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Abstract

In this paper we investigate the effects of replacing the objective
function of a 0-1 Mixed-Integer Convex Program (MIP) with a “prox-
imity” one, with the aim of enhancing the heuristic behavior of a
black-box solver. The relationship of this approach with primal in-
teger methods is also addressed. Promising computational results on
different proof-of-concept implementations are presented, suggesting
that proximity search can be very effective in quickly improving the
incumbent in the early part of the search. This is particularly true
when a sequence of similar MIPs has to be solved as, e.g., in a column-
generation setting.

Keywords; Mixed-Integer Convex Optimization, Proximal methods, Primal
methods, Heuristics.

1 Introduction

In this paper we focus on a generic 0-1 Mixed Integer (possibly nonlinear)
Program (MIP, for short) of the form

min f(x) (1)

g(x) ≤ 0 (2)

xj ∈ {0, 1} ∀j ∈ J (3)
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where f : <n → <, g : <n → <m, and J ⊆ N := {1, · · · , n}, J 6= ∅, indexes
binary variables. Although this is not strictly required by our method, in the
following we assume that both f and g are convex functions, so dropping the
integrality condition in (3) leads to a polynomially solvable relaxation.

The exact solution of the above problem is generally attempted by using
an enumerative scheme (branch-and-bound or branch-and-cut) that com-
putes lower bounds on the optimal solution value at each branching node.
As the aim of the search is to converge to proven optimality, a best-bound
first strategy is typically used to visit the search tree, and the nodes with best
lower bound have the highest priority to be elaborated. A well known draw-
back of this approach is however that the search tends to be initially trapped
in the upper part of the tree (where lower bounds are better), which is coun-
terproductive in terms of probability of updating the incumbent. Hence a
mixed strategy is generally preferred, that (i) selects the next node to elabo-
rate according to the best-bound rule (or some variant), (ii) makes a sequence
of “diving” branching steps by visiting nodes at increasing distance—in terms
of lower bound—from the root, until an infeasibility condition is reached (or
the incumbent is updated). A consequence of this approach is that the search
tree grows in a region “close to the root” (in terms of lower bounds) with
frequent heuristic divings to grasp “far away” feasible solutions.

The above strategy proved quite effective in improving the best lower
bound among the open tree nodes—and then in eventually proving optimal-
ity of the incumbent. However, its effectiveness in providing early feasible
solutions of good quality is less clear. As a matter of fact, for very hard in-
stances some MIP solvers prefer to initially reset f(x) to zero—the objective
function being viewed as a disturbing element that limits the search scope
and interferes with the internal heuristics.

In this paper we investigate a more elaborated strategy. We start with a
feasible solution x̃, and add an explicit cutoff constraint

f(x) ≤ f(x̃)− θ (4)

to the MIP, where θ > 0 is a given cutoff tolerance. At this point we are
free to modify the objective function to heuristically drive the search and to
hopefully discover better feasible solutions in the early part of the search.
A natural option is to use a proximity function that penalizes a solution x
according to its distance from x̃, e.g., by taking the Hamming distance

∆(x, x̃) :=
∑

j∈J : x̃j=0

xj +
∑

j∈J : x̃j=1

(1− xj) (5)
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The idea is to mimic a primal method that moves from a feasible solution
to a nearby better feasible one, by using a black-box MIP solver to actually
perform the move. In this respect, our method introduces an important new
ingredient in the design of MIP heuristics based on the solution of auxiliary
“sub-MIPs”: instead of modifying the constraints of the MIP at hand with
the aim of reducing the search space, we modify the objective function with
the aim of easing the search. Mixed strategies are also possible, but not
investigated in the present paper as we prefer to keep our testing environment
as simple (and clean) as possible.

The main goal of the present paper is a computational investigation of
pros and cons of proximity-driven search in 0-1 MIPs, with the aim of ex-
ploring diversified ideas and of attracting more research on this topic.

The outcome of our experiments is that exploiting a proximity function is
a very promising way of quickly producing improved solutions for important
classes of 0-1 MIPs. This is particularly true when a sequence of similar MIPs
has to be solved as, e.g., in a column-generation setting. An unexpected
side effect is that the solution time per node is sometimes much smaller
when ∆(x, ·) is used instead of f(x), meaning that a much larger number of
nodes are explored in a given amount of time. This suggests that proximity
functions can play an important role in the solution of problems where the
original convex relaxation turns out to be very difficult to (re)optimize, as
e.g. in very large MILPs where an initial heuristic solution can be quickly
computed by ad-hoc methods.

The paper is organized as follows. Our approach is outlined in Section 2,
while pointers to related literature are given in Section 3. Three different
implementations of the basic approach are proposed in Section 4. Section 5
describes the setup and the outcome of our experiments on three important
classes of 0-1 MIPs, namely, set covering, network design, and classification
problems. In Section 6, we argue that proximity search can fit very well
within column generation schemes, and we report computational experiments
supporting our claim. Some conclusions and ideas for future research are
finally given in Section 7.

2 The basic idea

Our basic approach is sketched in Figure 1 below.
At Step 1, the initial feasible solution x̃ is defined. In practical applica-
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Proximity Search:

1. let x̃ be the initial heuristic feasible solution to refine;
repeat

2. explicitly add the cutoff constraint f(x) ≤ f(x̃)− θ to the MIP model;
3. replace f(x) by the “proximity” objective function ∆(x, x̃);
4. run the MIP solver on the new model until a termination condition is

reached, and let x∗ be the best feasible solution found (x∗ empty if none);
if x∗ is nonempty and J ⊂ N then

5. refine x∗ by solving the convex program
x∗ := argmin{f(x) : g(x) ≤ 0, xj = x∗j ∀j ∈ J}

end
6. recenter ∆(x, ·) by setting x̃ := x∗, and/or update θ

until an overall termination condition is reached;

Figure 1: The basic Proximity Search algorithm

tions, this initial solution can be found by a fast ad-hoc heuristic, and our
approach can be used to refine it by exploiting an underlying MIP model
whose solution from scratch turned out to be problematic. Otherwise, x̃ can
be found by running the black-box MIP solver until a first feasible solution
is found, or by setting a conservative time/node limit. In all cases, we as-
sume that finding a feasible solution is not really an issue for the problem at
hand. If this is not the case, one should resort to a problem reformulation
where some constraints are imposed in a soft way through violation penalties
attached to slack variables.

At Step 2, the cutoff tolerance θ is defined. In our experiments we decided
to be very conservative and to set θ to a small value, or just to 1 in case the
objective function is integer. In this way, we expect to have a (possible
long) series of not-too-difficult sub-MIPs to solve, each leading to a small
improvement of the incumbent. Needless to say, more aggressive policies
can lead to a significantly better performance, but would require an ad-hoc
tuning of θ that would make the outcome of our experiments less clear.

At Step 3, we use the Hamming distance between x and x̃, computed
according to (5). In some cases, one could use ∆(x, x̃)+ρ f(x) as the objective
function to be optimized, where ρ > 0 is a weighing factor intended to favor
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low-cost solutions. To keep our setting as clean as possible, however, we
preferred to avoid any (over)tuning of the additional parameter ρ, and just
used ρ = 0.

Step 4 invokes the black-box MIP solver to hopefully find a new incumbent
x∗ with f(x∗) ≤ f(x̃) − θ. No input cutoff on the optimal value of the ∆
objective function is heuristically provided to the MIP solver, although in
some cases it would speedup the search considerably. A crucial property here
is that the root-node solution of the convex relaxation, say x′, is expected to
be not too different from x̃, as this latter solution would be optimal without
the cutoff constraint, that for a small θ can typically be fulfilled with just
local adjustments. This is instrumental for the success of our method, in
that it has two main positive effects: (i) the computing time spent at the
root node is often very small, and (ii) x′ is typically “almost integer” (i.e.,
with a small number of fractional components indexed by J), hence it is
more effective in driving the internal heuristics of the black-box MIP solver,
as well as in guiding the search path towards integer solutions.

The above beneficial effects will be referred to as improved relaxation grip,
and are illustrated in Table 1 for the set covering (pure binary) MIPLIB2010
instance ramos3 with n = 2, 187 variables, when a reference solution x̃ of
value 267 is chosen. The table reports the number of components of the
LP relaxation solution x′ that belong to the intervals [0,0], (0, 0.1], ..., (0.9,
1], and [1,1], along with computing time (in CPU sec.s), number of simplex
iterations (dual pivots), and objective value—i.e., distance ∆(x′, x̃). The LP
relaxation becomes infeasible for θ > 121. For small values of θ, the effect
on the fractionality of x′ and on the LP-solution time is striking—and the
relaxation grip is dramatically improved.

If no new solution x∗ is found at Step 4 (possibly because the MIP solver
was aborted before convergence), we proceed directly to Step 6 where toler-
ance θ is reduced. Of course, if the MIP solver proved infeasibility for the
given θ, we have that f(x̃) − θ is a valid lower bound on the optimal value
of the original MIP.

At Step 5, the new solution x∗, if any, is possibly improved by solving
a convex problem where all binary variables have been fixed to their value
in x∗ so as to find the best solution within the neighborhood induced by
∆(x, x∗) = 0.

At Step 6, the approach is reapplied on a different x̃ (if available) so as to
recenter the distance function ∆, and/or by modifying the cutoff tolerance
θ.
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x-range θ = 0 θ = 1 θ = 2 θ = 3 θ = 4 θ = 5 θ = 10 θ = 20 θ = 30 θ = 50 θ = 99 θ = 121
= 0 1920 1919 1919 1919 1924 1920 1619 1619 1600 1565 1276 682
( 0.0, 0.1 ] 0 0 0 0 0 0 303 297 293 281 420 926
( 0.1, 0.2 ] 0 0 0 0 0 4 0 6 26 65 194 380
( 0.2, 0.3 ] 0 1 0 5 0 0 0 3 7 15 64 169
( 0.3, 0.4 ] 0 0 0 0 0 0 0 1 2 8 75 29
( 0.4, 0.5 ] 0 0 6 0 0 0 8 4 3 16 91 0
( 0.5, 0.6 ] 0 0 0 0 0 0 5 5 9 19 47 1
( 0.6, 0.7 ] 0 0 0 0 0 0 0 2 9 35 17 0
( 0.7, 0.8 ] 0 5 0 1 0 1 0 10 25 88 3 0
( 0.8, 0.9 ] 0 0 0 0 0 11 0 28 101 68 0 0
( 0.9, 1.0) 0 0 0 0 0 0 249 209 110 26 0 0
= 1 267 262 262 262 263 251 3 3 2 1 0 0
time (sec.s) 0.00 0.04 0.03 0.03 0.04 0.21 0.45 0.54 0.57 0.90 4.77 30.91
# LP-iter.s 0 352 341 357 358 1180 2164 2543 2637 3627 6829 11508
∆-distance 0.00 1.50 3.00 4.50 6.00 7.88 17.45 37.13 56.86 96.90 208.71 292.67

Table 1: Relaxation grip induced by proximity search for various values of
the cutoff parameter θ.

Although we do not address general integer variables in the present pa-
per, we observe that the definition of ∆ can easily be modified to take such
variables into account, though this requires the introduction of additional
variables to model terms |xj − x̃j| for all xj’s integer but nonbinary; see
[2] for details. Alternatively, one can treat general integer variables as if
they were continuous, and apply a MIP heuristic to redefine all non-binary
variables at Step 5.

3 Related approaches from the literature

The idea of dealing with a proximity term in the objective function is of
course not new, and is in fact the basis of augmented Lagrangian and of
proximal methods for (possibly nonconvex) optimization problems; see e.g.
the book of [14] for an introduction, and the work of [7] for a theoretical
analysis of proximal methods in discrete optimization.

As to MIP heuristics, we next outline some main approaches to refine a
given solution x̃ that are related to our approach; the reader is referred to,
e.g., [11] for a recent survey on MIP heuristics.

A method from the literature akin to proximity search is the local branch-
ing paradigm proposed in [10]. Here the objective function is not modified,
and the proximity requirement is modeled through an explicit local-branching
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constraint of the form
∆(x, x̃) ≤ k (6)

for a certain parameter k that determines the radius of neighborhood of x̃ to
be explored. Our approach can therefore be interpreted as a dual version of
local branching, with functions f(x) and ∆(x, x̃) swapping their role.

As in proximity search, for small values of k the local branching con-
straint is likely to affect the optimal solution x′ of the root-node relaxation,
bringing it very close to the reference solution x̃. As already noticed, this fact
significantly improves the relaxation grip, which is in fact a main reason for
the success of the method. On the other hand, this effect vanishes for larger
values of k, so tuning becomes problematic in those cases where setting a
small k prevents finding an improving solution, while setting a larger k van-
ishes the local-branching grip effect completely. In this respect, proximity
search with a small θ has the advantage of having a very good relaxation grip
while not excluding any improving solution through a hard constraint—as
local branching does. As there is no free lunch, also proximity search has a
drawback compared to local branching: if a large cost improvement is pos-
sible within a very small neighborhood radius, local branching can attain it
all in a single sub-MIP reoptimization, while proximity search will typically
require a sequence of calls. This suggests a hybrid approach (not investigated
in the present paper) where local branching with a small k (say, k = 10) is
repeatedly invoked in the beginning of the search (when large improvements
within a small radius are possible), and one switches to proximity search
when local branching does not provide any improvement because of its very
tight k.

Table 2 (akin to Table 1) illustrates the impact of the local branching
constraint for various values of the right-hand-side value k, again for the set
covering instance ramos3 when a reference solution x̃ of value 267 is chosen.
By design, the relaxation grip improves dramatically when a small value for
k is chosen, and vanishes for larger values.

Another “dual” version of local branching is the Feasibility Pump (FP)
heuristic introduced in [9] for 0-1 Mixed-Integer Linear Programs (0-1 MILPs),
where the LP relaxation of the original problem is iteratively solved with re-
spect to the objective function ∆(x, bx∗e), x∗ is the LP optimal solution
at the previous iteration, and b·e denotes rounding to the nearest integer.
An interesting interpretation of the feasibility pump in terms of proximal
methods was proposed by [4]. Various extensions and adaptations of the
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x-range k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 10 k = 20 k = 30 k = 50 k = 99 k = +∞
= 0 1920 1919 1919 1919 1919 1919 1920 1619 1619 1606 1562 672
( 0.0, 0.1 ] 0 0 0 0 0 0 0 303 301 302 276 849
( 0.1, 0.2 ] 0 1 0 0 0 5 0 0 2 14 73 551
( 0.2, 0.3 ] 0 0 0 0 0 0 4 0 0 4 16 108
( 0.3, 0.4 ] 0 0 1 0 5 0 0 0 3 2 7 7
( 0.4, 0.5 ] 0 0 0 6 0 0 0 8 5 2 17 0
( 0.5, 0.6 ] 0 0 0 0 0 0 2 5 5 9 18 0
( 0.6, 0.7 ] 0 0 5 0 1 0 0 0 0 6 40 0
( 0.7, 0.8 ] 0 0 0 0 0 0 9 0 3 17 86 0
( 0.8, 0.9 ] 0 5 0 0 0 1 0 0 14 81 67 0
( 0.9, 1.0 ) 0 0 0 0 0 0 0 249 232 142 24 0
= 1 267 262 262 262 262 262 252 3 3 2 1 0
time (sec.s) 0.01 0.08 0.12 0.14 0.16 0.13 0.31 0.55 0.61 0.73 1.40 98.18
# LP-iter.s 0 827 1033 1145 1214 1095 1930 2897 3101 3476 4971 23870
LP-bound 267.00 266.33 265.66 265.00 264.33 263.66 260.88 255.70 250.62 240.47 215.97 145.80

Table 2: Relaxation grip induced by local branching for various values of the
right-hand-side parameter k.

FP have been introduced in the recent literature. Among them, [5] modi-
fies FP to deal with Mixed-Integer Nonlinear (possibly nonconvex) Problems
(MINLPs). The method iteratively updates a pair of points (x∗, x̃) with
the aim of reducing their Euclidean distance until they eventually coincide.
Point x∗ belongs to the nonlinear relaxation of the given MINLP obtained
by dropping the integrality requirement, and is computed by solving a non-
linear continuous problem where distance ‖x− x̃‖2 is minimized. As to x̃, it
satisfies the integrality requirement and belongs to an LP relaxation of the
MINLP (to be iteratively tightened); it is computed by means of a black-box
MILP enumerative solver with objective function ∆(x, x∗). This latter step
resembles what is done in proximity search, with two important differences
however: (1) to improve relaxation grip, proximity search considers the dis-
tance ∆(x, ·) with respect to an integer solution, and not with respect to the
possibly highly-fractional solution x∗; and (2) the proximity search recipe
is to apply enumeration to the original problem and not to a MILP relax-
ation of it. In particular, even in case the original problem would be just
0-1 MILP the two methods will behave in a completely different way—in the
very first iteration, the method in [5] will find the optimal LP solution x∗

and then solve a 0-1 MILP with objective function ∆(x, x∗) whose root-node
LP solution is again x∗, thus losing any relaxation grip improvement.

Other approaches to refine a given solution x̃ by solving sub-MIPs have
been proposed in the literature, that are not related to our approach but are
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briefly outlined below as they will be used as a benchmark. These methods
are based on the idea of fixing some of the integer variables in x̃. Among
them, one of the most effective is the Relaxation Induced Neighborhood Search
(RINS) introduced in [8]. At certain nodes of the branch-and-bound tree,
the current LP relaxation solution x′ and the incumbent x̃ are compared, all
integer-constrained variables that agree in value are fixed, and the resulting
sub-MIP is solved through the black-box MIP solver.

Another example of a general MIP refinement procedure is the polishing
method proposed in [17]. The method implements an evolutionary meta-
heuristic to be applied at selected nodes of a branch-and-bound tree. A
fixed-size population of feasible solutions is maintained. Iteratively, two or
more “parent” solutions are combined with the aim of creating a new “son”
member of the population. This is done by fixing all variables whose value
coincides in the parents solutions, and by heuristically solving the resulting
sub-MIP by invoking an external MIP solver for a limited number of branch-
and-bound nodes. Diversification is guaranteed by performing a classical
mutation operation that consists in (i) selecting at random a seed solution in
the population, (ii) fixing at random some of its variables, and (iii) heuristi-
cally solving the resulting sub-MIP.

4 Proximity search implementations

In this section we present three possible variants of the basic algorithm out-
lined in Section 2.

4.1 Proximity search without recentering

In this version, we assume the MIP solver can be controlled through a callback
function invoked each time the incumbent is going to be updated—as it
happens in many modern solvers. Within the callback function, the new
incumbent x̂ (say) is internally recorded but we prevent the solver to update
the incumbent as we declare x̂ to be infeasible and immediately add a new
cut f(x) ≤ f(x̂)− θ as a global constraint.

This approach is also applied to the initial solution x̃, which is immedi-
ately made infeasible through the cutoff constraint f(x) ≤ f(x̃)− θ. In this
way the optimal relaxation solution x′ at the root node is different from x̃,
and violated MIP cuts can possibly be generated at the root node.
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Notice that the proximity objective function ∆(x, ·) is never changed
during the search, as it remains “centered” with the initial x̃—hence the
name of “proximity search without recentering” we use for this scheme.

It should be observed that the simple implementation above has some
obvious drawbacks that can affect its performance in a negative way. In
particular, as we never update the MIP incumbent explicitly, we never apply
any propagation and variable-fixing scheme, nor any refinement heuristic.

4.2 Proximity search with recentering

As already noticed, the implementation in the previous subsection has a
number of drawbacks related to the need of interacting with the underlying
MIP solver through a callback function. In fact, this kind of control might
be not available for the MIP solver at hand—or its use can deactivate some
important features of the solver itself. In addition, after a significant number
of updates of x̃ it would make sense to “recenter” the proximity objective
function ∆(x, ·) with respect the new x̃, an operation that cannot be done
without restarting the MIP solver—at least, by using MIP solvers where the
objective function cannot be changed on the fly.

We therefore analyze a different implementation that uses the MIP solver
as a black box (with no callbacks), and just restarts it as soon as a new x̃ if
found.

In our new implementation, that we call “proximity search with recen-
tering”, Steps 1 to 3 are the same as in Figure 1. At Step 4, after having
added the cutoff constraint and changed the objective function, we invoke
the MIP solver as a black box, in its default mode and without any callback,
and abort its execution as soon as a first feasible solution is found. Because
of the cutoff constraint, this solution (if any) is a strict improvement of x̃, so
at Step 6 we replace x̃ with the new solution and repeat (without changing
θ) from Step 2, until the overall time limit is reached. Of course, if no im-
proving solution is found at Step 4, the algorithm either proves θ-optimality
of the incumbent x̃ or hits the time limit.

A drawback of the new implementation is that each restart wastes the
tree search performed in the last MIP call, as only the improved x̃ is used in
the new MIP call. So it would make sense to address a mixed policy where
recentering and restart is executed only when a significantly different x̃ is
reached. Testing this approach would however require the definition of a
new parameter to be tuned, with the risk of contaminating the results, so we
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do not consider this variant in the present paper.

4.3 Proximity search with an incumbent

Both implementations above prevent the MIP solver to update its internal
incumbent, so powerful refinement heuristics such as RINS [8] are never acti-
vated. In principle, this drawback could be fixed by implementing an ad-hoc
RINS procedure feeded by an external infeasible solution x̃ (rather than by
the internal MIP incumbent), but this would make the interpretation of the
final results more difficult as the way RINS is actually implemented would
contribute to the success of the method, which is something that would con-
taminate our experiments.

We therefore investigated the following simple variant of the “proximity
search with recentering” implementation of the previous subsection. We just
replace cutoff constraint (4) with its “soft version”

f(x) ≤ f(x̃)− θ + z (7)

where z ≥ 0 is a continuous slack variable, and modify the proximity objec-
tive function to

∆(x, x̃) +Mz (8)

where M is a large positive value compared to the feasible values of ∆. In
this way, the reference solution x̃ can be provided on input to the sub-MIP as
a feasible (though very expensive) warm-start solution to be used to initialize
the incumbent and to trigger the internal refinement heuristic. Of course,
execution is aborted as soon as a new incumbent with z = 0 is found, meaning
that a θ-improving solution has been found.

Note that the presence of z does not reduce the relaxation grip of the
method, as the root-node relaxation solution x′ will have z = 0 because of
the bigM penalty M in the new objective function. Setting a too aggressive
(i.e., large) threshold θ would interfere with this crucial property of proximity
search. As a matter of fact, in the extreme case where θ = f(x̃) one would get
z = f(x) hence (essentially) the original objective function would reappear
in (8), making our approach useless.
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5 Computational results

Proximity search (in the three variants just outlined) was implemented in C,
and was used on top of the commercial solver IBM ILOG Cplex 12.4—called
just Cplex in the following. The very first feasible solution x̃ at Step 1 was
obtained by running Cplex for a small number of nodes and taking the best
solution found. This produced a first feasible solution of reasonable quality,
i.e., not unrealistically bad nor too good to be improved.

All runs were executed on an Intel i5-750 @ 2.67GHz in single-thread
mode without any other concurrent thread—thus allowing for a reliable tim-
ing of the methods. In the forthcoming tables, geometric means are all shifted
by 0.01, while computing times are in CPU seconds and do not include the
time to find the initial solution x̃ at Step 1.

5.1 Testbed

We have conducted our experiments on 130 medium-to-hard instances be-
longing to three very different MIP classes.

Pure 0-1 Integer Linear case: set covering instances

As a representative of pure 0-1 Integer Linear Programs, we considered
the NP-hard set covering problem. Our testbed was made by 49 hard set
covering instances from the literature, namely:

• thirty instances scpnre*, scpnrf*, scpnrg*, scpnrh*, scpcyc* and
scpclr* available in the ORLIB (http://people.brunel.ac.uk/∼mastjjb/
jeb/info.html);

• six rail* instances, also available in the ORLIB repository, and derived
from railway applications. Note that we removed instance rail516 that
was solved to proven optimality within 10 nodes;

• four railX*c (c for core) also used in [10], and obtained as a core
problem of the associated rail* instances;

• the nine instances from the recently proposed MIPLIB2010 library of
instances (see [13]) that correspond to set covering problems, includ-
ing the notoriously hard instance seymour and instances ex1010-pi,
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ramos3, sts405 and sts729 that are classified as “hard” and for which
the optimal solution value is still unknown.

At Step 1, the initial solution x̃ was obtained by running Cplex (default
mode, single thread) for 10 enumeration nodes. As to threshold θ, we defined
θ = 1 as our set-covering instances have integer costs.

0-1 Mixed-Integer Linear case: network design instances

To test our method on instances involving both binary and continuous
variables, we addressed the hard capacitated network design problems taken
from the SNDlib library [15], namely, the 25 instances considered in [16] and
available at www.zib.de/raack/downloads/INOC2007_instances/.

To provide a reasonably good initial solution x̃ at Step 1, we initially
ran Cplex for 5,000 enumeration nodes; four of the 25 instances were solved
to proven optimality during this step, hence they were removed from the
testbed. As the optimal value of these instances involves several digits, to
avoid numerical precision issues we defined θ = 0.01|f(x̃)|.

0-1 Mixed-Integer Nonlinear case: machine learning classification
instances

As to nonlinear 0-1 MIPs, we considered a set of sixty 0-1 Mixed-Integer
Convex Quadratic Programs related to data classification through a so-called
“ramp-loss Support Vector Machine with linear kernel” [6]. These instances
were kindly provided by J.P. Brooks and are available, on request, from the
authors; they are of the form

min
1

2
||w||2 + C(

n∑
i=1

ξi + 2
n∑
i=1

zi) (9)

yi(w
Txi + b) ≥ 1− ξi −Mzi ∀i = 1, · · · , n (10)

(w, b) ∈ <m+1 (11)

0 ≤ ξi ≤ 2 ∀i = 1, · · · , n (12)

zi ∈ {0, 1} ∀i = 1, · · · , n (13)

where (xi, yi) ∈ <m×{−1, 1} (i = 1, · · · , n) are input data, M is a large pos-
itive value used to deactivate constraint (10) when zi = 1, and C is an input
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parameter representing a trade-off in maximizing margin versus minimizing
error. Although not strictly required by our method, to ease our implementa-
tion (that assumes a linear objective function) we used a customary transfor-
mation and restated the quadratic objective as q + C(

∑
i ξi + 2

∑
i zi) while

adding the quadratic constraint ||w||2 ≤ 2q. For classification instances,
the initial solution x̃ at Step 1 was obtained by running Cplex for 50,000
enumeration nodes, and θ = 0.001|f(x̃)| was used.

5.2 Comparison metric

To compare the performances of different primal heuristics, we use an indi-
cator recently proposed by [1, 3], aimed at measuring the trade-off between
the computational effort required to produce a solution and the quality of
the solution itself. In particular, let z̃opt denote the optimal solution value for
(1)–(3) and z(t) be the value of the best heuristic solution found at a time
t. Then, a primal gap function p can be computed as

p(t) =

{
1 if no incumbent found until time t
γ(z(t)) otherwise

(14)

where γ(·) ∈ [0, 1] is the primal gap, defined as follows

γ(z) =


0 if |z̃opt| = |z| = 0,
1 if z̃opt · z < 0,

z−z̃opt
max{|z̃opt|,|z|} otherwise.

(15)

Finally, the primal integral of a run until time tmax is defined as

P (tmax) =

∫ tmax

0

p(t) dt (16)

and is actually used to measure the quality of primal heuristics—the smaller
P (tmax) the better the expected quality of the incumbent solution if we
stopped computation at an arbitrary time before tmax.

5.3 Results

We compared the following methods:

• proxy norec: the proximity search algorithm without recentering de-
scribed in Section 4.1;
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• proxy rec: the proximity search algorithm with recentering described
in Section 4.2;

• proxy incum: the proximity search algorithm with an incumbent so-
lution, described in Section 4.3; M = 100, 000 was used to penalize
the extra variable z in the objective function, and Cplex parameter
CPX PARAM EPAGAP was set to M/2 so as to abort the sub-MIP
as soon as a feasible solution with z = 0 is found;

• cplex def: Cplex run in its default setting;

• cplex heu: Cplex run in its heuristic setting, i.e., with parameter
CPX PARAM MIPEMPHASIS set to CPX MIPEMPHASIS FEASIBILITY;

• cplex no cuts: Cplex run in default setting but disabling all cut-
generation routines;

• cplex polish: Cplex run in default setting but executing the polishing
heuristic at each branch-and-bound node;

• cplex gui div: Cplex run with parameter CPX PARAM DIVETYPE
set to 3 (guided dive), to visit the search tree so as to explore the
neighborhood of the incumbent solution first;

• locBra orig: the original local-branching implementation from [10];

• locBra aggr: an aggressive variant of local branching where constraint
(6) with k = 10 is initially imposed; if no improving solution exists in
the given neighborhood, the search is repeated with an increased value
of k = 20, 30, . . . until an improving solution is found or the time limit
is reached; if an improving solution x̃ is found, the method is iterated
on the new incumbent in a recentering fashion, starting again with
k = 10; at each MIP-solver call, the current incumbent x̃ is provided
as a warm-start input solution.

We also ran a “zero-objective” version of proximity search (not reported
in the forthcoming tables) where ∆(x, x̃) was just replaced by a null objective
function, and verified that this change resulted in a dramatic performance
deterioration—thus confirming the importance of using the proximity objec-
tive function.
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Set covering instances
5 10 30 60 120 300 600 1200

proxy norec 0.132 0.215 0.452 0.703 1.090 1.886 2.851 4.247
cplex def 0.178 0.310 0.698 1.121 1.753 2.880 4.108 5.775
cplex heu 0.174 0.305 0.703 1.113 1.671 2.697 3.774 5.086
cplex no cuts 0.176 0.305 0.694 1.138 1.760 2.865 3.949 5.301
cplex gui div 0.175 0.297 0.651 1.031 1.594 2.605 3.565 4.750
proxy incum 0.124 0.195 0.374 0.550 0.797 1.232 1.600 1.978
proxy rec 0.122 0.198 0.400 0.599 0.858 1.335 1.749 2.182
locBra orig 0.170 0.278 0.551 0.803 1.122 1.722 2.304 2.900
locBra aggr 0.121 0.192 0.376 0.561 0.773 1.157 1.533 1.974
cplex polish 0.181 0.298 0.596 0.876 1.251 1.895 2.498 3.252

Network design instances
5 10 30 60 120 300 600 1200

proxy norec 0.088 0.138 0.272 0.406 0.608 1.029 1.442 1.952
cplex def 0.104 0.178 0.412 0.652 0.919 1.347 1.784 2.238
cplex heu 0.105 0.177 0.374 0.542 0.768 1.157 1.437 1.749
cplex no cuts 0.104 0.172 0.365 0.567 0.858 1.415 2.056 2.926
cplex gui div 0.102 0.172 0.366 0.539 0.739 1.064 1.438 1.927
proxy incum 0.084 0.129 0.233 0.317 0.411 0.529 0.629 0.742
proxy rec 0.091 0.147 0.288 0.424 0.591 0.841 1.035 1.262
locBra orig 0.099 0.160 0.340 0.536 0.793 1.149 1.395 1.633
locBra aggr 0.096 0.156 0.308 0.447 0.613 0.912 1.204 1.459
cplex polish 0.107 0.186 0.419 0.658 0.979 1.422 1.634 1.853

Classification instances
5 10 30 60 120 300 600 1200

proxy norec 0.142 0.229 0.489 0.788 1.268 2.368 3.825 6.182
cplex def 0.212 0.376 0.935 1.660 2.983 6.447 11.492 19.687
cplex heu 0.214 0.379 0.956 1.723 3.123 6.859 12.453 21.834
cplex no cuts 0.194 0.340 0.841 1.480 2.607 5.516 9.685 15.908
cplex gui div 0.193 0.330 0.780 1.360 2.393 5.028 8.738 14.505
proxy incum 0.104 0.146 0.240 0.313 0.406 0.580 0.772 1.045
proxy rec 0.107 0.153 0.260 0.359 0.492 0.754 1.058 1.486
locBra orig 0.144 0.216 0.402 0.576 0.781 1.094 1.382 1.744
locBra aggr 0.134 0.206 0.389 0.569 0.836 1.423 2.166 3.305
cplex polish 0.209 0.339 0.664 0.960 1.365 2.140 2.961 4.030

Table 3: Geometric mean of primal integrals after 5, 10, ..., 1200 sec.s; the
lower the better.
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All algorithms received the same input solution x̃ at the very beginning
of the search.

Table 3 gives a summary of our results on set covering, network design,
and classification instances. Each table row reports primal-integral geometric
means for a given algorithm after 5, 10, 30, 60, 120, 300, 600, and 1200
seconds, respectively. Methods are grouped in two classes: the top part of
the table refers to (potentially) exact methods that develop a single search
tree, while the bottom part refers to refining heuristics that generate multiple
(partial) search trees. Figure 2 plots the evolution of the primal-integral
geometric mean of all competing methods, on the whole testbed.

0 200 400 600 800 1000 1200
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proxy_norec
cplex_def
cplex_heu
cplex_no_cuts
cplex_gui_div
proxy_incum
proxy_rec
locBra_orig
locBra_aggr
cplex_polish

Figure 2: Primal integrals (geometric means) over time on the whole testbed;
the lower the better.

According to the reported results, all proximity-search variants have a
quite satisfactory performance on the instances in our testbed. In particular,
proxy incum qualifies as the best approach, as its primal-integral geometric
mean is substantially better than that of all competing methods.

Figure 3 reports a pairwise comparison of the performance of some algo-
rithms over the whole testset including all set-covering, network design, and
classification instances. Given a certain pair of competing algorithms A0 and
A1 (say), each subfigure reports the probability of a method to produce a “sig-
nificantly better” solution than its competitor after t = 1, 2, · · · , 1200 sec.s,
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Figure 3: Pairwise performance comparison (probability of being at least 1%
better than the competitor) over time; the higher the better.
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where “significantly better” refers to a saving of 1% or more. To be specific,
for i ∈ {0, 1} let heu(Ai, t) denote the value of the best heuristic solution
found by heuristic Ai at time t. Then Ai is is considered to be significantly
better than A1−i at time t if

heu(Ai, t) ≤ heu(A1−i, t)−max{10−6, 0.01 ·min{|heu(A0, t)|, |heu(A1, t)|}}

The performance of cplex no cuts and of cplex gui div is very similar to
that cplex heu, hence the corresponding plots are not reported. According
to the figure, proxy incum dominates all competitors even in this pairwise
comparison, with the only exception of locBra orig that becomes better
(under this metric) than proxy incum after about 800 sec.s.

Figure 4 illustrates solution updatings during the first 30 seconds for the
set-covering instances neos-1616732 and scpnrg4 (cplex def vs proxy incum).
The left-hand-side figure shows a typical situation where proximity search fre-
quently updates the incumbent solution, while Cplex spends a large amount
of time for even solving the root relaxation. On the other hand, situations
occur where the amount of improvement obtained by Cplex in a single step
is much larger than the one that can be obtained by multiple updatings of
proxy-search, as illustrated in the right-hand-side figure.
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Figure 4: Solution updatings for set covering instances neos-1616732 (left)
and scpnrg4 (right) over time; the lower the better.

As already mentioned, the use of the proximity objective function can
greatly speedup the solution of the convex relaxation at each tree-search
node, and in particular at the root node where the reference solution x̃ would
be trivially optimal without the cutoff constraint.
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This behavior is well exemplified by the set-covering instance ramos3 that
belongs to the “Challenge Reoptimize” class of MIPLIB 2010, meaning that
its LP (re)optimization is cumbersome. Indeed, just solving the very first
LP relaxation with algorithm cplex def (1 thread) takes 43 CPU seconds
on our PC, while the root node requires 98 sec.s in total. Starting with a
reference solution of value 267, this algorithm is able to find an improved
solution x̂ of value 255 and distance ∆(x̂, x̃) = 470 at node 10, after 1163
sec.s.

Instead, algorithm proxy norec, feeded with the same initial solution,
solves the initial LP in just 0.03 sec.s, and improves twice the incumbent at
the end of the root node, obtaining a solution of value 265 and ∆-distance
3 after 0.11 sec.s. At node 149, after 51 sec.s and several updatings, the
incumbent has value 252, whereas the algorithm reaches a solution of value
241 after 156 sec.s (at node 2000), and is not able to improve it within the
1200-sec. time limit.

Our second variant of proximity search, namely algorithm proxy rec,
produces better results, as most reoptimizations require no branching at all
and find an improved solution at very small ∆-distance from the previous
incumbent: after about one second, the incumbent has value 261, whereas
the incumbent is 237 after 75 sec.s, and is equal to 232 after 1136 sec.s.

Even better results are obtained using algorithm proxy incum: due to the
availability of an initial incumbent solution, all sub-MIPs but two require no
branching, making proxy incum extremely effective on this instance. Indeed,
proxy incum finds a solution of value 232 after just 131 sec.s, and a final
feasible solution of value 229 after 596 sec.s.

6 Proximity search and primal methods

As already observed, our proximity search scheme has a primal nature, mean-
ing that it produces a sequence of improved solutions that eventually leads
to an optimal one. This is in contrast with, e.g., MIP cutting plane methods
that have a dual nature and eventually reach the optimal feasible solution
through a sequence of more-than-optimal (infeasible) solutions.

The dichotomy between primal and dual methods is well exemplified by
considering the behavior of the most famous LP solution method, the sim-
plex algorithm, in its primal and dual version. It is well known that, on
typical instances, the dual method outperforms its primal counterpart by a
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significant margin, even when the LP instance is solved from scratch. In-
deed, phase 1 of the dual version is typically very fast, and after a reasonable
number of pivots the dual basis gets closer and closer to feasibility. On the
other hand, the primal simplex method suffers from a typically more time
consuming phase 1, after which it is forced to visit a sequence of (possible
very close one to each other) feasible vertices before reaching the optimum—
evidently, this is a too conservative search policy that does not pay off in
general. Note however that the primal method is much more satisfactory in
terms of “behavior as a heuristic”, in that stopping the dual algorithm before
convergence does not produce any feasible solution at all. This drawback of
dual methods can play a role for very difficult LPs that cannot be solved to
optimality within the allowed time limit.

In spite of the above weaknesses, the primal simplex method is still the
method of choice in certain settings—most notably, in the column generation
framework. Indeed, phase 1 is no longer needed in this context, and one can
reasonably assume that the optimal LP solution after the addition of some
new columns will not be too far from the previous optimal one—the main so
after the very first iterations, and by using some stabilization technique to
control the variation of dual variables.

In our view, just because of its primal nature, proximity search can be
very useful precisely in the same setting where the primal simplex is preferred
to its dual counterpart, and in particular in a column generation context
where finding an initial solution is not an issue and reoptimization produces
a solution that is close to the previous incumbent.

To validate the above claim, we implemented the following simplified
column-generation setting intended for mixed-integer linear instances with a
very large number of variables. We start with an initial identity LP basis
containing an artificial variable (with a very large cost) for each row. Then
we enter a column-generation loop where the (at most) 100 variables with
largest (in absolute value) negative reduced cost are added to the current
formulation, until no such a column exists, i.e., the optimal LP solution is
obtained. As soon as all artificial variables are carried out of the LP basis, a
heuristic algorithm A is executed on the subinstance of the original problem
associated with the current set of columns, in the attempt of improving the
incumbent integer solution.

Before algorithm A is applied, we compute a near optimal solution x̃ to
the previous subinstance (i.e., without the columns that have been added
in the very last iteration) by running Cplex with a large maximum number
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of nodes (1,000). This solution is then given as a warm-start incumbent to
algorithm A, that is executed with a short time limit (10 seconds) in the
attempt of improving it.

The experiment is aimed at evaluating the capability of algorithm A to
possibly improve the current incumbent solution when a small set of new
columns is available. In our test, some of the algorithms described in Sec-
tion 5.3 were used to play the role of algorithm A. In particular, we considered

• Cplex in its default settings, and in those settings that produced the
best results on set covering instances of Table 3, namely using polishing
heuristic, and using guided dives;

• local branching in its aggressive version;

• our proximity search algorithm, in its three variants.

We stress again that all methods receive exactly the same subinstance
and the same warm-start solution x̃, so their outcomes are comparable. The
external column-generation scheme is only used to create a sequence of subin-
stances with nested variable sets, and is not affected at all by the performance
of A.

In our computational experiments, we considered the 7 large-scale set-
covering instances named rail* that are suitable for column generation as
they involve a very large number of variables, and produced a total num-
ber of 603 subinstances. Table 4 reports, for each instance, the number of
subinstances that have been solved (#sub.), and compares the algorithms
mentioned above by reporting, for each algorithm, the number of “wins”,
i.e., of subinstances for which it provided the best solution among all algo-
rithms (because of ties, a single subinstance can have more than one winner).
Again, proxy incum qualifies as the most effective method (in total, 489 wins
out of 603 runs), followed by locBra aggr (442 wins), proxy rec (424 wins),
and proxy norec (382 wins). All Cplex methods are instead less effective in
this incremental framework (about 300 wins).

7 Conclusions and ideas for future research

We have investigated the use of a proximity objective function in integer
programming, and have designed a proximity search heuristic for 0-1 MIPs.
Different implementations of the basic idea have been proposed and tested
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instance #sub. cplex def cplex gui div cplex polish locBra aggr proxy norec proxy rec proxy incum

rail507 27 19 23 21 21 23 22 20
rail516 22 22 22 22 22 22 22 22
rail582 23 14 15 15 14 14 17 15
rail2536 143 92 95 96 114 110 125 132
rail2586 109 48 48 50 68 66 71 92
rail4284 131 42 41 46 85 65 72 102
rail4872 148 50 51 51 118 82 95 106
sum 603 287 295 301 442 382 424 489

Table 4: Performance (number of wins) of incremental heuristics on rail*
set-covering instances.

on a set of medium-to-hard set covering, network design, and classification
instances, with the aim of evaluating pros and cons of the basic method.

In our view, a clear pro of proximity search is its capability of quickly
improving the first MIP incumbents. In this respect, we are confident that
proximity search will find soon its way in general-purpose MIP solvers—an
implementation in the open-source CBC and GLPK frameworks are already
available. A natural setting is to use proximity search with recentering for a
significant amount of time at the root node, and use it after each incumbent
update (or with a certain frequency during tree exploration) but with a much
smaller internal time/node limit.

A very important pro of proximity search is that convex (re)optimization
can sometimes be orders of magnitude faster when the proximity function is
used instead of the original objective. In some cases, proximity search is able
to update several times the incumbent in a fraction of the time that would
be needed to solve the initial convex relaxation with the original objective
function.

As to cons, the need to define a hard cutoff value is perhaps the most
relevant one. In our experiments, we decided to be very conservative to avoid
to overtune our method and to contaminate its outcomes. We are confident
however that a more effective cutoff policy can be implemented, in particular
for specific classes of problems.

The primal nature of proximity search is both a con and a pro of the
method. It is a con in the sense that proximity search can be trapped by a
long series of small improvements, while a more aggressive dual policy can
produce less frequent but much larger improvements. But the primal nature
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of proximity search is also a pro, in particular in a re-optimization context
such as column generation.

Future research should be devoted to the design of a clever hybrid ap-
proach that exploits proximity search, local branching, and RINS in a syn-
ergic way, possibly tailored for specific classes of hard problems.

Also, the use of a proximity objective function in MIP-based metaheuris-
tics appears to be an interesting research topic. In this respect, proximity
search is closely related to the local branching paradigm of [10], and could
be considered as a viable alternative to the latter in some of its numerous
applications. In our view, a promising framework—called MIP-and-refine
in [12]—is to run first a fast ad-hoc heuristic (possibly not based on an ex-
plicit underlying optimization model), so as to quickly produce an initial
solution to be refined through proximity search based on a (possibly weak)
MIP model. The good news is that even weak models (notably, those mak-
ing extensive use of big-M tricks) can become effective when used within a
proximity search framework, due to the improved relaxation grip induced by
the proximity objective function.

The use of the proximity objective function in column generation is an-
other interesting topic that deserves further investigation. One option has
been exemplified in Section 6, and consists of just applying proximity search
to a clone of the current master problem, without affecting pricing of the
new columns. A more intriguing possibility is to use the proximity objective
function also in the pricing phase, with the aim of stabilizing the overall
branch-and-cut-and-price scheme.
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