Lodi, A.: The heuristic (dark) side of MIP solvers. In: E.G. Talbi (ed.) Hybrid Meta-
heuristics, pp. 273-284. Springer (2012)

Lodi, A., Tramontani, A.: Performance variability in mixed-integer programming. In:
H. Topaloglu (ed.) TutORials in Operations Research: Theory Driven by Influential
Applications, pp. 1-12. INFORMS, Catonsville, MD (2013)

Appendix: detailed results

Table 9: Cross-solver performance variability.

vsTime vsNodes
instance CPLEX GUROBI XPRESS CPLEX GUROBI XPRESS
30.70_.45_095_100 0.11 0.10 0.51 0.00 0.00 1.55
30n20b8 0.71 0.57 0.91 0.48 0.46 1.07
acc-tight4 0.39 0.29 0.50 0.72 0.45 0.59
acc-tight5b 0.88 0.75 0.92 0.87 0.89 0.97
acc-tight6 0.82 0.54 0.74 0.96 0.72 0.80
aflow40b 0.23 0.30 0.32 0.26 0.27 0.31
air04 0.57 0.19 0.12 0.62 0.45 0.38
appl-2 0.68 0.51 0.65 0.34 0.89 0.70

ash608gpia-3col 0.77 0.43 0.30 3.16 1.19 2.11
beasleyC3 0.12 0.41 1.41 0.31 0.62 1.43

http://www.optimization-online.org/DB_HTML/2013/05/3900.html
http://www.optimization-online.org/DB_HTML/2013/05/3900.html
http://www.fico.com
http://www.gurobi.com
http://www.cplex.com

18

Matteo Fischetti et al.

Table 9 continued

vsTime vsNodes
instances CPLEX GUROBI XPRESS CPLEX GUROBI XPRESS
biellal 0.25 0.34 0.54 0.25 0.29 0.52
bienst?2 0.07 0.11 0.16 0.05 0.14 0.19
binkar10_1 0.34 0.76 0.38 0.34 1.00 0.41
bley x11 0.17 0.06 0.08 0.00 0.00 0.00
core2536-691 0.35 0.51 2.89 0.34 0.66 3.11
cov1075 0.76 0.16 0.87 0.82 0.20 0.74
csched010 0.48 0.33 1.02 0.86 0.38 0.97
danoint 0.17 0.26 0.12 0.19 0.20 0.11
dfn-gwin-UUM 0.15 0.16 0.11 0.17 0.13 0.11
eil33-2 0.14 0.35 0.25 0.22 0.50 0.24
eilB101 0.34 0.27 0.22 0.26 0.49 0.22
ex10 0.03 0.07 0.44 0.00 0.00 1.33
ex9 0.03 0.03 0.73 0.00 0.00 0.00
gmu-35-40 3.16 3.16 3.16 3.16 3.16 3.16
iis-100-0-cov 0.29 0.13 0.04 0.23 0.15 0.05
iis-bupa-cov 0.25 0.13 0.05 0.20 0.13 0.05
iis-pima-cov 0.53 0.42 0.45 0.60 0.50 0.50
lectsched-2 0.13 0.38 0.56 0.41 0.00 2.07
lectsched-3 1.25 1.15 1.47 0.98 1.53 1.35
lectsched-4-obj 0.42 0.16 1.61 0.48 1.05 1.71
mapl8 0.12 0.07 0.23 0.16 0.12 0.20
map20 0.17 0.22 0.25 0.26 0.16 0.35
mcsched 0.64 0.11 0.48 0.72 0.17 0.39
mik-250-1-100-1 0.08 1.02 0.20 0.09 1.06 0.21
mine-166-5 0.22 0.20 0.10 0.27 0.28 0.22
mine-90-10 0.50 0.50 0.47 0.44 0.60 0.44
msppl6 0.37 0.07 0.93 2.05 0.00 1.48
mzzvil 0.30 0.24 0.34 0.56 0.94 0.60
n4-3 0.34 0.37 0.28 0.41 0.67 0.29
neos-1109824 0.45 0.39 0.29 0.42 0.54 0.48
neos-1171692 0.35 0.14 0.11 3.16 0.00 0.47
neos-1224597 0.32 0.23 0.33 0.00 0.00 0.00
neos-1396125 0.55 0.92 1.37 0.64 0.83 1.05
neos-1440225 0.61 0.82 1.63 0.39 0.94 1.78
neos-1601936 0.83 1.82 3.01 1.09 2.48 2.95
neos-476283 0.24 0.15 0.21 0.38 0.38 0.46
neos-506422 0.56 0.38 0.65 0.80 0.60 0.71
neos-686190 0.19 0.34 0.29 0.22 0.41 0.31
neos-738098 0.33 0.26 0.38 1.95 0.00 2.35
neos-777800 0.32 0.34 0.28 0.00 0.00 0.00
neos-824661 0.29 0.18 0.18 0.00 0.00 0.00
neos-824695 0.69 0.21 0.56 2.42 0.00 0.00

Tree Search Stabilization by Random Sampling

19

Table 9 continued

vsTime vsNodes
instances CPLEX GUROBI XPRESS CPLEX GUROBI XPRESS
neos-826694 0.53 0.43 0.27 0.00 0.00 0.00
neos-826812 0.14 0.12 0.38 0.00 0.00 0.00
neos-849702 1.28 1.75 1.57 1.31 1.75 1.53
neos-885086 0.65 0.39 2.10 2.04 0.00 2.10
neos-885524 0.75 1.96 0.51 2.11 2.65 0.86
neos-932816 0.18 0.06 0.33 0.00 0.00 0.00
neos-933638 0.68 0.26 0.59 1.24 0.00 1.16
neos-933966 0.07 0.29 0.16 0.00 0.00 0.46
neos-934278 0.28 0.28 0.38 0.73 0.00 0.57
neos-935627 0.61 0.48 1.61 1.20 1.28 1.83
neos-935769 0.26 0.38 0.38 0.78 0.00 0.81
neos-937511 0.23 0.18 0.15 0.85 0.00 0.41
neos-941313 0.36 0.16 0.51 0.96 0.00 1.84
neos-957389 0.03 0.26 0.03 0.00 0.00 0.00
neos13 0.29 0.32 0.07 0.46 0.45 0.76
neos18 0.28 0.38 0.56 0.28 0.42 0.49
neos6 0.61 0.24 1.47 0.89 0.00 1.47
neos808444 0.41 0.22 0.20 1.17 0.00 0.32
neti2 1.31 0.55 0.49 0.78 0.42 0.44
netdiversion 0.78 1.49 0.93 1.07 1.04 1.18
noswot 1.45 0.52 1.02 1.21 0.53 1.18
ns1116954 1.46 1.75 1.93 1.28 2.61 1.88
ns1688347 0.52 0.32 0.43 0.88 0.11 0.40
ns1758913 0.95 0.35 0.23 0.00 0.00 0.00
ns1766074 0.02 0.05 0.04 0.01 0.03 0.05
ns1830653 0.15 0.40 0.80 0.23 0.56 0.83
ns1952667 1.18 1.68 1.34 1.55 2.00 1.29
opm2-z7-s2 0.15 0.32 0.21 0.15 0.20 0.24
pg5-34 0.13 0.10 1.52 0.12 0.09 1.45
pigeon-10 0.13 0.19 0.26 0.06 0.06 0.21
qiu 0.38 0.23 0.38 0.46 0.29 0.54
rail507 0.62 0.32 0.96 0.53 0.58 0.73
rani6x16 0.11 0.24 0.21 0.11 0.38 0.23
reblock67 0.12 0.29 0.24 0.13 0.38 0.29
rmatr100-p10 0.06 0.36 0.47 0.06 0.28 0.47
rmatr100-p5 0.22 0.29 0.38 0.23 0.29 0.40
rmine6 0.37 0.39 0.19 0.22 0.39 0.19
rocII-4-11 0.73 0.44 0.57 0.38 0.50 0.60
rococoC10-001000 0.21 0.53 0.44 0.20 0.53 0.40
rol113000 0.54 0.86 1.53 0.84 1.42 1.47
satellites1-25 0.40 0.13 1.36 0.62 0.05 1.21
sp98ic 0.26 0.35 0.46 0.26 0.43 0.47

20 Matteo Fischetti et al.

Table 9 continued

vsTime vsNodes
instances CPLEX GUROBI XPRESS CPLEX GUROBI XPRESS
sp98ir 0.18 0.19 0.26 0.20 0.27 0.29
tanglegraml 0.05 0.08 0.55 0.28 0.40 0.44
tanglegram? 0.07 0.08 0.29 0.45 0.84 0.84
timtabl 0.38 0.85 0.67 0.35 0.89 0.70
triptimil 0.68 0.16 0.21 0.00 0.00 0.99
unitcal 7 0.23 0.23 0.18 0.33 0.15 0.97
zib54-UUE 0.31 0.24 0.23 0.35 0.22 0.24

Average 0.44 0.44 0.63 0.60 0.49 0.76

	Introduction
	Cross-solver Performance Variability
	The Algorithm
	Tuning for Computational Stability
	Tuning for Performance: CPLEX Implementation
	Conclusions

