OPERATIONAL RESEARCH 1 EXAM (Prof. Fischetti) - THEME A

## 1) Theory

ia) Prove the equivalence between vertices and basic feasible solutions in Linear Programming
1b) Prove the correctness of the Prim-Dijkstra algorithm for the Shortest Spanning Tree problem
1c) Write an Integer Linear Programming model for the Steiner tree problem
2) Linear Programming: Solve the LP problem associated with the following tableau:


Use the two-phase method, Bland's rule. In the end, report the optimal solution identified (or "impossible" or "unlimited" depending on the case).
3) Integer Linear Programming: solve the ILP problem associated with the following tableau, using Gomory's cutting plane algorithm. At each iteration, add to the current tableau the Gomory cut from the generating row with minimum index (skipping the row associated with the objective function), and reoptimize the tableau with the dual simplex algorithm (Bland's rule). Report all the tableaux obtained, highlighting the pivot element with a circle.

4) Graph Theory: Write an Integer Linear Programming model for the following problem. Let $\mathrm{G}=(\mathrm{V}, \mathrm{A})$ be an assigned directed graph in which the arcset A is partitioned into two assigned sets A1 and A2. For each ( $\mathrm{i}, \mathrm{j}$ ) in A , a cost $\mathrm{c}(\mathrm{i}, \mathrm{j})$ and a weight $\mathrm{w}(\mathrm{i}, \mathrm{j})$ are assigned. You want to find a Hamiltonian circuit of minimum overall cost (travelling salesman problem) that satisfies the following additional constraints:
(i) the total cost of the zero-weight arcs chosen in A1 shall not be less than the total cost of the negative-weight arcs chosen in A2.
(ii) the average weight of the arcs chosen in A2 shall not exceed an assigned value M .

$$
\begin{aligned}
& \left(A_{1}, A_{2}\right) c_{i j} w_{i j} \\
& { }^{(1, j) \in A_{i}} \sum_{\text {where }}^{\prime} A_{1}^{=}:=\left\{(i, j) \in A_{1}: w_{i j}=0\right\}
\end{aligned}
$$

## IIINEAR PROGRAMMING

PHASE 1

| -z\| | -7 | -5 | 1 | 0 | -3 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x51 | 3 | 2 | -3 | 1 | 2 | 1 | 0 |
| x61 | 4 |  | 2 | -1 | 1 | 0 | 1 |


| -z\| | -1/3 | I | 0 | 13/3 | -5/3 | -4/3 | 0 | 5/3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x51 | 1/3 | \| | 0 | -13/3 | 5/3 | 4/3 | 1 | -2/3 |
| x11 | 4/3 | \| | 1 | 2/3 | 13 | 1/3 | 0 | 1/3 |


| -z\| | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x31 | 1/5 | 0 | -13/5 | 1 | $4 / 5$ | 3/5 | -2/5 |
| x11 | 7/5 | 1 | -1/5 | 0 | 3/5 | 1/5 | 1/5 |



THE PROBLEM IS UNBOUNDED

## INTEGER LINEAR PROGRAMMING

| -z\| | 4 | 0 | 0 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| x31 | 1/3 | 0 | -13/3 | 1 | 4/3 |
| x11 | 4/3 | 1 | 2/3 | 0 | 1/3 |

Generating row: 1

| -z\| | 4 | 0 | 0 | 0 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x31 | 1/3 | 0 | -13/3 | 1 | 4/3 | 0 |
| x1\| | 4/3 | 1 | 2/3 | 0 | 1/3 | 0 |
| x 51 | -1/3 | 0 | -2/3* | 0 | -1/3 | 1 |


| -z\| | 4 | \| | 0 | 0 | 0 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x31 | 5/2 | \| | 0 | 0 | 1 | 7/2 | -13/2 |
| x11 | 1 | \| | 1 | 0 | 0 | 0 | 1 |
| x21 | 1/2 | \| | 0 | 1 | 0 | 1/2 | -3/2 |

Generating row: 1


| -z\| | 4 | 0 | 0 | 0 | 1 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x31 | 9 | 0 | 0 | 1 | 10 | 0 | -13 |
| x1\| | 0 | 1 | 0 | 0 | -1 | 0 | 2 |
| x21 | 2 | 0 | 1 | 0 | 2 | 0 | -3 |
| x51 | 1 | 0 | 0 | 0 | 1 | 1 | -2 |

$$
\begin{aligned}
& \min \sum_{(i, j) \in A} c_{i j} x_{i j} \\
& \sum_{i}^{\prime} x_{i j}=\sum_{1}^{\prime} x_{i j}=1, \forall h \in V \\
& (i, i) \in \delta^{-1}(h) \quad(i, j) \in \delta^{-}(h) \\
& \text { "0ctii } \frac{i^{1}+2 g^{1}}{} \\
& x_{i j} \in\{0,1\}, \forall(i, j) \in A \\
& \text { (i) } \quad \sum c_{i j} x_{i j} \geqslant \quad \sum c_{i j} x_{i j} \\
& (i, i) \in A_{1}: w_{i j}=0 \quad(i, i) \in A_{2}: w_{i j}<0 \\
& \text { (ii) } \quad \sum_{(i, j) \in A_{2}}^{1} w_{i j} x_{i j} \leqslant M \sum_{(i, j) \in A_{2}}^{1} x_{i j} \\
& \left(c \sum _ { ( i , j ) \in A _ { 2 } } \left(w_{i j}-d M \quad x_{i j} \leq 0^{\prime \prime}\right.\right. \\
& \text { * } \quad \sum X \times 13^{\prime} \leq|S|-1, \forall S \underset{\neq}{c} V:|S| \geqslant 2 \\
& (1, j) \in A(S)
\end{aligned}
$$

1) Theory $(\geqslant 6 / 10$ to pass to exam)
1.a Define the total unimodulority of a matrix
1.b Prove the validity of Gomory cuts
1.C Write an ILP model for the traveling salesmon problem
(Linear Programming) Consider the following LP
$\min 1 \times 1+3 \times 2+2 \times 3$

$$
\begin{gathered}
2 x_{1}+x_{2} \geq 8 \\
4 x_{1}+2 x_{2}+x_{3} \geq 12 \\
2 x_{1}+1 x_{2}-x_{3} \leq 6 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

2.1) Solve it using primal simplex method (tums phase method Bund's rule) Report all the tableaux and highlight with a arcle each pivot element
2.2) write the corresponding Lp dual problem.
3) (modeling) Write en LLP model for Steiner tree the following additional constraints. problem. with
(a) At least half of the nodes of the graph must be covered (including the root)
(b) Given the distinct arcs $a$ and $b$, if a selected then also b must be selected


$$
\ln \in V \backslash\{2\}
$$

$$
1+
$$ mode

POLATO ANNA.
1.a) A matrix A of size $m \times m$, m, m, is TUM (totally umimodular) if and only if, Fer eaell squared submatrix $Q$ of $A$, of any $\operatorname{arder}, \operatorname{det}(Q)=\{-1,1,0\}$
1.0) gomory uts: given ty ILP probecur vertex suppose $x 0^{*}$ to be eye optimal solution for the continuous relayation of the problem; $?^{*}$ is -nactiomal, there consider f ot frachomal component of $x^{*}$. We call generation tho following now $i$ of the optimal -ableau

$$
\begin{equation*}
x_{h}+\sum_{\substack{=1 \\ j=1}}^{m} \bar{a}_{i j} x_{j}=\bar{b}_{i} \tag{a}
\end{equation*}
$$

We apply the chuatal imequtity procedure:

$$
\begin{equation*}
x_{h}+\sum_{1}^{D}\left[\bar{a}_{i j}\right] x_{j} \leq\left[\bar{b}_{i}\right] \tag{b}
\end{equation*}
$$

$\rightarrow$ we obtain the cut valid $\forall \gamma_{0}$ but violated by $x h$
$\rightarrow$ We transform in standard form adding the variable $20 m+1$ (mew variable)

$$
\begin{equation*}
x_{h}+\sum_{\substack{j=1 \\ j \neq h}}^{M}\left[\bar{a}_{i j}\right\rfloor x_{j}+x_{n+1}=\left\lfloor\bar{b}_{i}\right\rfloor \tag{c}
\end{equation*}
$$

The men constraint is obtained marking (c) - (a) and caw be added to the tabecan.
With this procedure we iteratively dod men com straits, valid for all $v_{j}$ but $\gamma_{h}$ fractional chosen.

is comsidered in the Hamietontian cycle

$$
\forall h \in V
$$

$$
\forall h \in V
$$

$$
\text { 2.1) } \quad x_{1} x_{2} x_{3} \quad x_{4} \quad x_{5} \quad x_{6}
$$

| $-z$ | 0 | 1 | 3 | 2 | 0 | 0 | 0 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 8 | 2 | 1 | 0 | -1 | 0 | 0 |  |
| 12 | 4 | 2 | 1 | 0 | -1 | 0 |  |
| 6 | 2 | 1 | -1 | 0 | 0 | 1 |  |
| $n_{1}$ | -26 | -8 | -4 | 0 | 1 | 1 | -1 |
| $x_{7}$ | 8 | 2 | 1 | 0 | -1 | 0 | 0 |
| $x_{8}$ | 12 | 4 | 2 | 1 | 0 | -1 | 0 |
| $x_{9}$ | 6 | 2 | 1 | -1 | 0 | 0 | 1 |


| $x_{1}$ | -2 | 0 | 0 | 2 | 1 | -1 | -1 | 0 | 2 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{7}$ | 2 | 0 | 0 | $-\frac{1}{2}$ | -1 | $\frac{1}{2}$ | 0 | 1 | $-\frac{1}{2}$ | 0 |
| $x_{1}$ | 3 | 1 | $\frac{1}{2}$ | $\frac{1}{4}$ | 0 | $-\frac{1}{4}$ | 0 | 0 | $\frac{1}{4}$ | 0 |
| $x_{4}$ | 0 | 0 | 0 | $-\frac{3}{2}$ | 0 | $\frac{1}{2}$ | 1 | 0 | $-\frac{1}{2}$ | 1 |


| $w_{1}$ | -2 | 0 | 0 | -1 | 1 | 0 | 1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{7}$ | 2 | 0 | 0 | 1 | -1 | 0 | -1 | 1 | 0 | -1 |
| $x_{1}$ | 3 | 1 | $\frac{1}{2}$ | $-\frac{1}{2}$ | 0 | 0 | $\frac{1}{2}$ | 0 | 0 | $\frac{1}{2}$ |
| $x_{5}$ | 0 | 0 | 0 | -3 | 0 | 1 | 2 | 0 | -1 | 2 |


phase 2:

$$
\begin{aligned}
& z=x_{1}+3 x_{2}+2 x_{3} \\
&=4-\frac{1}{2} x_{2}+\frac{1}{2} x_{4}+3 x_{2}+2\left(2+x_{4}+x_{6}\right) \\
&=8+\frac{5}{2} x_{2}+\frac{5}{2} x_{4}+2 x_{6} \quad \\
&=x_{3}
\end{aligned}
$$

2 (comtinue)

2.2)

$$
\left\{\begin{aligned}
\max 2 u_{1}+12 u_{2}+6 u_{3} & \geqslant 0 \\
u_{1} & \geqslant 0 \\
u_{2} u_{3} & \leqslant 0 \\
2 u_{1}+4 u_{2}+2 u_{3} & \leqslant 1 \\
u_{1}+2 u_{2}+u_{3} & \leqslant 3 \\
u_{2}-u_{3} & \leqslant 2
\end{aligned}\right.
$$

$r \in V$ not
3) min $\sum_{i j}^{1} c_{1 j}$ poij given $G=(V, A)$, $T C V$ karget set
3)

$$
\quad \sum_{(i, h) \in \delta^{\prime}(h)}^{\operatorname{Lin}^{\prime}}\left\{\begin{array}{lll}
=1 & \forall h \in T & (T \subset V) \\
=0 & \text { if } h=r & (n=R 00 t) \\
\leqslant 1 & \forall h \in V \backslash(T \cup\{R\})
\end{array}\right.
$$

$$
\sum_{(1, j) \in \delta^{+}(S)}^{\prime} x_{i i} \geqslant \sum_{(i, t) \in \delta^{-(t)}}^{1} x_{i t} \quad \forall S \subset V: \Omega \in S^{\prime} ;
$$

$$
\sum_{(i, j) \in A}^{1} x_{1 j} \geqslant\left\lceil\frac{1}{2}|V|\right]-1\left\{\begin{array}{l}
\end{array}\right\}_{t \in S}
$$

$$
x_{a} \leqslant x_{b}
$$

$$
x_{i j} \geqslant 0 \text {, iuteger }
$$

$G=(V, A) \quad T S P$ solution
$\left(A_{1}, A_{2}\right)=A$

$|V|$ even

RULE: Alternate between arcs in A1 (blue) and A2 (red)

minimal violamon of the rule
1)

$$
\begin{gathered}
x_{i j}+x_{j k} \leqslant 1, \quad \forall i, j, k \in V: \\
(i, j) \in A_{1},(j, k) \in A_{1} \\
|\{i, j, k\}|=3
\end{gathered}
$$

2) 

$$
\begin{gathered}
x_{i j}+x_{j} k \leq 1, \quad \forall i, j, k \in U: \\
(i, j) \in A_{2},(i, k) \in A_{2}
\end{gathered}
$$

OR, BETTER:

$$
\begin{aligned}
\sum_{(i, j) \in \delta^{-}(h) \wedge A_{1}}^{-x_{i j}} & =\sum_{(i, j) \in \delta^{\gamma}(h) \wedge A_{2}^{\prime}}^{\prime} x_{i j} \\
& \forall h \in V
\end{aligned}
$$

## TELEMATIC EXAMINATION MODE OF THE COURSE OPERATIONS RESEARCH 1

(PROF. FISCHETTI)

- The exam will be held electronically using the ZOOM platform; students must participate in the meeting by using their University e-mail account name.surname @ studenti.unipd.it
- The link of the ZOOM meeting will be sent through UNIWEB to all the student enrolled in the exam.
- At the agreed start time, all students enrolled in the exam must be present at the ZOOM meeting and will be identified by the teacher via camera and valid identification document.
- A PDF file with the exam assignment will be made availabla to al participants at the beginning of the exam; the file cannot be shared (not even at a later time) and list be cancelled after 15 minutes from the beginning of the exam--hence the students must copy t o their own white sheets.
- After the first 15 minutes, the students cannot touch the keyboard nor look at the screen of their own PC/notebook/tablet/smartphone (unless explicitly requested by the teacher).
- Students will have 90 minutes to carry out the task (in total autonomy and without the help of any teaching material), only using their own white sheets, a pen, and a basic calculator (no smartphone or alike).
- During the exam, students will be constantly monitored through the camera, which must be positioned laterally (not in front of the student) and give a lateral view of the student's hands and head; at any time, both the camera and the microphone must be on.
- At the end of the agreed time, each student till scan his/her "final sheets" in a single PDF file and send it by e-mail to the address


## esame.fischetti@gmail.com

using his/her own institutional e-mail account name.surname@studenti.unipd.it. This operation will be monitored by the teacher via camera: the student will be allowed to disconnect only when the teacher has confirmed that he has received the e-mail with the attachment.

- For scanning the exam sheets in a single PDF file, it is recommended to install an app like CamScanner on a smartphone and to test it before the exam: no photos in jpeg or similar format will be evaluated.
- The meeting will be registered to identify, even later, any suspicious or unacceptable behavior.
- At the discretion of the teacher, some students may be asked for an oral integration covering all the course's topics.

