
114

1

Studies in Computational Intelligence

13

114

Blum
 · Blesa Aguilera

Roli · Sam
pels (Eds.)

H
ybrid M

etaheuristics

springer.com

Christian Blum
Maria José Blesa Aguilera
Andrea Roli · Michael Sampels
(Eds.)

Hybrid
Metaheuristics
An Emerging Approach
to Optimization

Christian Blum, Maria José Blesa Aguilera, Andrea Roli and Michael Sampels
(Eds.)

Hybrid Metaheuristics

Studies in Computational Intelligence, Volume 114

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 93. Manolis Wallace, Marios Angelides and Phivos
Mylonas (Eds.)
Advances in Semantic Media Adaptation and
Personalization, 2008
ISBN 978-3-540-76359-8

Vol. 94. Arpad Kelemen, Ajith Abraham and Yuehui Chen
(Eds.)
Computational Intelligence in Bioinformatics, 2008
ISBN 978-3-540-76802-9

Vol. 95. Radu Dogaru
Systematic Design for Emergence in Cellular Nonlinear
Networks, 2008
ISBN 978-3-540-76800-5

Vol. 96. Aboul-Ella Hassanien, Ajith Abraham and Janusz
Kacprzyk (Eds.)
Computational Intelligence in Multimedia Processing:
Recent Advances, 2008
ISBN 978-3-540-76826-5

Vol. 97. Gloria Phillips-Wren, Nikhil Ichalkaranje and
Lakhmi C. Jain (Eds.)
Intelligent Decision Making: An AI-Based Approach, 2008
ISBN 978-3-540-76829-9

Vol. 98. Ashish Ghosh, Satchidananda Dehuri and Susmita
Ghosh (Eds.)
Multi-Objective Evolutionary Algorithms for Knowledge
Discovery from Databases, 2008
ISBN 978-3-540-77466-2
Vol. 99. George Meghabghab and Abraham Kandel
Search Engines, Link Analysis, and User’s Web Behavior,
2008
ISBN 978-3-540-77468-6

Vol. 100. Anthony Brabazon and Michael O’Neill (Eds.)
Natural Computing in Computational Finance, 2008
ISBN 978-3-540-77476-1

Vol. 101. Michael Granitzer, Mathias Lux and Marc Spaniol
(Eds.)
Multimedia Semantics - The Role of Metadata, 2008
ISBN 978-3-540-77472-3

Vol. 102. Carlos Cotta, Simeon Reich, Robert Schaefer and
Antoni Ligeza (Eds.)
Knowledge-Driven Computing, 2008
ISBN 978-3-540-77474-7

Vol. 103. Devendra K. Chaturvedi
Soft Computing Techniques and its Applications in Electrical
Engineering, 2008
ISBN 978-3-540-77480-8

Vol. 104. Maria Virvou and Lakhmi C. Jain (Eds.)
Intelligent Interactive Systems in Knowledge-Based
Environment, 2008
ISBN 978-3-540-77470-9

Vol. 105. Wolfgang Guenthner
Enhancing Cognitive Assistance Systems with Inertial
Measurement Units, 2008
ISBN 978-3-540-76996-5

Vol. 106. Jacqueline Jarvis, Dennis Jarvis, Ralph Rönnquist
and Lakhmi C. Jain (Eds.)
Holonic Execution: A BDI Approach, 2008
ISBN 978-3-540-77478-5

Vol. 107. Margarita Sordo, Sachin Vaidya and Lakhmi C. Jain
(Eds.)
Advanced Computational Intelligence Paradigms
in Healthcare - 3, 2008
ISBN 978-3-540-77661-1

Vol. 108. Vito Trianni
Evolutionary Swarm Robotics, 2008
ISBN 978-3-540-77611-6

Vol. 109. Panagiotis Chountas, Ilias Petrounias and Janusz
Kacprzyk (Eds.)
Intelligent Techniques and Tools for Novel System
Architectures, 2008
ISBN 978-3-540-77621-5

Vol. 110. Makoto Yokoo, Takayuki Ito, Minjie Zhang,
Juhnyoung Lee and Tokuro Matsuo (Eds.)
Electronic Commerce, 2008
ISBN 978-3-540-77808-0

Vol. 111. David Elmakias (Ed.)
New Computational Methods in Power System Reliability,
2008
ISBN 978-3-540-77810-3

Vol. 112. Edgar N. Sanchez, Alma Y. Alanı́s and Alexander
G. Loukianov
Discrete-Time High Order Neural Control: Trained with
Kalman Filtering, 2008
ISBN 978-3-540-78288-9

Vol. 113. Gemma Bel-Enguix, M. Dolores Jimenez-Lopez and
Carlos Mart́ın-Vide (Eds.)
New Developments in Formal Languages and Applications,
2008
ISBN 978-3-540-78290-2

Vol. 114. Christian Blum, Maria José Blesa Aguilera, Andrea
Roli and Michael Sampels (Eds.)
Hybrid Metaheuristics, 2008
ISBN 978-3-540-78294-0

Christian Blum
Maria José Blesa Aguilera
Andrea Roli
Michael Sampels
(Eds.)

Hybrid Metaheuristics

An Emerging Approach to Optimization

123

Dr. Christian Blum
ALBCOM
Dept. Llenguatges i Sistemes Informátics
Universitat Politècnica de Catalunya
Jordi Girona 1-3 Omega 112,
Campus Nord
E-08034 Barcelona
Spain
cblum@lsi.upc.edu

Dr. Maria José Blesa Aguilera
ALBCOM
Dept. Llenguatges i Sistemes Informátics
Universitat Politècnica de Catalunya
Jordi Girona 1-3 Omega 213,
Campus Nord
E-08034 Barcelona
Spain

mjblesa@lsi.upc.edu

Dr. Andrea Roli
DEIS, Campus of Cesena
Alma Mater Studiorum
Università di Bologna
Via Venezia 52
I-47023 Cesena
Italy

andrea.roli@unibo.it

Dr. Michael Sampels
IRIDIA
Université Libre de Bruxelles
Avenue Franklin Roosevelt 50, CP 194/6
B-1050 Brussels
Belgium

msampels@ulb.ac.be

ISBN 978-3-540-78294-0 e-ISBN 978-3-540-78295-7

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2008921710

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: Deblik, Berlin, Germany

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

For my parents Maria and Dieter
(Christian Blum)

For Christian and Marc
(Maŕıa J. Blesa)

For Elisabetta, Raffaella and Paolo
(Andrea Roli)

For Astrid, Julian and Carlotta
(Michael Sampels)

Preface

When facing complex new optimization problems, it is very natural to use rules
of thumb, common sense, trial and error, which are called heuristics, in order
to find possible answers. Such approaches are, at first sight, quite different
from rigorous scientific approaches, which are usually based on characteriza-
tions, deductions, hypotheses and experiments. It is common knowledge that
many heuristic criteria and strategies, which are used to find good solutions
for particular problems, share common aspects and are often independent of
the problems themselves.

In the computer science and artificial intelligence community, the term
metaheuristic was created and is now well accepted for general techniques
which are not specific to a particular problem. Genetic and evolutionary al-
gorithms, tabu search, simulated annealing, iterated local search, ant colony
optimization, scatter search, etc. are typical representatives of this generic
term. Research in metaheuristics has been very active during the last decades,
which is easy to understand, when looking at the wide spectrum of fascinating
problems that have been successfully tackled and the beauty of the techniques,
many of them inspired by nature. Even though many combinatorial optimiza-
tion problems are very hard to solve optimally, the quality of the results
obtained by somewhat unsophisticated metaheuristics is often impressive.

This success record has motivated researchers to focus on why a given
metaheuristic is successful, on which problem instance characteristics should
be exploited and on which problem model is best for the metaheuristic of
choice. Investigations on theoretical aspects have begun, and formal theories
of the working of metaheuristics are being developed. Questions as to which
metaheuristic is best for a given problem used to be quite common and, more
prosaically, often led to a defensive attitude towards other metaheuristics.

Finally, it also became evident that the concentration on a single meta-
heuristic is rather restrictive for advancing the state of the art when tack-
ling both academic and practical optimization problems. Examples showed
that a skillful combination of metaheuristics with concepts originating from
other types of algorithms for optimization can lead to more efficient behavior

VIII Preface

and greater flexibility. For example, the incorporation of typical operations
research (OR) techniques, such as mathematical programming, into meta-
heuristics may be beneficial. Also, the combination of metaheuristics with
other techniques known from artificial intelligence (AI), such as constraint
programming and data mining, can be fruitful. Nowadays, such a combina-
tion of one metaheuristic with components from other metaheuristics or with
techniques from AI and OR techniques is called a hybrid metaheuristic.

The lack of a precise definition of the term hybrid metaheuristics is some-
times subject to criticism. On the contrary, we believe that this relatively
open definition is helpful, because strict borderlines between related fields of
research often block creative research directions. A vital research community
needs new ideas and creativity, not overly strict definitions and limitations.

In 2004, we founded with the First International Workshop on Hybrid
Metaheuristics (HM 2004) a series of annual workshops. These workshops
have developed into a forum for researchers who direct their work towards
hybrid algorithms that go beyond the scope of single metaheuristics. The
growing interest in these workshops is an indication that questions regarding
the proper integration of different algorithmic components and the adequate
analysis of results can now emerge from the shadows. With this backdrop,
it becomes evident that hybrid metaheuristics is now a part of experimental
science and that its strong interdisciplinarity supports cooperation between
researchers with different expertise.

In the light of the above, we feel that it is now time for a textbook on
hybrid metaheuristics, presenting the most important achievements and de-
velopments in this domain. We have invited key experts in the field to supply
chapters with the objective of providing an introduction to the themes of
hybrid metaheuristics and discussing associated theoretical aspects or appli-
cations. We hope that, by reading this book, either researchers or students will
have an easy entry point to this fascinating field and will get a clear overview
of its research directions.

Barcelona, Bologna, Brussels
November 2007

Christian Blum
Maria José Blesa Aguilera

Andrea Roli
Michael Sampels

Contents

Hybrid Metaheuristics: An Introduction
Christian Blum and Andrea Roli . 1

Combining (Integer) Linear Programming Techniques
and Metaheuristics for Combinatorial Optimization
Günther R. Raidl and Jakob Puchinger . 31

The Relation Between Complete and Incomplete Search
Steven Prestwich . 63

Hybridizations of Metaheuristics With Branch & Bound
Derivates
Christian Blum, Carlos Cotta, Antonio J. Fernández, José E. Gallardo,
and Monaldo Mastrolilli . 85

Very Large-Scale Neighborhood Search: Overview and Case
Studies on Coloring Problems
Marco Chiarandini, Irina Dumitrescu, and Thomas Stützle 117

Hybrids of Constructive Metaheuristics and Constraint
Programming: A Case Study with ACO
Bernd Meyer . 151

Hybrid Metaheuristics for Packing Problems
Toshihide Ibaraki, Shinji Imahori, and Mutsunori Yagiura 185

Hybrid Metaheuristics for Multi-objective Combinatorial
Optimization
Matthias Ehrgott and Xavier Gandibleux . 221

Multilevel Refinement for Combinatorial Optimisation:
Boosting Metaheuristic Performance
Chris Walshaw . 261

Hybrid Metaheuristics: An Introduction

Christian Blum1 and Andrea Roli2

1 ALBCOM research group
Universitat Politècnica de Catalunya, Barcelona, Spain
cblum@lsi.upc.edu

2 DEIS, Campus of Cesena
Alma Mater Studiorum Università di Bologna, Bologna, Italy
andrea.roli@unibo.it

Summary. In many real life settings, high quality solutions to hard optimization
problems such as flight scheduling or load balancing in telecommunication networks
are required in a short amount of time. Due to the practical importance of optimiza-
tion problems for industry and science, many algorithms to tackle them have been
developed. One important class of such algorithms are metaheuristics. The field of
metaheuristic research has enjoyed a considerable popularity in the last decades.
In this introductory chapter we first provide a general overview on metaheuristics.
Then we turn towards a new and highly successful branch of metaheuristic research,
namely the hybridization of metaheuristics with algorithmic components originat-
ing from other techniques for optimization. The chapter ends with an outline of the
remaining book chapters.

1 Introduction

In the context of combinatorial optimization (CO), algorithms can be classi-
fied as either complete or approximate algorithms. Complete algorithms are
guaranteed to find for every finite size instance of a CO problem an opti-
mal solution in bounded time (see [80, 76]). Yet, for CO problems that are
NP-hard [42], no polynomial time algorithm exists, assuming that P �= NP.
Therefore, complete methods might need exponential computation time in
the worst-case. This often leads to computation times too high for practi-
cal purposes. In approximate methods such as metaheuristics we sacrifice the
guarantee of finding optimal solutions for the sake of getting good solutions
in a significantly reduced amount of time. Thus, the use of metaheuristics
has received more and more attention in the last 30 years. This was also the
case in continuous optimization; due to other reasons: Metaheuristics are usu-
ally easier to implement than classical gradient-based techniques. Moreover,
metaheuristics do not require gradient information. This is convenient for op-
timization problems where the objective function is only implicitly given (e.g.,

C. Blum and A. Roli: Hybrid Metaheuristics: An Introduction, Studies in Computational Intel-

ligence (SCI) 114, 1–30 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

2 Christian Blum and Andrea Roli

when objective function values are obtained by simulation), or where the ob-
jective function is not differentiable.

The first two decades of research on metaheuristics were characterized by
the application of rather standard metaheuristics. However, in recent years it
has become evident that the concentration on a sole metaheuristic is rather
restrictive. A skilled combination of a metaheuristic with other optimization
techniques, a so called hybrid metaheuristic, can provide a more efficient be-
havior and a higher flexibility when dealing with real-world and large-scale
problems. This can be achieved, for instance, by combining the complemen-
tary strengths of metaheuristics on one side and of complete methods such as
branch & bound techniques or mathematical programming on the other side.
In general, hybrid metaheuristic approaches can be classified as either collab-
orative combinations or integrative combinations (see [85, 86]). Collaborative
combinations are based on the exchange of information between several opti-
mization techniques run sequentially (or in parallel). This kind of combination
is more related to cooperative and parallel search and we forward the inter-
ested reader to the specific literature on the subject [55, 24, 105, 98, 19, 18, 3].
Most contributions of this book deal with interesting and representative cases
of integrative combinations.

In this introductory chapter we first aim at giving an overview over some
of the most important metaheuristics. Then we deal with the hybridization
of metaheuristics with other techniques for optimization. Finally, we shortly
outline the books’ contents, with the aim of providing a general guidance to
the reader.

2 Basics

An optimization problem P can be described as a triple (S, Ω, f), where

1. S is the search space defined over a finite set of decision variables Xi,
i = 1, . . . , n. In case these variables have discrete domains we deal with
discrete optimization (or combinatorial optimization), and in case of con-
tinuous domains P is called a continuous optimization problem. Mixed
variable problems also exist. Ω is a set of constraints among the variables;

2. f : S → IR+ is the objective function that assigns a positive cost value to
each element (or solution) of S.

The goal is to find a solution s ∈ S such that f(s) ≤ f(s′), ∀ s′ ∈ S (in case
we want to minimize the objective function), or f(s) ≥ f(s′), ∀ s′ ∈ S (in case
the objective function must be maximized). In real-life problems the goal is
often to optimize several objective functions at the same time. This form of
optimization is labelled multi-objective optimization.

Approximate methods are generally based on two basic principles: con-
structive heuristics and local search methods.

Hybrid Metaheuristics: An Introduction 3

2.1 Constructive Heuristics

Constructive heuristics are typically the fastest approximate methods. They
generate solutions from scratch by adding opportunely defined solution com-
ponents to an initially empty partial solution. This is done until a solution
is complete or other stopping criteria are satisfied. A well-known class of
constructive heuristics are greedy heuristics. They make use of a weighting
function that assigns at each construction step a positive weight to each fea-
sible solution component. The solution component with the highest weight is
chosen at each construction step to extend the current partial solution. An
example of a greedy heuristic is the nearest neighbor heuristic for the famous
traveling salesman problem (TSP) [57].

2.2 Local Search Methods

Constructive heuristics are often very fast, yet they often return solutions
of inferior quality when compared to local search algorithms. Local search
algorithms start from some initial solution and iteratively try to replace the
current solution by a better solution in an appropriately defined neighborhood
of the current solution, where the neighborhood is formally defined as follows.

Definition 1. A neighborhood structure is a function N : S → 2S that
assigns to every s ∈ S a set of neighbors N (s) ⊆ S. N (s) is called the neigh-
borhood of s. Often, neighborhood structures are implicitly defined by specify-
ing the changes that must be applied to a solution s in order to generate all
its neighbors. The application of such an operator that produces a neighbor
s′ ∈ N (s) of a solution s is commonly called a move.

A neighborhood structure together with a problem instance define the
topology of a so-called search (or fitness) landscape [100, 61, 40]. A search
landscape can be visualized as a labelled graph in which the nodes are so-
lutions (labels indicate their objective function value) and arcs represent the
neighborhood relation between solutions. A solution s∗ ∈ S is called a glob-
ally minimal solution1 (or global minimum) if for all s ∈ S it holds that
f(s∗) ≤ f(s). The set of all globally minimal solutions is henceforth denoted
by S∗. The introduction of a neighborhood structure enables us to additionally
define the concept of locally minimal solutions.

Definition 2. A locally minimal solution (or local minimum) with re-
spect to a neighborhood structure N is a solution ŝ such that ∀ s ∈ N (ŝ) :
f(ŝ) ≤ f(s). We call ŝ a strict locally minimal solution if f(ŝ) < f(s) ∀
s ∈ N (ŝ).

1 Without loss of generality, in the remainder of this chapter we restrict the dis-
cussion to minimization problems.

4 Christian Blum and Andrea Roli

Algorithm 1 Iterative improvement local search
1: s← GenerateInitialSolution()
2: while ∃ s′ ∈ N (s) such that f(s′) < f(s) do
3: s← ChooseImprovingNeighbor(N (s))
4: end while

The most basic local search method is usually called iterative improvement
local search, since each move is only performed if the resulting solution is better
than the current solution. The algorithm stops as soon as it has reached a local
minimum. The high level algorithm is sketched in Alg. 1.

Function ChooseImprovingNeighbor(N (s)) can be implemented in several
ways. In the following we present the two most typical ones. The first way
is called first-improvement. A first-improvement function scans the neighbor-
hood N (s) and returns the first solution that is better than s. In contrast,
a best-improvement function exhaustively explores the neighborhood and re-
turns one of the solutions with the lowest objective function value. An itera-
tive improvement procedure that uses a first-improvement function is called
first-improvement local search, respectively best-improvement local search (or
steepest descent local search) in the case of a best-improvement function.
Both methods stop at local minima. Therefore, their performance strongly
depends on the definition of the neighborhood structure N . A deterministic
iterative improvement local search algorithm partitions the search space S
into so-called basins of attraction of local minima [84, 92]. The basin of at-
traction of a local minimum ŝ ∈ S is the set of all solutions s for which the
search terminates in ŝ when started from the initial solution s.2

2.3 Metaheuristics

In the 70ies, a new kind of approximate algorithm has emerged which tries
to combine basic heuristic methods in higher level frameworks aimed at effi-
ciently and effectively exploring a search space. These methods are nowadays
commonly called metaheuristics.3 The term metaheuristic, first introduced
in [45], derives from the composition of two Greek words. Heuristic derives
from the verb heuriskein (ευρισκειν) which means “to find”, while the suffix
meta means “beyond, in an upper level”. Before this term was widely adopted,
metaheuristics were often called modern heuristics [88].

This class of algorithms includes4—but is not restricted to—ant colony opti-
mization (ant colony optimization), evolutionary computation (EC) including
2 The definition can also be extended to the case of stochastic local search algo-

rithms.
3 The increasing importance of metaheuristics is underlined by the biannual Meta-

heuristics International Conference (MIC). The 7th was held in Montreal in June
2007 (www.crt.umontreal.ca/mic2007/).

4 In alphabetical order.

Hybrid Metaheuristics: An Introduction 5

genetic algorithms (GAs), iterated local search (ILS), simulated annealing
(SA), and tabu search (TS). Due to the generality of the metaheuristic con-
cept it is hardly possible to give a precise definition of what a metaheuristic
exactly is. In the following we quote some characterizations that appeared in
the literature:

“A metaheuristic is formally defined as an iterative generation process
which guides a subordinate heuristic by combining intelligently different con-
cepts for exploring and exploiting the search space, learning strategies are
used to structure information in order to find efficiently near-optimal solu-
tions.” I. Osman and G. Laporte in [78].

“A metaheuristic is an iterative master process that guides and modifies
the operations of subordinate heuristics to efficiently produce high-quality so-
lutions. It may manipulate a complete (or incomplete) single solution or a
collection of solutions at each iteration. The subordinate heuristics may be
high (or low) level procedures, or a simple local search, or just a construction
method.” S. Voß et al. in [109].

“Metaheuristics are typically high-level strategies which guide an underly-
ing, more problem specific heuristic, to increase their performance. The main
goal is to avoid the disadvantages of iterative improvement and, in particu-
lar, multiple descent by allowing the local search to escape from local minima.
This is achieved by either allowing worsening moves or generating new starting
solutions for the local search in a more “intelligent” way than just providing
random initial solutions. Many of the methods can be interpreted as introduc-
ing a bias such that high quality solutions are produced quickly. This bias can
be of various forms and can be cast as descent bias (based on the objective
function), memory bias (based on previously made decisions) or experience
bias (based on prior performance). Many of the metaheuristic approaches rely
on probabilistic decisions made during the search. But, the main difference
to pure random search is that in metaheuristic algorithms randomness is not
used blindly but in an intelligent, biased form.” Stützle in [101].

“A metaheuristic is a set of concepts that can be used to define heuristic
methods that can be applied to a wide set of different problems. In other
words, a metaheuristic can be seen as a general algorithmic framework which
can be applied to different optimization problems with relatively few modifi-
cations to make them adapted to a specific problem.” Metaheuristics Network
at [26].

In short, we may characterize metaheuristics as high level strategies for
exploring search spaces by using different methods. Of great importance for
the functioning of a metaheuristic are the concepts called diversification and
intensification. The term diversification generally refers to the exploration

6 Christian Blum and Andrea Roli

of the search space, whereas the term intensification refers to the exploita-
tion of the accumulated search experience. Each metaheuristic application is
characterized by a balance between diversification and intensification. This is
important, on one side to quickly identify regions in the search space with
high quality solutions, and on the other side not to waste too much time in
regions of the search space which are either already explored or which do not
provide high quality solutions.

There are different ways to classify and describe metaheuristic algorithms,
each of them being the result of a specific viewpoint. For example, we might
classify metaheuristics as nature-inspired metaheuristics vs. non-nature in-
spired metaheuristics. This classification is based on the origins of the dif-
ferent algorithms. There are nature-inspired algorithms, such as evolutionary
computation and ant colony optimization, and non nature-inspired ones such
as tabu search and iterated local search. We might also classify metaheuristics
as memory-based vs. memory-less methods. This classification scheme refers
to the use metaheuristics make of the search history, that is, whether they
use memory or not. Memory-less algorithms, for example, perform a Markov
process, as the information they exclusively use to determine the next action
is the current state of the search process. The use of memory is nowadays
recognized as one of the fundamental elements of a powerful metaheuristic.
Finally, metaheuristics may also be classified into methods that perform a sin-
gle point vs. population-based search. This classification refers to the number
of solutions used by a metaheuristic at any time. Generally, algorithms that
work on a single solution at any time are referred to as trajectory methods.
They comprise all metaheuristics that are based on local search, such as tabu
search, iterated local search and variable neighborhood search. They all share
the property that the search process describes a trajectory in the search space.
Population-based metaheuristics, on the contrary, either perform search pro-
cesses which can be described as the evolution of a set of points in the search
space (as for example in evolutionary computation), or they perform search
processes which can be described as the evolution of a probability distribution
over the search space (as for example in ant colony optimization).

3 Overview on Important Metaheuristics

In the following, we outline the main principles of some of the most important
metaheuristics. However, an introduction to such a vast research area has to
focus on certain aspects and therefore has unfortunately to neglect other as-
pects. We refer the interested reader to [114, 49, 33, 93, 110] for works that
deal also with other aspects such as, for example, software libraries. Further-
more, we refer to [11, 57] for a more detailed introduction to metaheuristics.

Hybrid Metaheuristics: An Introduction 7

3.1 Metaheuristics Based on Local Search

The performance of simple iterative improvement local search procedures (see
Sect. 2.2) is in general unsatisfactory. The quality of the obtained local mini-
mum heavily depends on the starting point for the local search process. As the
basin of attraction of a global minimum is generally not known, iterative im-
provement local search might end up in a poor quality local minimum. A first
simple strategy of extending iterative improvement local search consists in
the iterative application of the local search starting at each iteration from a
different starting point, which may be randomly generated. For this type of
multi-start local search it is sometimes possible to obtain theoretical perfor-
mance guarantees. However, they are usually still far from being satisfactory
(see, for example, [94]).

Therefore, several metaheuristic techniques have been developed with the
aim of adding an exploration component to iterative improvement local search.
This exploration component is responsible for guiding the exporation of the
search space in the search for better and better local minima. Obviously,
these algorithms need termination criteria other than simply reaching a local
minimum. Commonly used termination criteria are a maximum CPU time, a
maximum number of iterations, a solution s of sufficient quality is found, or
a maximum number of iterations without improvement. In the following we
present some of the most important local-search based metaheuristics.

Simulated Annealing

Simulated annealing (SA) is commonly said to be the oldest among the meta-
heuristics and was one of the first algorithms that had an explicit strategy
to escape from local minima. The origins of the algorithm are in statistical
mechanics (see the Metropolis algorithm [70]). The idea of SA is inspired by
the annealing process of metal and glass, which assume a low energy configu-
ration when first heated up and then cooled down sufficiently slowly. SA was
first presented as a search algorithm for CO problems in [63] and [14]. The
fundamental idea is to allow moves to solutions with objective function values
that are worse than the objective function value of the current solution. This
kind of move is often called uphill move.

The algorithmic framework of SA is described in Alg. 2. It works as fol-
lows. The algorithm starts by generating an initial solution in function Gen-
erateInitialSolution(). The initial solution may be randomly or heuristically
constructed. Then, the initial temperature value is determined in function Se-
tInitialTemperature() such that the probability for an uphill move is quite high
at the start of the algorithm. At each iteration a solution s′ ∈ N (s) is ran-
domly chosen in function PickNeighborAtRandom(N (s)). If s′ is better than s
(i.e., has a lower objective function value), then s′ is accepted as new current
solution. Otherwise, if the move from s to s′ is an uphill move, s′ is accepted
with a probability which is a function of a temperature parameter Tk and

8 Christian Blum and Andrea Roli

Algorithm 2 Simulated annealing (SA)
1: s← GenerateInitialSolution()
2: k ← 0
3: Tk ← SetInitialTemperature()
4: while termination conditions not met do
5: s′ ← PickNeighborAtRandom(N (s))
6: if (f(s′) < f(s)) then
7: s← s′ {s′ replaces s}
8: else
9: Accept s′ as new solution with probability p(s′ | Tk, s) {see Equation 1}

10: end if
11: k ← k + 1
12: Tk ← AdaptTemperature()
13: end while

f(s′) − f(s). Usually this probability is computed following the Boltzmann
distribution:

p(s′ | Tk, s) = e
− f(s′)−f(s)

Tk . (1)

The temperature Tk is adapted at each iteration according to a cooling sched-
ule (or cooling scheme) in function AdaptTemperature(). The cooling schedule
defines the value of Tk at each iteration k. The choice of an appropriate cool-
ing schedule is crucial for the performance of the algorithm. At the beginning
of the search the probability of accepting uphill moves should be high. Then,
this probability should be gradually decreased during the search. Note that
this is not necessarily done in a monotonic fashion.

The dynamic process described by basic SA is a Markov chain [30], because
the choice of the next solution exclusively depends on the current solution,
that is, the algorithm does not use memory. Nevertheless, the use of mem-
ory can be beneficial for SA approaches (see for example [15]). Interestingly,
theoretical results on non-homogeneous Markov chains [1] state that under
particular conditions on the cooling schedule, SA converges in probability to
a global minimum for k →∞.

For representative applications of SA we refer the interested reader to [17,
107, 2, 59, 34]. Interesting variants of SA are Threshold Accepting, respectively
the Great Deluge Algorithm [29, 28], and Extremal Optimization [12].

Tabu Search

The basic ideas of tabu search (TS) were introduced in [45], based on earlier
ideas formulated in [44].5 A description of the method and its concepts can
be found in [47].

5 Related ideas were labelled steepest ascent/mildest descent method in [50].

Hybrid Metaheuristics: An Introduction 9

Algorithm 3 Tabu search (TS)
1: s← GenerateInitialSolution()
2: InitializeTabuLists(TL1, . . . ,TLr)
3: while termination conditions not met do
4: Na(s) ← {s′ ∈ N (s) | s′ does not violate a tabu condition, or it satisfies

at least one aspiration condition}
5: s′ ← argmin{f(s′′) | s′′ ∈ Na(s)}
6: UpdateTabuLists(TL1, . . . ,TLr,s,s

′)
7: s← s′ {i.e., s′ replaces s}
8: end while

The basic idea of TS is the explicit use of search history, both to escape
from local minima and to implement a strategy for exploring the search space.
A basic TS algorithm (see Alg. 3) uses short term memory in the form of so-
called tabu lists to escape from local minima and to avoid cycles.6 In standard
TS algorithms tabu lists are implemented in a FIFO (first in first out) man-
ner. The tabu lists generally store features of recently visited solutions. The
algorithm may work with a different tabu list for each type of considered
solution feature. At the start of the algorithm the tabu lists are initialized
as empty lists in function InitializeTabuLists(TL1, . . . ,TLr). For performing a
move, the algorithm first determines those solutions from the neighborhood
N (s) of the current solution s that contain solution features currently to be
found in the tabu lists. These solutions are said to violate the tabu condi-
tions. They are excluded from the neighborhood, resulting in a restricted set
of neighbors Na(s). However, note that storing only features of solutions al-
lows the possibility that unvisited solutions of high quality are excluded from
the set of neighbors. To overcome this problem, aspiration criteria are de-
fined which allow to include a solution in the restricted set of neighbors even
though it violates a tabu condition. The most commonly used aspiration cri-
terion applies to solutions which are better than the best solution found so
far. At each iteration the best solution s′ from Na(s) is chosen as the new cur-
rent solution. Furthermore, in procedure UpdateTabuLists(TL1, . . . ,TLr,s,s

′)
the corresponding features of this solution are added to the tabu lists and—in
case the tabu lists have reached their maximally allowed length—the oldest so-
lution features are deleted. The algorithm stops when a termination condition
is met.

In general, the use of a tabu list prevents from returning to recently vis-
ited solutions, and may force the search to accept even uphill moves. The
length l of a tabu list—known in the literature as the tabu tenure—controls
the memory of the search process. With small tabu tenures the search will
concentrate on small areas of the search space. On the opposite, a large tabu
tenure forces the search process to explore larger regions, because it forbids

6 A cycle is a sequence of moves that constantly repeats itself.

10 Christian Blum and Andrea Roli

o
b
je

ct
iv

e
fu

n
ct

io
n

solution space

ŝ

ŝ′

s′

perturbation

LS

Fig. 1. A desirable ILS step: the current solution ŝ is perturbed, then local search
is applied to the perturbed solution s′ and a new (even better) local minimum ŝ′ is
found.

revisiting a higher number of solutions. The tabu tenure can be varied dur-
ing the search, leading to more robust algorithms. An example can be found
in [103], where the tabu tenure is periodically reinitialized at random from
the interval [lmin, lmax]. A more advanced use of a dynamic tabu tenure is
presented in [7, 6], where the tabu tenure is increased in case of evidence for
repetitions of solutions (thus a higher diversification is needed), while it is de-
creased in case of no improvements (thus intensification should be boosted).
More advanced ways of applying dynamic tabu tenures are described in [46].

The interested reader can find representative applications of TS in [103,
6, 21, 77, 43]. Further references to applications can be found in [47].

Iterated Local Search

Iterated local search (ILS) [101, 65, 64, 68] is a metaheuristic that is based
on a simple but effective concept. Instead of repeatedly applying an iterative
improvement local search to randomly generated starting solutions, an ILS
algorithm produces the starting solution for the next iteration by perturbing
the local minimum obtained by the previous application of iterative improve-
ment local search. The hope is that the perturbation mechanism produces a
solution that is located in the basin of attraction of a local minimum that
is better than the current solution, and that is close to the current solution.
Fig. 1 shows such a situtation graphically.

The pseudo-code of ILS is shown in Alg. 4. It works as follows. First, an
initial solution is generated in function GenerateInitialSolution(). This solu-
tion is subsequently improved by the application of a local search method in
function LocalSearch(s). The construction of initial solutions should be fast
(computationally not expensive), and—if possible—initial solutions should be
a good starting point for local search. The fastest way of producing an ini-
tial solution is often to generate it at random. Another possibility is to use

Hybrid Metaheuristics: An Introduction 11

Algorithm 4 Iterated local search (ILS)
1: s← GenerateInitialSolution()
2: ŝ← LocalSearch(s)
3: while termination conditions not met do
4: s′ ← Perturbation(ŝ, history)
5: ŝ′ ← LocalSearch(s′)
6: ŝ← ApplyAcceptanceCriterion(ŝ′, ŝ, history)
7: end while

constructive heuristics such as greedy heuristics. At each iteration, the cur-
rent solution ŝ is perturbed in function Perturbation(ŝ,history), resulting in a
perturbed solution s′. The perturbation is usually non-deterministic in order
to avoid cycling. The importance of the perturbation mechanism is obvious:
a perturbation that is not strong enough might not enable the algorithm to
escape from the basin of attraction of the current solution. On the other side,
a perturbation that is too strong would make the algorithm similar to a ran-
dom restart local search. The requirement on the perturbation method is to
produce a starting point for local search such that a local minimum differ-
ent from the current solution is reached. However, this new local minimum
should be closer to the current solution than a local minimum produced by
the application of the local search to a randomly generated solution. After the
application of local search to the perturbed solution, the resulting solution ŝ′

may either be accepted as new current solution, or not. This is decided in
function ApplyAcceptanceCriterion(ŝ′, ŝ, history). Two extreme examples are
(1) accepting the new local minimum only in case of improvement and (2)
always accepting the new solution. Inbetween, there are several possibilities.
For example, it is possible to adopt an acceptance criterion that is similar to
the one of simulated annealing, like non-monotonic cooling schedules which
exploit the history of the search process. For example, when the recent history
of the search process indicates that intensification seems no longer effective, a
diversification phase is needed and the solution reached after the local search
phase is always accepted, or the probability to accept it is increased.

For examples of successful applications of ILS we refer the interested reader
to [67, 60, 65, 22]. References to other applications can be found in [65].

Other Metaheuristics Based on Local Search

Besides the metaheuristics outlined above, there are some other ones that are
based on local search. In the following we present shortly their basic principles.

Variable neighborhood search (VNS).

This metaheuristic was proposed in [52, 53]. The main idea of VNS is based on
the fact that a change of the neighborhood structure changes the shape of the

12 Christian Blum and Andrea Roli

o
b
je

ct
iv

e
fu

n
ct

io
n

solution space

ŝ1

ŝ2

(a) Search landscape 1

o
b
je

ct
iv

e
fu

n
ct

io
n

solution space

ŝ1

ŝ2

(b) Search landscape 2

Fig. 2. Two search landscapes defined by two different neighborhood structures.
On the landscape that is shown in (a), the best-improvement local search stops at
ŝ1, while it proceeds till a better local minimum ŝ2 on the landscape that is shown
in (b).

search landscape. In fact, a local minimum with respect to a neighborhood
function N1 is not necessarily a local minimum with respect to a different
neighborhood function N2 (see Fig. 2 for an example).

Based on this observation, the main idea of VNS is to define more than one
neighborhood structure, and to swap between different neighborhood struc-
tures in a strategic way during the search process. Observe that the process
of changing neighborhoods (for example, in case of no improvements) cor-
responds to a diversification of the search. The effectiveness of VNS can be
explained by the fact that a “bad” place on the search landscape given by a
certain neighborhood structure could be a “good” place on the search land-
scape given by another neighborhood structure.7 Moreover, a solution that is
locally optimal with respect to a neighborhood is probably not locally opti-
mal with respect to another neighborhood. Concerning applications of VNS
we refer the interested reader to [51, 91, 113, 106]. More references can be
found in [53].

Guided local search (GLS).

The strategy applied by GLS (see [112, 111]) for exploring the search space is
conceptually very different to the strategies that are employed by the other
local search based metaheuristics. This strategy consists in dynamically chang-
ing the objective function by penalizing solution features that occur frequently
in visited solutions. The use of penalties aims at increasing the objective func-
tion value of solutions that contain these features. This change in the objective
function results in a change of the search landscape. The aim is to make the
current local minimum gradually “less desirable” over time in order to be
7 A “good” place in the search space is an area from which a good local minimum

can be reached.

Hybrid Metaheuristics: An Introduction 13

o
b
je

ct
iv

e
fu

n
ct

io
n

solution space

ŝ1

ŝ2

Fig. 3. Basic GLS idea: escaping from a valley in the landscape by increasing the
objective function value of its solutions.

able to move to other areas of the search space. A pictorial description of this
idea is given in Fig. 3. The interested reader is referred to [73, 62, 112] for
applications of GLS.

Greedy randomized adaptive search procedure (GRASP).

This metaheuristic (see [31, 81]) is a simple technique that combines construc-
tive heuristics with local search. At each iteration, a solution to the tackled
problem is constructed in a randomized way. Subsequently the constructed
solution is improved by the application of a local search algorithm. GRASP
is a metaheuristic that does not make use of the search history. This is one of
the reasons why GRASP is often outperformed by other metaheuristics. How-
ever, due to its simplicity, it is generally very fast and it is able to produce
quite good solutions in a very short amount of computation time. It can be
effective if—at least—two conditions are satisfied: (1) the solution construc-
tion mechanism samples the most promising regions of the search space, and
(2) the solutions constructed by the constructive heuristic belong to basins of
attraction of different local minima. Representative applications of GRASP
include [8, 90, 82]. A detailed and annotated bibliography references many
more applications [32].

3.2 Population-Based Metaheuristics

Population-based metaheuristics deal at each algorithm iteration with a set
of solutions rather than with a single solution. From this set of solutions the
population of the next iteration is produced by the application of certain oper-
ators. Population-based metaheuristics provide a natural, intrinsic way for the
exploration of the search space. Yet, the final performance strongly depends
on the way the population is manipulated. The most studied population-based
methods are evolutionary computation (EC) and ant colony optimization (ant
colony optimization). In EC algorithms, a population of individuals is modified
by recombination and mutation operators, and in ant colony optimization a

14 Christian Blum and Andrea Roli

colony of artificial ants is used to construct solutions guided by the pheromone
trails and heuristic information.

Ant Colony Optimization

Ant colony optimization (ant colony optimization) [27, 9] is a metaheuristic
approach that was inspired by the foraging behavior of real ants. Their way
of foraging—as described by Deneubourg et al. in [23]—enables ants to find
shortest paths between food sources and their nest. Initially, ants explore the
area surrounding their nest in a random manner. As soon as an ant finds a
source of food, it evaluates quantity and quality of the food and carries some
of this food to the nest. During the return trip, the ant deposits a chemical
pheromone trail on the ground. The quantity of pheromone deposited, which
may depend on the quantity and quality of the food, will guide other ants
to the food source. The indirect communication between the ants via the
pheromone trails allows them to find shortest paths between their nest and
food sources. This functionality of real ant colonies is exploited in artificial
ant colonies in order to solve hard optimization problems.

In ant colony optimization algorithms the chemical pheromone trails are
simulated via a parametrized probabilistic model that is called the pheromone
model. It consists of a set of model parameters whose values are called the
pheromone values. These values act as the memory that keeps track of the
search process. The basic ingredient of ant colony optimization algorithms is
a constructive heuristic that is used for probabilistically constructing solutions
using the pheromone values. In general, the ant colony optimization approach
attempts to solve a CO problem by iterating the following two steps:

• Solutions are constructed using a pheromone model, that is, a parame-
trized probability distribution over the solution space.

• The constructed solutions and possibly solutions that were constructed in
earlier iterations are used to modify the pheromone values in a way that
is deemed to bias future sampling toward high quality solutions.

A very general pseudo-code for the ant colony optimization metaheuristic
is shown in Alg. 5. It consists of three algorithmic components that are
gathered in the ScheduleActivities construct. At each iteration, the algorithm
probabilistically generates a number of solutions to the tackled problem in
function AntBasedSolutionConstruction() by assembling them from a set of so-
lution components. Subsequently, the pheromone values are modified in func-
tion PheromoneUpdate(). A standard pheromone update consists of two parts.
First, a pheromone evaporation, which uniformly decreases all the pheromone
values, is performed. From a practical point of view, pheromone evapora-
tion is needed to avoid a too rapid convergence of the algorithm toward a
sub-optimal region. It implements a useful form of forgetting, favoring the ex-
ploration of new areas in the search space. Then, one or more solutions from
the current and/or from earlier iterations are used to increase the values of

Hybrid Metaheuristics: An Introduction 15

Algorithm 5 Ant colony optimization (ant colony optimization)
1: while termination conditions not met do
2: ScheduleActivities
3: AntBasedSolutionConstruction()
4: PheromoneUpdate()
5: DaemonActions() {optional}
6: end ScheduleActivities
7: end while

pheromone trail parameters on solution components that are part of these
solutions. Other types of pheromone update are rather optional and mostly
aim at the intensification or the diversification of the search process. Daemon
actions (see function DaemonActions()) can be used to implement centralized
actions; in contrast to the localized decision making of the solution construc-
tion process. Examples are the application of local search methods to the
constructed solutions, or the collection of global information that can be used
to decide whether it is useful or not to deposit additional pheromone to bias
the search process from a non-local perspective. As a practical example, the
daemon may decide to deposit extra pheromone on the solution components
that belong to the best solution found so far.

In general, different versions of ant colony optimization algorithms mostly
differ in the way they update the pheromone values. This also holds for two
of the currently best-performing ant colony optimization variants in practice,
which are Ant Colony System (ACS) [25] and MAX–MIN Ant System
(MMAS) [102].

We refer the interested reader to [41, 69, 10, 96] for applications of ACO
algorithms. Further references to applications of ant colony optimization can
be found in [27].

Evolutionary Computation

Evolutionary computation (EC) can be regarded as a metaphor for building,
applying, and studying algorithms based on Darwinian principles of natural
selection. The instances of algorithms that are based on evolutionary princi-
ples are called evolutionary algorithms (EAs) ([5]). EAs can be characterized
as computational models of evolutionary processes. They are inspired by na-
ture’s capability to evolve living beings well adapted to their environment. At
the core of each EA is a population of individuals. At each algorithm iteration
a number of reproduction operators is applied to the individuals of the current
population to generate the individuals of the population of the next genera-
tion. EAs might use operators called recombination or crossover to recombine
two or more individuals to produce new individuals. They also can use mu-
tation or modification operators which cause a self-adaptation of individuals.
The driving force in EAs is the selection of individuals based on their fitness

16 Christian Blum and Andrea Roli

Algorithm 6 Evolutionary computation (EC)
1: P ← GenerateInitialPopulation()
2: Evaluate(P)
3: while termination conditions not met do
4: P ′ ← Recombine(P)
5: P ′′ ← Mutate(P ′)
6: Evaluate(P ′′)
7: P ← Select(P ′′,P)
8: end while

(which might be based on the objective function, the result of a simulation
experiment, or some other kind of quality measure). Individuals with a higher
fitness have a higher probability to be chosen as members of the population
of the next generation (or as parents for the generation of new individuals).
This corresponds to the principle of survival of the fittest in natural evolution.
It is the capability of nature to adapt itself to a changing environment, which
gave the inspiration for EAs.

Alg. 6 shows the basic structure of EC algorithms. In this algorithm, P
denotes the population of individuals. A population of offspring is generated
by the application of recombination and mutation operators and the individ-
uals for the next population are selected from the union of the old population
and the offspring population.

There has been a variety of slightly different EAs proposed over the years.
Three different strands of EAs were developed independently of each other
over time. These are evolutionary programming (EP) as introduced by Fogel
in [38] and Fogel et al. in [39], evolutionary strategies (ES) proposed by
Rechenberg in [87] and genetic algorithms (GAs) initiated by Holland in [56]
(see [48], [74], [89], and [108] for further references). EP arose from the desire
to generate machine intelligence. While EP originally was proposed to operate
on discrete representations of finite state machines, most of the present vari-
ants are used for continuous optimization problems. The latter also holds for
most present variants of ES, whereas GAs are mainly applied to solve discrete
problems. More recently, other members of the EA family such as for example
genetic programming (GP) and scatter search (SS) were developed. Despite
this subdivision into different strands, EAs can be understood from a unified
point of view with respect to their main components and the way they explore
the search space. Over the years there have been quite a few overviews and
surveys about EC methods. Among those are the ones by Bäck [4], by Fogel
et al. [36], by Kobler and Hertz [54], by Spears et al. [99], and by Michalewicz
and Michalewicz [71]. In [13] a taxonomy of EAs is proposed.

EC algorithms have been applied to most CO problems and optimization
problems in general. Recent successes are documented works such as [37, 16,
97]. For an extensive collection of references to EC applications we refer to [5].

Hybrid Metaheuristics: An Introduction 17

4 Hybridization of Metaheuristics

The concept of hybrid metaheuristics has been commonly accepted only in
recent years, even if the idea of combining different metaheuristic strategies
and algorithms dates back to the 1980s. Today, we can observe a general-
ized common agreement on the advantage of combining components from
different search techniques and the tendency of designing hybrid techniques
is widespread in the fields of operations research and artificial intelligence.
The consolidated interest around hybrid metaheuristics is also demonstrated
by publications on classifications, taxonomies and overviews on the sub-
ject [86, 85, 104, 72].

In this book, we adopt the definition of hybrid metaheuristic in the broad
sense of integration of a metaheuristic related concept with some other tech-
niques (possibly another metaheuristic). We may distinguish between two cat-
egories: the first consists in designing a solver including components from a
metaheuristic into another one, while the second combines metaheuristics with
other techniques typical of fields such as operations research and artificial in-
telligence. A prominent representant of the first category is the use of trajec-
tory methods into population based techniques or the use of a specific local
search method into a more general trajectory method such as ILS. The sec-
ond category includes hybrids resulting from the combination of metaheuris-
tics with constraint programming (CP), integer programming (IP), tree-based
search methods, data mining techniques, etc. Both categories contain count-
less instances and an exhaustive description is not possible. Nevertheless, we
believe that a brief description of some notable examples could give the flavour
of the ideas that characterize these forms of hybridization.

4.1 Component Exchange Among Metaheuristics

One of the most popular ways of metaheuristic hybridization consists in the
use of trajectory methods inside population-based methods. Indeed, most of
the successful applications of EC and ACO make use of local search procedures
and the effectiveness of many memetic algorithms [75] relies indeed on this
synergic integration. The reason for that becomes apparent when analyzing
the respective strengths of trajectory methods and population-based methods.

The power of population-based methods is certainly to be found in the
capability of recombining solutions to obtain new ones. In EC algorithms and
scatter search explicit recombinations are implemented by one or more recom-
bination operators. In ACO and EDAs recombination is implicit, because new
solutions are generated by using a distribution over the search space which is
a function of earlier populations. This enables the search process to perform
a guided sampling of the search space, usually resulting in a coarse grained
exploration. Therefore, these technique can effectively find promising areas of
the search space.

18 Christian Blum and Andrea Roli

The strength of trajectory methods is rather to be found in the way they
explore a promising region in the search space. As in those methods local
search is the driving component, a promising area in the search space is
searched in a more structured way than in population-based methods. In this
way the danger of being close to good solutions but “missing” them is not as
high as in population-based methods. More formally, local search techniques
efficiently drives the search toward the attractors, i.e., local optima or confined
areas of the space in which many local optima are condensed.

In summary, population-based methods are better in identifying promis-
ing areas in the search space from which trajectory methods can quickly reach
good local optima. Therefore, metaheuristic hybrids that can effectively com-
bine the strengths of both population-based methods and trajectory methods
are often very successful.

4.2 Integration of Metaheuristics With AI and OR Techniques

One of the most prominent research directions is the integration of meta-
heuristics with more classical artificial intelligence and operations research
methods, such as CP and branch & bound or other tree search techniques. In
the following we outline some of the possible ways of integration.

Metaheuristics and tree search methods can be sequentially applied or they
can also be interleaved. For instance, a tree search method can be applied to
generate a partial solution which will then be completed by a metaheuristic
approach. Alternatively, metaheuristics can be applied to improve a solution
generated by a tree-search method.

CP techniques can be used to reduce the search space or the neighborhood
to be explored by a local search method. In CP, CO problems are modelled
by means of variables, domains8 and constraints, which can be mathemati-
cal (as for example in linear programming) or symbolic (also known as global
constraints). Constraints encapsulate well defined parts of the problem into
sub-problems, thus making it possible to design specialized solving algorithms
for sub-problems that occur frequently. Every constraint is associated to a
filtering algorithm that deletes values from a variable domain that do not
contribute to feasible solutions.9 Metaheuristics (especially trajectory meth-
ods) may use CP to efficiently explore the neighborhood of the current solu-
tion, instead of simply enumerating the neighbors or randomly sampling the
neighborhood. A prominent example of such a kind of integration is Large
Neighborhood Search [95] and related techniques. These approaches are effec-
tive mainly when the neighborhood to explore is very large, or when problems
(such as many real-world problems) have additional constraints (usually called
side constraints). A detailed overview of the possible ways of integration of
CP and metaheuristics can be found in [35].
8 We restrict the discussion to finite domains.
9 The filtering could be either complete if the remaining domain values are guar-

anteed to be consistent, or incomplete otherwise.

Hybrid Metaheuristics: An Introduction 19

Another possible combination consists in introducing concepts or strate-
gies from either class of algorithms into the other. For example, the concepts
of tabu list and aspiration criteria—known from Tabu search—can be used
to manage the list of open nodes (i.e., the ones whose child nodes are not yet
explored) in a tree search algorithm. Examples of these approaches can be
found in [83, 20]. Tree-based search is also successfully integrated into ACO
in [10], where beam search [79] is used for solution construction.

Integer and linear programming can be also effectively combined with
metaheuristics. For instance, linear programming is often used either to solve
a sub-problem or to provide dual information to a metaheuristic in order to se-
lect the most promising candidate solution or solution component [58, 66, 10].

The kinds of integration we shortly mentioned belong to the class of inte-
grative combinations and are the main topic of this book. The other possible
way of integration, called either collaborative combinations or also cooperative
search consists in a loose form of hybridization, in that search is performed
by possibly different algorithms that exchange information about states, mod-
els, entire sub-problems, solutions or search space characteristics. Typically,
cooperative search algorithms consist of the parallel execution of search algo-
rithms with a varying level of communication. The algorithms can be different
or they can be instances of the same algorithm working on different models
or running with different parameter settings. The algorithms composing a
cooperative search system can be all approximate, all complete, or a mix of
approximate and complete approaches. This area of research shares many
issues with the design of parallel algorithms and we forward the interested
reader to the specific literature on the subject [3, 55, 24, 105, 98].

5 Outline of the Book

The contributions collected in this book cover some of the main topics of
hybrid metaheuristics. Most of the chapters are devoted to the integration of
metaheuristics with other techniques from AI and OR, namely, mathematical
programming, constraint programming and various combinations of complete
and incomplete search techniques. Two additional chapters complement the
collection by giving, respectively, an overview of hybrid metaheuristics for
multi-objective problems and introducing multilevel refinement for enhancing
the performance of standard metaheuristics. In the following we give an outline
of the book by providing a short description of each chapter.

5.1 Chapter 2: Integer Linear Programming and Metaheuristics

The chapter by Raidl and Puchinger provides a comprehensive survey on
the integration of metaheuristics and exact techniques such as integer linear

20 Christian Blum and Andrea Roli

programming (ILP), cutting plane and column generation approaches, branch-
and-cut, branch-and-price, and branch-and-cut-and-price. The authors point
out that metaheuristics and exact approaches can be seen as complementary
to a large degree, which makes it natural to combine ideas from both streams.
They claim that hybrid optimizers are often significantly more effective in
terms of running time and/or solution quality since they benefit from syn-
ergy. After discussing a structural classifications of strategies for combining
metaheuristics and exact optimization techniques, the authors survey several
types of different hybridization approaches, including the following ones:

1. Instead of simple heuristics, metaheuristics can be used for finding high-
quality upper bounds within a branch & bound algorithm. Hereby, meta-
heuristics may be applied for deriving the initial solutions as well as
deriving upper bounds for subproblems of the branch & bound tree.

2. Problem relaxations may be used for guiding the search process of a meta-
heuristic, because an optimal solution for a relaxation of the original prob-
lem often indicates in which areas of the original problems search space
good or even optimal solutions may be found.

3. Generally, branch & bound algorithms choose the next tree node to be
processed by a best-first strategy: choose a node with the smallest lower
bound. However, with this strategy, high quality upper bounds are only
found late in the search process. More sophisticated concepts aim to inten-
sify branch & bound search—in the style of metaheuristics—in an initial
phase to neighborhoods of promising incumbents in order to quickly iden-
tify high quality upper bounds.

4. In metaheuristics, candidate solutions are sometimes only indirectly or
incompletely represented. In these situtations, an (intelligent) decoding
function is needed in order to obtain complete solution to the problem
at hand. This is the case, for example, in evolutionary algorithms and
ant colony optimization. ILP techniques may successfully be used for the
decoding step.

5. In cutting plane and column generation based methods the dynamic
separation of cutting planes and the pricing of columns, respectively, is
sometimes done by means of metaheuristics in order to speed up the op-
timization process.

5.2 Chapter 3: Relation Between Complete and Incomplete Search

An in-depth analysis of the relation between complete and incomplete search is
the subject of the contribution by Prestwich. The author explores the bound-
aries between these two prototypical approaches for solving combinatorial and
constraint satisfaction problems and discusses some possible integrations. The
chapter starts with a description of the main complete and incomplete search
techniques and then analyzes their peculiarities. Complete techniques explore
exhaustively the whole search space and they are based on intelligent enu-
meration strategies which try to prune the search tree, for example by using

Hybrid Metaheuristics: An Introduction 21

lower and upper bounds and nogoods. Incomplete search techniques are the
ones which do not guarantee to find the optimal solution (in the case of a
CO problem) or a feasible solution (in the case of a Constraint Satisfaction
Problem (CSP)) in bounded time and metaheuristics are one of its most repre-
sentative classes. The author points out that the boundaries between complete
and incomplete search are quite blurred. Hybrid approaches which integrate
metaheuristics into tree-search and viceversa are surveyed and strengths and
weaknesses of the various techniques are discussed. Taking inspiration from
the considerations between contrasting complete and incomplete search, in
the second part of the chapter the author proposes a hybrid search scheme for
CSPs called Incomplete Dynamic Backtracking (IDB). This technique tries to
build a solution as done in dynamic backtracking style algorithms, i.e., it can
backtrack to an already assigned variable without unassigning the interme-
diate ones, with the difference that the choice of variable(s) to backtrack to
is completely free and there is no exhaustiveness to be guaranteed. IDB can
also be viewed as a local search with a cost function given by the number of
unassigned variables. This is an emblematic case of an algorithm laying the
fuzzy border between complete and incomplete search.

5.3 Chapter 4: Hybridizations of Metaheuristics With Branch
& Bound Derivates

In their chapter, Blum et al. give a closer look at two specific ways of hybridiz-
ing metaheuristics with branch & bound (derivatives). The first one concerns
the use of branch & bound features within construction-based metaheuristics
such as ant colony optimization or greedy randomized adaptive search proce-
dures in order to increase their efficiency. In particular, the authors deal with
the case of Beam-ACO, a hybrid algorithm that results from replacing the
standard solution construction procedure of ant colony optimization with a
probabilistic beam search, which is an incomplete branch & bound derivative.
After explaining the algorithm in general terms, an application to the longest
common subsequence problem is presented.

The second part of the chapter concerns the use of a memetic algorithm in
order to increase the efficiency of branch & bound, respectively beam search.
More specifically, the memetic algorithm is used to obtain upper bounds for
open subproblems of the branch & bound tree. The quality of the resulting
hybrid technique is demonstrated by means of the application to another
classical string problem, the shortest common supersequence problem.

5.4 Chapter 5: Large Scale Neighborhood Search

The chapter by Chiarandini et al. presents some notable examples of so-called
large scale neighborhood search. Local search techniques are characterized by
following a trajectory in the state space, moving at each iteration from a so-
lution s to a new one s′ by means of a so-called move, that is, by choosing the

22 Christian Blum and Andrea Roli

next solution s′ in the neighborhood of s. Thus, the neighborhood of s is the
set of candidates among which to choose the next solution. Small size neigh-
borhoods are often preferred because of efficiency concerns, nevertheless they
might make it difficult for the search to explore large portions of the search
space or to move away from basins of attraction of local optima. In contrast,
large scale neighborhoods, while enlarging the set of candidate (neighboring)
solutions, can enable the search to enhance its exploration but at the price of
higher computational time. The chapter by Chiarandini et al. discusses both
exhaustive and heuristic algorithms for exploring large scale neighborhoods,
in particular for the graph coloring problem and one of its extensions named
graph set T-coloring problem. In the chapter, the authors emphasize the use of
dynamic programming for the exploration of exponential size neighborhoods.

5.5 Chapter 6: Constructive Metaheuristics and Constraint
Programming

The contribution by Meyer deals with another type of hybrid metaheuristic.
More specifically, the author shows how constraint programming (CP) can be
integrated with ACO. The key point in this study is that the construction
phase in ACO can be performed by means of CP techniques; this approach
can be particularly effective in problems in which the constraints make the
search of a feasible solution hard, because in those cases the power of CP
can be fully exploited. A dual, equivalent, perspective for combining CP and
ACO is also discussed in which the learning mechanism of ACO is introduced
in the variable/value selection mechanism during the labelling phase in CP.
This phase consists in first choosing an unassigned variable and then select-
ing a value from the chosen variables’ domain. This kind of tight integration
of ACO and CP is compared against loose combination and pure versions of
ACO and CP. The loose combination is implemented by (conceptually) run-
ning in parallel the two techniques and enabling a communication mechanism
for exchanging partial solutions and bounds. Results on machine scheduling
problem instances show that the tightly coupled approach is superior to the
loosely coupled one and ACO and CP alone.

5.6 Chapter 7: Hybrid Metaheuristics for Packing Problems

The contribution by Ibaraki et al. shows the effectiveness of the integration of
metaheuristics with several mathematical programming techniques on three
variants of the two-dimensional packing problem. The problem consists in
packing a set of items into a container with given size without overlaps be-
tween items. The authors consider first the formulation in which items are
rectangular and have given and fixed size (in terms of width and height),
then a variant in which sizes are adjustable within predefined limits and,
finally, the problem with items without being restricted to assume a partic-
ular shape (also known as irregular packing or nesting problem). The point

Hybrid Metaheuristics: An Introduction 23

made by the authors is that hybrid metaheuristics can profit from the recent
advances in software for mathematical programming by exploiting dynamic,
linear and nonlinear programming for solving to optimality some specific sub-
problems. Indeed, the approaches discussed in the chapter rely on solution
coding schemes that make the search of good configurations easier by provid-
ing a mechanism for representing a set of solutions in a compact way. Such
coding schemes require the definition of decoding algorithms to transform a
coded solution into an actual and complete one. Solution decoding can be
viewed as a subproblem that has to be solved a large number of times during
search. Therefore, decoding algorithms should be as much efficient as possible.
Ibaraki et al. show how metaheuristic methods, such as iterated local search,
can be fruitfully combined with decoding algorithms based on dynamic and
(non)linear programming.

5.7 Chapter 8: Hybrid Multi-objective Combinatorial
Optimization

While most of the book deals with hybrid methods for combinatorial op-
timization problems with only one objective, the chapter by Ehrgott and
Gandibleux presents an overview on hybrid techniques for multi-objective
combinatorial optimization. In fact, many real world optimization problems
can be modelled as combinatorial optimization problems with multiple and
even conflicting objectives. The authors give among others the example of
railway transportation, where the planning of railway network infrastructure
has the goals of maximizing the number of trains that can use it and to
maximize the robustness of solutions to disruptions in operation. After giv-
ing an overview over the most important non-hybrid metheuristic methods
proposed for multi-objective optimization, the authors survey the currently
existing hybrid approaches. Hereby the authors distinguish between hybridiza-
tion approaches in order to make the search more aggressive, hybrization in
order to drive a metaheuristic, hybridization for exploiting the complementary
strength of different techniques, and hybridization with, for example, exact
methods. Finally, the authors conclude their chapter with a section on cur-
rent hybridization trends. One of these trends concerns the used of lower and
upper bounds on the non-dominated frontier for deciding if an expensive local
search procedure should be started from a solution, or not.

5.8 Chapter 9: The Multilevel Paradigm

Instead of dealing with a typical hybridization method, the chapter by
Walshaw rather presents a framework for using metaheuristics and/or other
optimization techniques in a potentially more efficient way. This framework is
commonly referred to as the multilevel paradigm, or the multilevel method. Its
application to combinatorial optimization problems is quite simple. Basically,
it involves recursive coarsening to create a hierarchy of approximations to the

24 Christian Blum and Andrea Roli

original problem. An initial solution is found, usually at the coarsest level, for
example by some metaheuristic algorithm. Then this solution is iteratively
refined at each level, coarsest to finest. The same metaheuristic used for find-
ing a solution to the coarsest level may be used for this purpose. Solution
extension (or projection) operators can transfer the solution from one level to
another. While this strategy has been used for many years, for example, in
multigrid techniques, its application in combinatorial optimization is rather
new. This chapter gives a survey on recent developments in this directions.

References

1. E. H. L. Aarts, J. H. M. Korst, and P. J. M. van Laarhoven. Simulated anneal-
ing. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial
Optimization, pages 91–120. John Wiley & Sons, Chichester, UK, 1997.

2. E. H. L. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial
Optimization. John Wiley & Sons, Chichester, UK, 1997.

3. E. Alba, editor. Parallel Metaheuristics: A New Class of Algorithms. John
Wiley, 2005.

4. T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York, 1996.

5. T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary
Computation. Institute of Physics Publishing Ltd, Bristol, UK, 1997.

6. R. Battiti and M. Protasi. Reactive Search, a history-base heuristic for MAX-
SAT. ACM Journal of Experimental Algorithmics, 2:Article 2, 1997.

7. R. Battiti and G. Tecchiolli. The Reactive Tabu Search. ORSA Journal on
Computing, 6(2):126–140, 1994.

8. S. Binato, W. J. Hery, D. Loewenstern, and M. G. C. Resende. A greedy
randomized adaptive search procedure for job shop scheduling. In P. Hansen
and C. C. Ribeiro, editors, Essays and surveys on metaheuristics, pages 59–79.
Kluwer Academic Publishers, 2001.

9. C. Blum. Ant colony optimization. Physics of Life Reviews, 2(4):353–373,
2005.

10. C. Blum. Beam-ACO—Hybridizing ant colony optimization with beam search:
An application to open shop scheduling. Computers & Operations Research,
32(6):1565–1591, 2005.

11. C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

12. S. Boettcher and A. G. Percus. Optimization with extremal dynamics. Com-
plexity, 8:57–62, 2003.

13. P. Calégary, G. Coray, A. Hertz, D. Kobler, and P. Kuonen. A taxonomy of
evolutionary algorithms in combinatorial optimization. Journal of Heuristics,
5:145–158, 1999.

14. V. Černý. A thermodynamical approach to the travelling salesman problem:
An efficient simulation algorithm. Journal of Optimization Theory and Appli-
cations, 45:41–51, 1985.

15. P. Chardaire, J. L. Lutton, and A. Sutter. Thermostatistical persistency:
A powerful improving concept for simulated annealing algorithms. European
Journal of Operational Research, 86:565–579, 1995.

Hybrid Metaheuristics: An Introduction 25

16. C. A. Coello Coello. An Updated Survey of GA-Based Multiobjective Opti-
mization Techniques. ACM Computing Surveys, 32(2):109–143, 2000.

17. D. T. Connolly. An improved annealing scheme for the QAP. European Journal
of Operational Research, 46:93–100, 1990.

18. T. G. Crainic and M. Toulouse. Introduction to the special issue on Parallel
Meta-Heuristics. Journal of Heuristics, 8(3):247–249, 2002.

19. T. G. Crainic and M. Toulouse. Parallel Strategies for Meta-heuristics. In
F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, volume 57
of International Series in Operations Research & Management Science. Kluwer
Academic Publishers, Norwell, MA, 2002.

20. F. Della Croce and V. T’kindt. A Recovering Beam Search algorithm for the
one machine dynamic total completion time scheduling problem. Journal of
the Operational Research Society, 53(11):1275–1280, 2002.

21. M. Dell’Amico, A. Lodi, and F. Maffioli. Solution of the Cumulative Assign-
ment Problem with a well–structured Tabu Search method. Journal of Heuris-
tics, 5:123–143, 1999.

22. M. L. den Besten, T. Stützle, and M. Dorigo. Design of iterated local search
algorithms: An example application to the single machine total weighted tar-
diness problem. In E. J. W. Boers, J. Gottlieb, P. L. Lanzi, R. E. Smith,
S. Cagnoni, E. Hart, G. R. Raidl, and H. Tijink, editors, Applications of Evolu-
tionary Computing: Proceedings of EvoWorkshops 2001, volume 2037 of Lecture
Notes in Computer Science, pages 441–452. Springer-Verlag, Berlin, Germany,
2001.

23. J.-L. Deneubourg, S. Aron, S. Goss, and J.-M. Pasteels. The self-organizing
exploratory pattern of the argentine ant. Journal of Insect Behaviour, 3:159–
168, 1990.

24. J. Denzinger and T. Offerman. On cooperation between evolutionary algo-
rithms and other search paradigms. In Proceedings of Congress on Evolutionary
Computation – CEC’1999, pages 2317–2324, 1999.

25. M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolution-
ary Computation, 1(1):53–66, 1997.

26. M. Dorigo and T. Stützle. http://www.metaheuristics.net/, 2000. Visited in
January 2003.

27. M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge,
MA, 2004.

28. G. Dueck. New Optimization Heuristics. Journal of Computational Physics,
104:86–92, 1993.

29. G. Dueck and T. Scheuer. Threshold Accepting: A General Purpose Opti-
mization Algorithm Appearing Superior to Simulated Annealing. Journal of
Computational Physics, 90:161–175, 1990.

30. W. Feller. An Introduction to Probability Theory and its Applications. John
Whiley, 1968.

31. T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search proce-
dures. Journal of Global Optimization, 6:109–133, 1995.

32. P. Festa and M. G. C. Resende. GRASP: An annotated bibliography. In
C. C. Ribeiro and P. Hansen, editors, Essays and Surveys on Metaheuristics,
pages 325–367. Kluwer Academic Publishers, 2002.

33. A. Fink and S. Voß. Generic metaheuristics application to industrial engineer-
ing problems. Computers & Industrial Engineering, 37:281–284, 1999.

26 Christian Blum and Andrea Roli

34. M. Fleischer. Simulated Annealing: past, present and future. In C. Alexopoulos,
K. Kang, W. R. Lilegdon, and G. Goldsman, editors, Proceedings of the 1995
Winter Simulation Conference, pages 155–161, 1995.

35. F. Focacci, F. Laburthe, and A. Lodi. Local Search and Constraint Program-
ming. In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics,
volume 57 of International Series in Operations Research & Management Sci-
ence. Kluwer Academic Publishers, Norwell, MA, 2002.

36. D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE
Transactions on Neural Networks, 5(1):3–14, 1994.

37. G. B. Fogel, V. W. Porto, D. G. Weekes, D. B. Fogel, R. H. Griffey,
J. A. McNeil, E. Lesnik, D. J. Ecker, and R. Sampath. Discovery of RNA
structural elements using evolutionary computation. Nucleic Acids Research,
30(23):5310–5317, 2002.

38. L. J. Fogel. Toward inductive inference automata. In Proceedings of the In-
ternational Federation for Information Processing Congress, pages 395–399,
Munich, 1962.

39. L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through
Simulated Evolution. Wiley, 1966.

40. C. Fonlupt, D. Robilliard, P. Preux, and E. G. Talbi. Fitness landscapes
and performance of meta-heuristics. In S. Voß, S. Martello, I. Osman, and
C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search
Paradigms for Optimization. Kluwer Academic Publishers, 1999.

41. L. M. Gambardella and M. Dorigo. Ant Colony System hybridized with a
new local search for the sequential ordering problem. INFORMS Journal on
Computing, 12(3):237–255, 2000.

42. M. R. Garey and D. S. Johnson. Computers and intractability; a guide to the
theory of NP-completeness. W. H. Freeman, 1979.

43. M. Gendreau, G. Laporte, and J.-Y. Potvin. Metaheuristics for the capacitated
VRP. In P. Toth and D. Vigo, editors, The Vehicle Routing Problem, volume 9
of SIAM Monographs on Discrete Mathematics and Applications, pages 129–
154. SIAM, Philadelphia, 2002.

44. F. Glover. Heuristics for Integer Programming Using Surrogate Constraints.
Decision Sciences, 8:156–166, 1977.

45. F. Glover. Future paths for integer programming and links to artificial intelli-
gence. Computers & Operations Research, 13:533–549, 1986.

46. F. Glover. Tabu Search Part II. ORSA Journal on Computing, 2(1):4–32, 1990.
47. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
48. D. E. Goldberg. Genetic algorithms in search, optimization and machine learn-

ing. Addison Wesley, Reading, MA, 1989.
49. J. J. Grefenstette. A user’s guide to GENESIS 5.0. Technical report, Navy

Centre for Applied Research in Artificial Intelligence, Washington D.C., USA,
1990.

50. P. Hansen. The steepest ascent mildest descent heuristic for combinatorial pro-
gramming. In Congress on Numerical Methods in Combinatorial Optimization,
Capri, Italy, 1986.

51. P. Hansen and N. Mladenović. Variable Neighborhood Search for the p-Median.
Location Science, 5:207–226, 1997.

52. P. Hansen and N. Mladenović. An introduction to variable neighborhood
search. In S. Voß, S. Martello, I. Osman, and C. Roucairol, editors, Meta-

Hybrid Metaheuristics: An Introduction 27

Heuristics: Advances and Trends in Local Search Paradigms for Optimization,
chapter 30, pages 433–458. Kluwer Academic Publishers, 1999.

53. P. Hansen and N. Mladenović. Variable neighborhood search: Principles and
applications. European Journal of Operational Research, 130:449–467, 2001.

54. A. Hertz and D. Kobler. A framework for the description of evolutionary
algorithms. European Journal of Operational Research, 126:1–12, 2000.

55. T. Hogg and C. P. Williams. Solving the really hard problems with cooperative
search. In Proceedings of AAAI93, pages 213–235. AAAI Press, 1993.

56. J. H. Holland. Adaption in natural and artificial systems. The University of
Michigan Press, Ann Harbor, MI, 1975.

57. H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applica-
tions. Elsevier, Amsterdam, The Netherlands, 2004.

58. T. Ibaraki and K. Nakamura. Packing problems with soft rectangles. In
F. Almeida, M. Blesa, C. Blum, J. M. Moreno, M. Pérez, A. Roli, and
M. Sampels, editors, Proceedings of HM 2006 – 3rd International Workshop
on Hybrid Metaheuristics, volume 4030 of Lecture Notes in Computer Science,
pages 13–27. Springer-Verlag, Berlin, Germany, 2006.

59. L. Ingber. Adaptive simulated annealing (ASA): Lessons learned. Control and
Cybernetics – Special Issue on Simulated Annealing Applied to Combinatorial
Optimization, 25(1):33–54, 1996.

60. D. S. Johnson and L. A. McGeoch. The traveling salesman problem: a case
study. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in Com-
binatorial Optimization, pages 215–310. John Wiley & Sons, Chichester, UK,
1997.

61. T. Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis,
Univ. of New Mexico, Albuquerque, NM, 1995.

62. P. Kilby, P. Prosser, and P. Shaw. Guided Local Search for the Vehicle
Routing Problem with time windows. In S. Voß, S. Martello, I. Osman, and
C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search
Paradigms for Optimization, pages 473–486. Kluwer Academic Publishers,
1999.

63. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

64. H. R. Lourenço, O. Martin, and T. Stützle. A beginner’s introduction to Iter-
ated Local Search. In Proceedings of MIC’2001 – Meta–heuristics International
Conference, volume 1, pages 1–6, 2001.

65. H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In F. Glover
and G. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of Inter-
national Series in Operations Research & Management Science, pages 321–353.
Kluwer Academic Publishers, Norwell, MA, 2002.

66. V. Maniezzo. Exact and Approximate Nondeterministic Tree-Search Proce-
dures for the Quadratic Assignment Problem. INFORMS Journal on Comput-
ing, 11(4):358–369, 1999.

67. O. Martin and S. W. Otto. Combining Simulated Annealing with Local Search
Heuristics. Annals of Operations Research, 63:57–75, 1996.

68. O. Martin, S. W. Otto, and E. W. Felten. Large-step markov chains for the
traveling salesman problem. Complex Systems, 5(3):299–326, 1991.

69. D. Merkle, M. Middendorf, and H. Schmeck. Ant Colony Optimization for
Resource-Constrained Project Scheduling. IEEE Transactions on Evolutionary
Computation, 6(4):333–346, 2002.

28 Christian Blum and Andrea Roli

70. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equa-
tion of state calculations by fast computing machines. Journal of Chemical
Physics, 21:1087–1092, 1953.

71. Z. Michalewicz and M. Michalewicz. Evolutionary computation techniques
and their applications. In Proceedings of the IEEE International Conference
on Intelligent Processing Systems, pages 14–24, Beijing, China, 1997. Institute
of Electrical & Electronics Engineers, Incorporated.

72. M. Milano and A. Roli. MAGMA: A multiagent architecture for metaheuristics.
IEEE Trans. on Systems, Man and Cybernetics – Part B, 34(2):925–941, 2004.

73. P. Mills and E. Tsang. Guided Local Search for solving SAT and weighted
MAX-SAT Problems. In Ian Gent, Hans van Maaren, and Toby Walsh, editors,
SAT2000, pages 89–106. IOS Press, 2000.

74. M. Mitchell. An introduction to genetic algorithms. MIT press, Cambridge,
MA, 1998.

75. P. Moscato. Memetic algorithms: A short introduction. In F. Glover D. Corne
and M. Dorigo, editors, New Ideas in Optimization. McGraw-Hill, 1999.

76. G. L. Nemhauser and A. L. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, New York, 1988.

77. E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job-shop
problem. Management Science, 42(2):797–813, 1996.

78. I. H. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of Op-
erations Research, 63:513–623, 1996.

79. P. S. Ow and T. E. Morton. Filtered beam search in scheduling. International
Journal of Production Research, 26:297–307, 1988.

80. C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization – Algo-
rithms and Complexity. Dover Publications, Inc., New York, 1982.

81. L. S. Pitsoulis and M. G. C. Resende. Greedy Randomized Adaptive Search
procedure. In P. M. Pardalos and M. G. C. Resende, editors, Handbook of
Applied Optimization, pages 168–183. Oxford University Press, 2002.

82. M. Prais and C. C. Ribeiro. Reactive GRASP: An application to a matrix
decomposition problem in TDMA traffic assignment. INFORMS Journal on
Computing, 12:164–176, 2000.

83. S. Prestwich. Combining the Scalability of Local Search with the Pruning
Techniques of Systematic Search. Annals of Operations Research, 115:51–72,
2002.

84. S. Prestwich and A. Roli. Symmetry breaking and local search spaces. In Pro-
ceedings of CPAIOR 2005, volume 3524 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Germany, 2005.

85. J. Puchinger and G. R. Raidl. Combining metaheuristics and exact algorithms
in combinatorial optimization: A survey and classification. In J. Mira and
J. R. Álvarez, editors, Proceedings of the First International Work-Conference
on the Interplay Between Natural and Artificial Computation, volume 3562
of Lecture Notes in Computer Science, pages 41–53. Springer-Verlag, Berlin,
Germany, 2005.

86. G. R. Raidl. A unified view on hybrid metaheuristics. In F. Almeida, M. Blesa,
C. Blum, J. M. Moreno, M. Pérez, A. Roli, and M. Sampels, editors, Proceedings
of HM 2006 – 3rd International Workshop on Hybrid Metaheuristics, volume
4030 of Lecture Notes in Computer Science, pages 1–12. Springer-Verlag,
Berlin, Germany, 2006.

Hybrid Metaheuristics: An Introduction 29

87. I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973.

88. C. R. Reeves, editor. Modern Heuristic Techniques for Combinatorial Prob-
lems. Blackwell Scientific Publishing, Oxford, England, 1993.

89. C. R. Reeves and J. E. Rowe. Genetic Algorithms: Principles and Perspectives.
A Guide to GA Theory. Kluwer Academic Publishers, Boston (USA), 2002.

90. M. G. C. Resende and C. C. Ribeiro. A GRASP for graph planarization.
Networks, 29:173–189, 1997.

91. C. C. Ribeiro and M. C. Souza. Variable neighborhood search for the degree
constrained minimum spanning tree problem. Discrete Applied Mathematics,
118:43–54, 2002.

92. A. Roli. Symmetry-breaking and local search: A case study. In SymCon’04 – 4th
International Workshop on Symmetry and Constraint Satisfaction Problems.
2004.

93. A. Schaerf, M. Cadoli, and M. Lenzerini. LOCAL++: A C++ framework for
local search algorithms. Software Practice & Experience, 30(3):233–257, 2000.

94. G. R. Schreiber and O. C. Martin. Cut size statistics of graph bisection heuris-
tics. SIAM Journal on Optimization, 10(1):231–251, 1999.

95. P. Shaw. Using Constraint Programming and Local Search Methods to Solve
Vehicle Routing Problems. In M. Maher and J.-F. Puget, editors, Principle and
Practice of Constraint Programming – CP98, volume 1520 of Lecture Notes in
Computer Science, pages 417–431. Springer-Verlag, 1998.

96. A. Shmygelska and H. H. Hoos. An ant colony optimisation algorithm for the
2D and 3D hydrophobic polar protein folding problem. BMC Bioinformatics,
6(30):1–22, 2005.

97. M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Pérez-Uribe, and
A. Stauffer. A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired
Hardware Systems. IEEE Transactions on Evolutionary Computation, 1(1):83–
97, 1997.

98. L. Sondergeld and S. Voß. Cooperative intelligent search using adaptive mem-
ory techniques. In S. Voß, S. Martello, I. Osman, and C. Roucairol, editors,
Meta-Heuristics: Advances and Trends in Local Search Paradigms for Opti-
mization, chapter 21, pages 297–312. Kluwer Academic Publishers, 1999.

99. W. M. Spears, K. A. De Jong, T. Bäck, D. B. Fogel, and H. de Garis. An
overview of evolutionary computation. In P. B. Brazdil, editor, Proceedings of
the European Conference on Machine Learning (ECML-93), volume 667, pages
442–459, Vienna, Austria, 1993. Springer-Verlag.

100. P. F. Stadler. Landscapes and their correlation functions. Journal of Mathe-
matical Chemistry, 20:1–45, 1996. Also available as SFI preprint 95-07-067.

101. T. Stützle. Local Search Algorithms for Combinatorial Problems – Analysis,
Algorithms and New Applications. DISKI – Dissertationen zur Künstliken
Intelligenz. infix, Sankt Augustin, Germany, 1999.

102. T. Stützle and H. H. Hoos. MAX -MIN Ant System. Future Generation
Computer Systems, 16(8):889–914, 2000.

103. É. D. Taillard. Robust Taboo Search for the Quadratic Assignment Problem.
Parallel Computing, 17:443–455, 1991.

104. E.-G. Talbi. A Taxonomy of Hybrid Metaheuristics. Journal of Heuristics,
8(5):541–564, 2002.

30 Christian Blum and Andrea Roli

105. M. Toulouse, T. G. Crainic, and B. Sansò. An experimental study of the
systemic behavior of cooperative search algorithms. In S. Voß, S. Martello,
I. Osman, and C. Roucairol, editors, Meta-Heuristics: Advances and Trends in
Local Search Paradigms for Optimization, chapter 26, pages 373–392. Kluwer
Academic Publishers, 1999.

106. D. Urošević, J. Brimberg, and N. Mladenović. Variable neighborhood decom-
position search for the edge weighted k-cardinality tree problem. Computers
& Operations Research, 31:1205–1213, 2004.

107. P. J. M. Van Laarhoven, E. H. L. Aarts, and J. K. Lenstra. Job Shop Scheduling
by Simulated Annealing. Operations Research, 40:113–125, 1992.

108. M. D. Vose. The simple genetic algorithm: foundations and theory. MIT Press,
Cambridge, MA, 1999.

109. S. Voß, S. Martello, I. H. Osman, and C. Roucairol, editors. Meta-Heuristics:
Advances and Trends in Local Search Paradigms for Optimization. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1999.

110. S. Voß and D. Woodruff, editors. Optimization Software Class Libraries.
Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.

111. C. Voudouris. Guided Local Search for Combinatorial Optimization Problems.
PhD thesis, Department of Computer Science, University of Essex, 1997. pp.
166.

112. C. Voudouris and E. Tsang. Guided Local Search. European Journal of Oper-
ational Research, 113(2):469–499, 1999.

113. A. S. Wade and V. J. Rayward-Smith. Effective local search for the Steiner tree
problem. Studies in Locational Analysis, 11:219–241, 1997. Also in Advances in
Steiner Trees, ed. by Ding-Zhu Du, J. M.Smith and J. H. Rubinstein, Kluwer,
2000.

114. D. Whitley. The GENITOR algorithm and selective pressure: Why rank-based
allocation of reproductive trials is best. In Proceedings of the 3rd Interna-
tional Conference on Genetic Algorithms, ICGA 1989, pages 116–121. Morgan
Kaufmann Publishers, 1989.

Combining (Integer) Linear Programming
Techniques and Metaheuristics
for Combinatorial Optimization

Günther R. Raidl1 and Jakob Puchinger2

1 Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Vienna, Austria,
raidl@ads.tuwien.ac.at

2 NICTA Victoria Laboratory,
University of Melbourne, Melbourne, Australia,
jakobp@csse.unimelb.edu.au

Summary. Several different ways exist for approaching hard optimization prob-
lems. Mathematical programming techniques, including (integer) linear program-
ming based methods, and metaheuristic approaches are two highly successful streams
for combinatorial problems. These two have been established by different commu-
nities more or less in isolation from each other. Only over the last years a larger
number of researchers recognized the advantages and huge potentials of building
hybrids of mathematical programming methods and metaheuristics. In fact, many
problems can be practically solved much better by exploiting synergies between
these different approaches than by “pure” traditional algorithms. The crucial issue
is how mathematical programming methods and metaheuristics should be combined
for achieving those benefits. Many approaches have been proposed in the last few
years. After giving a brief introduction to the basics of integer linear programming,
this chapter surveys existing techniques for such combinations and classifies them
into ten methodological categories.

1 Introduction

Computationally difficult combinatorial optimization problems (COPs) fre-
quently appear in many highly important, practical fields. Creating good
timetables, determining optimal schedules for jobs which are to be processed
in a production line, designing efficient communication networks, container
loading, determining efficient vehicle routes, and various problems arising in
computational biology are a few examples. All these problems involve find-
ing values for discrete variables such that an optimal solution with respect
to a given objective function is identified subject to some problem specific
constraints.

G.R. Raidl and J. Puchinger: Combining (Integer) Linear Programming Techniques and Meta-

heuristics for Combinatorial Optimization, Studies in Computational Intelligence (SCI) 114,

31–62 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

32 Günther R. Raidl and Jakob Puchinger

Most COPs are difficult to solve. In theoretical computer science, this is
captured by the fact that many such problems are NP-hard [38]. Because of the
inherent difficulty and the enormous practical importance of NP-hard COPs,
a large number of techniques for solving such problems has been proposed in
the last decades. The available techniques for solving COPs can roughly be
classified into two main categories: exact and heuristic algorithms. Exact algo-
rithms are guaranteed to find an optimal solution and to prove its optimality
for every instance of a COP. The run-time, however, often increases dramati-
cally with a problem instance’s size, and often only small or moderately-sized
instances can be practically solved to proven optimality. For larger instances
the only possibility is usually to turn to heuristic algorithms that trade opti-
mality for run-time, i.e. they are designed to obtain good but not necessarily
optimal solutions in acceptable time.

When considering exact approaches, the following techniques have had
significant success: branch-and-bound, dynamic programming, constraint pro-
gramming, and in particular the large class of integer (linear) programming
(ILP) techniques including linear programming and other relaxation based
methods, cutting plane and column generation approaches, branch-and-cut,
branch-and-price, and branch-and-cut-and-price. See e.g. [52, 59] for general
introductions to these mathematical programming techniques.

On the heuristic side, metaheuristics (MHs) have proven to be highly use-
ful in practice. This category of problem solving techniques includes, among
others, simulated annealing, tabu search, iterated local search, variable neigh-
borhood search, various population-based models such as evolutionary algo-
rithms, memetic algorithms, and scatter search, and estimation of distribution
algorithms such as ant colony optimization. See Chap. 1 of this book as well
as e.g. [41, 48] for more general introductions to metaheuristics.

Looking at the assets and drawbacks of ILP techniques and metaheuris-
tics, the approaches can be seen as complementary to a large degree. As a
matter of fact, it appears to be natural to combine ideas from both streams.
Nevertheless, such hybrid approaches became more popular only over the last
years. Nowadays, a multitude of recent publications describe different kinds of
such hybrid optimizers that are often significantly more effective in terms of
running time and/or solution quality since they benefit from synergy. Inter-
national scientific events such as the Hybrid Metaheuristics workshop series
[13, 12, 6], which started in 2004, and the First Workshop on Mathematical
Contributions to Metaheuristics – Matheuristics 2006 further emphasize the
promise that is believed to lie in such hybrid systems. In fact, the artificial
term “matheuristics” has been established by the latter event for referring to
combinations of metaheuristics and mathematical programming methods.

In the next section, we will continue with a brief introduction of previously
suggested structural classifications of strategies for combining metaheuristics
and exact optimization techniques. Sect. 3 gives an overview on the basics
of prominent ILP techniques and introduces used notations. Various different
methodologies of utilizing ILP techniques in metaheuristics and vice versa,

Combining ILP Techniques and Metaheuristics 33

including annotated references to successful examples, are then reviewed in
Sects. 4 to 13. These MH/ILP hybridization methodologies are

• MHs for finding high-quality incumbents and bounds in branch-and-
bound,

• relaxations for guiding metaheuristic search,
• using the primal-dual relationship in MHs,
• following the spirit of local search in branch-and-bound,
• ILP techniques for exploring large neighborhoods,
• solution merging,
• ILP techniques as decoders for indirect or incomplete representations,
• multi-stage approaches,
• cut and column generation by metaheuristics,
• strategic guidance of search and collaboration.

2 Structural Models for Combining Metaheuristics
With Exact Approaches

Overviews on various structural models of combining exact techniques and
metaheuristics are given in [25, 67, 75].

Dumitrescu and Stützle [25] describe existing combinations which primar-
ily focus on local search approaches that are strengthened by the use of exact
algorithms. In their survey they concentrate on integration and exclude obvi-
ous combinations such as preprocessing.

In [67] we present a more general classification of existing approaches com-
bining exact and metaheuristic algorithms for combinatorial optimization in
which the following two main categories are distinguished, see also Fig. 1:

Collaborative Combinations. In a collaborative environment, the algorithms
exchange information, but are not part of each other. Exact and heuristic
algorithms may be executed sequentially, intertwined, or in parallel.

Integrative Combinations. In integrative models, one technique is a subordi-
nate embedded component of another technique. Thus, there is a distin-
guished master algorithm, which can be either an exact or a metaheuristic
algorithm, and at least one integrated slave.

Danna and Le Pape [21] present a similar classification of hybrid algo-
rithms, further including constraint programming. The authors discern a de-
composition scheme corresponding to the integrative combinations and a mul-
tiple search scheme corresponding to collaborative combinations. Four kinds
of optimization algorithms are considered in particular, namely polynomial
operations research algorithms, constraint programming, mixed integer pro-
gramming, and various forms of local search and metaheuristics. The main
part of their article consists of examples from the literature illustrating six

34 Günther R. Raidl and Jakob Puchinger

Collaborative Combinations

Sequential Execution

Integrative Combinations

Incorporating Metaheuristics in Exact Algorithms

Incorporating Exact Algorithms in Metaheuristics

Parallel or Intertwined Execution

Combinations of Exact Algorithms and Metaheuristics

Fig. 1. Major structural classification of exact/metaheuristic combinations accord-
ing to [67].

different collaborative schemes consisting of two of the above mentioned algo-
rithm classes.

A taxonomy on hybrid metaheuristics in general has been proposed by
Talbi [82]. Various hybridization schemes involving in particular evolution-
ary algorithms (EAs) are described by Cotta [19]. El-Abd and Kamel [26]
particularly addressed cooperative parallel architectures.

Raidl [75] tries to unify previous classifications and taxonomies of hybrid
metaheuristics and primarily distinguishes (a) the type of algorithms that are
hybridized, (b) the level of hybridization (high- or low-level), (c) the order
of execution (batch, interleaved, or parallel), and (d) the control strategy
(integrative or collaborative).

3 Linear and Integer Programming at a Glance

This section gives a short overview of the main concepts in integer program-
ming; for an in-depth coverage of the subject we refer to the books on linear
optimization by Bertsimas and Tsitsiklis [11] and on combinatorial and integer
optimization by Nemhauser and Wolsey [59] and Wolsey [88].

An integer (linear) program is an optimization problem involving integer
variables, an objective function linearly depending on the variables, and a set
of constraints expressed as linear (in)equalities. We consider the form

zILP = min{cx | Ax ≥ b, x ≥ 0, x ∈ Z
n}, (1)

where x is the n-dimensional integer variable column vector and c ∈ R
n an

n-dimensional row vector. Their dot-product cx is the objective function that
should be minimized. Matrix A ∈ R

m×n and the m-dimensional column vector
b ∈ R

m together define m inequality constraints.
Maximization problems can be converted into minimization problems by

simply changing the sign of c. Less-than constraints are similarly brought into

Combining ILP Techniques and Metaheuristics 35

greater-than-or-equal form by changing the sign of the corresponding coeffi-
cients, and equalities can be translated to pairs of inequalities. Thus, we can
consider all kinds of linear constraints by appropriate transformations. With-
out loss of generality, we may therefore restrict our following considerations
to minimization problems of the form (1).

A mixed integer (linear) program (MIP) involves a combination of integer
and real-valued variables, but is otherwise defined in the same way.

3.1 Relaxations and Duality

One of the most important concepts in integer programming are relaxations,
where some or all constraints of a problem are loosened or omitted. Relax-
ations are mostly used to obtain related, simpler problems which can be solved
efficiently yielding bounds and approximate (not necessarily feasible) solutions
for the original problem.

The linear programming relaxation of the ILP (1) is obtained by relaxing
the integrality constraint, yielding the linear program (LP)

zLP = min{cx | Ax ≥ b, x ≥ 0, x ∈ R
n}. (2)

Large instances of such LPs can be efficiently solved in practice using simplex-
based or interior-point algorithms. The linear programming relaxation always
provides a lower bound for the original minimization problem, i.e. zILP ≥ zLP,
since the search space of the ILP is contained in the one of the LP and the
objective function remains the same.

According to linear programming theory, we can further associate a dual
problem to each LP (2), which is defined by

wLP = max{ub | uA ≤ c, u ≥ 0, u ∈ R
m}. (3)

The dual of the dual LP is the original (primal) LP again. Important relations
between the primal problem and its dual are known as weak and strong duality
theorems, respectively:

• The value of every finite feasible solution to the dual problem is a lower
bound for the primal problem, and each value of a finite feasible solution
to the primal problem is an upper bound for the dual problem. As a
consequence, if the dual is unbounded, the primal is infeasible and vice
versa.

• If the primal has a finite optimal solution z∗LP, than its dual has the same
optimal solution w∗

LP = z∗LP and vice versa.

The complementary slackness conditions follow from the strong duality
theorem: Suppose x and u are feasible solutions for (2) and (3), respectively;
then they are optimal if and only if the following conditions hold:

u(Ax− b) = 0 and (4)
x(c− uA) = 0. (5)

36 Günther R. Raidl and Jakob Puchinger

In case of an integer linear problem, we have to differentiate between the
notions of weak and strong duals. A weak dual of an ILP (1) is any max-
imization problem w = max{w(u) | u ∈ SD} such that w(u) ≤ cx for all
x ∈ {Ax ≥ b, x ≥ 0, x ∈ Z

n}. An obvious weak dual of (1) is the dual (3)
of its LP relaxation (2). A strong dual w is a weak dual that further has an
optimal solution u∗ such that w(u∗) = cx∗ for an optimal solution x∗ of (1).
For solving ILPs, weak duals which are iteratively strengthened during the
course of the optimization process are often utilized.

Another standard relaxation technique for ILPs, which often yields sig-
nificantly tighter bounds than the LP relaxation, is Lagrangian relaxation
[33, 34]. Consider the ILP

zILP = min{cx | Ax ≥ b,Dx ≥ d, x ≥ 0, x ∈ Z
n}, (6)

where constraints Ax ≥ b are “nice” in the sense that the problem can be
efficiently solved when the m′ “complicating” constraints Dx ≥ b are dropped.
Simply dropping these constraints of course yields a relaxation, however, the
resulting bound will usually be weak due to the total ignorance of part of the
inequalities. In Lagrangian relaxation, constraints Dx ≥ d are replaced by
corresponding additional terms in the objective function:

zLR(λ) = min{cx + λ(d−Dx) | Ax ≥ b, x ≥ 0, x ∈ Z
n}. (7)

Vector λ ∈ R
m′

is the vector of Lagrangian multipliers, and for any λ ≥ 0,
zLR(λ) ≤ zILP, i.e. we have a valid relaxation of the ILP. We are now interested
in finding a specific vector λ yielding the best possible bound, which leads to
the Lagrangian dual problem

z∗LR = max
λ≥0

{zLR(λ)}. (8)

It can be shown that this Lagrangian dual is a piecewise linear and convex
function, and usually, it can be well solved by iterative procedures like the
subgradient method. A more elaborate algorithm that has been reported to
converge faster on several problems is the volume algorithm [10], whose name
is inspired by the fact that primal solutions are also considered, whose values
come from approximating the volumes below active faces of the dual problem.

Given a solution λ to the Lagrangian dual problem (8) and a corresponding
optimal solution x∗ to the Lagrangian relaxation (7) which is also feasible to
the original problem (6), i.e. Dx∗ ≥ d, the following complementary slackness
condition holds: x∗ is an optimal solution to the original problem (6) if and
only if

λ(d−Dx∗) = 0. (9)

It can be shown that the Lagrangian relaxation always yields a bound that
is at least as good as the one of the corresponding linear relaxation, providing
the Lagrangian dual problem is solved to optimality.

Combining ILP Techniques and Metaheuristics 37

A third general-purpose relaxation technique for ILPs is surrogate relax-
ation [43]. Here, some or all constraints are scaled by surrogate multipliers
and cumulated into a single inequality by addition of the coefficients. Similar
as in Lagrangian relaxation, the ultimate goal is to find surrogate multipliers
yielding the overall best bound. Unfortunately, this surrogate dual problem
has not such nice properties as the Lagrangian dual problem and solving it is
often difficult. However, if one is able to determine optimal surrogate multi-
pliers, the bound obtained for the ILP is always at least as good as (and often
better than) those obtained from linear and Lagrangian relaxation.

3.2 Cutting Plane Approach

When modeling COPs as ILPs, an important goal is to find a strong formu-
lation, for which the LP relaxation provides a solution which lies in general
not too far away from the integer optimum. For many COPs it is possible to
strengthen an existing ILP formulation significantly by including further in-
equalities. Often, the number of such constraints grows exponentially with the
problem size. This, however, means that already solving the LP relaxation by
standard techniques might be too costly in practice due to the exponentially
sized LP. Dantzig et al. [23] proposed the cutting plane approach for this pur-
pose, which usually only considers a small subset of all constraints explicitly
and nevertheless is able to determine an optimal solution to the whole LP.

This cutting plane approach starts with a small subset of initial inequalities
and solves this reduced LP. Then, it tries to find inequalities that are not
satisfied by the obtained solution but are valid for the original problem (i.e.
contained in the full LP). These violated constraints are called cuts or cutting
planes. They are added to the current reduced LP, and the LP is resolved. The
whole process is iterated until no further cuts can be found. If the algorithm
is able to provide a proof that no further violated inequality exists, the finally
obtained solution is also optimal with respect to the original full LP. The
subproblem of identifying cuts is called separation problem, and it is of crucial
importance to solve it efficiently, since many instances of it must usually be
solved until the cutting plane approach terminates successfully.

Note that from a theoretical point of view it is possible to solve any ILP
using a pure cutting plane approach with appropriate classes of cuts. There
exist generic types of cuts, such as the Chvatal-Gomory cuts [88], which guar-
antee such a result. In practice, however, it may take a long time for such a
cutting plane approach to converge to the optimum, partly because it is often
a hard subproblem to separate effective cuts. The cutting plane method is
therefore often combined with other methods, as we will see below.

3.3 Column Generation Approach

Instead of considering many inequalities, it is often also a reasonable option
to formulate a problem in a strong way via a large number of variables, which

38 Günther R. Raidl and Jakob Puchinger

correspond to columns in the coefficient matrix. The (delayed) column gen-
eration approach starts with a small subset of these variables and solves the
corresponding restricted LP. Then, the algorithm tries to identify one or more
not yet considered variables, whose inclusion might lead to an improved so-
lution. This subproblem is called pricing problem, and for a minimization
problem a variable is suitable in this sense if and only if it has negative re-
duced costs. After including such newly found variables in the restricted LP,
the LP is resolved and the process iterated until it can be proven that no
further variables with negative reduced costs exist, i.e. all variables price out
correctly. An optimal solution for the original complete LP is then obtained.
Column generation can be seen as the dual of the cutting plane approach,
since inequalities correspond to variables in the dual LP.

A classical example where column generation is highly successful is the cut-
ting stock problem [39]. A decision variable is defined for each possible cutting
pattern, clearly yielding an exponential number of variables, and the pricing
problem corresponds to the classical knapsack problem, which can be solved
in pseudo-polynomial time. For a thorough review on column generation, we
refer to [55].

A general technique for obtaining possibly strengthened ILP formulations
is the Dantzig-Wolfe decomposition. It transforms original variables into linear
combinations of extreme points and extreme rays of the original search space,
yielding a potentially exponential number of variables. The resulting problems
are usually solved by column generation.

3.4 Branch-and-Bound Methods

By solving the LP relaxation of an ILP problem, we usually only get a lower
bound on the optimal integer solution value, and the solution will in gen-
eral also contain fractional values. For hard COPs, this typically also holds
for strengthened formulations and when cutting plane or column generation
procedures have been applied, although the obtained bound might be much
better. The standard way of continuing in order to finally determine an integer
solution is branch-and-bound (B&B). This is a divide-and-conquer approach
that solves an ILP by recursively splitting it into disjoint subproblems. Bounds
are calculated for the subproblems, and only those potentially holding an op-
timal solution are kept for further processing, whereas the others are pruned
from the B&B tree.

The main idea in LP-based B&B is to use an LP relaxation of the ILP
being solved in order to derive a lower bound for the objective function. A
standard way for branching is to pick one of the fractional variables, say xi

with its current LP-value x∗
i , and define as first subproblem the ILP with

the additional inequality xi ≤ �x∗
i � and as second subproblem the ILP with

inequality xi ≥ x∗
i �. For these subproblems with the additional branching

constraints, the LP is resolved, eventually leading to increased lower bounds.
Usually, primal heuristics are also applied to each subproblem in order to

Combining ILP Techniques and Metaheuristics 39

possibly obtain an improved feasible solution and a corresponding global upper
bound.

Combining B&B with cutting plane algorithms yields the highly effective
class of branch-and-cut algorithms which are widely used in commercial ILP-
solvers. Cuts are generated at the nodes of the B&B tree to tighten the bounds
of the LP relaxations or to exclude infeasible solutions.

The combination of B&B with column generation results in branch-and-
price algorithms, where new columns may be generated at each node in order
to optimally solve their corresponding LP relaxations.

Finally, branch-and-cut-and-price refers to the combination of all of the
above methods, often resulting in highly specialized and most powerful opti-
mization algorithms.

We now turn to the different methodologies of hybridizing these ILP tech-
niques (and some further mathematical programming approaches) with meta-
heuristics.

4 Metaheuristics for Finding High-Quality Incumbents
and Bounds in B&B

Almost any effective B&B approach depends on some heuristic for deriving
a promising initial solution, whose objective value is used as original upper
bound. Furthermore, and as already mentioned, heuristics are typically also
applied to some or all subproblems of the B&B tree in order to eventually
obtain new incumbent solutions and corresponding improved upper bounds. In
order to keep the B&B tree relatively small, good upper bounds are of crucial
interest. Therefore, metaheuristics are often also applied for these purposes.

However, when performing a relatively expensive metaheuristic at each
node of a large B&B tree in a straight-forward, independent way, the ad-
ditional computational effort often does not pay off. Different calls of the
metaheuristic might perform more or less redundant searches in similar areas
of the whole search space. A careful selection of the B&B tree nodes for which
the metaheuristic is performed and how much effort is put into each call is
therefore crucial.

As an example, Woodruff [89] describes a chunking-based selection strategy
to decide at each node of the B&B tree whether or not reactive tabu search is
called. The chunking-based strategy measures a distance between the current
node and nodes already explored by the metaheuristic in order to bias the
selection toward distant points. Reported computational results indicate that
adding the metaheuristic improves the B&B performance.

40 Günther R. Raidl and Jakob Puchinger

5 Relaxations for Guiding Metaheuristic Search

An optimal solution for a relaxation of the original problem often indicates
in which areas of the original problem’s search space good or even optimal
solutions might lie. Solutions to relaxations are therefore frequently exploited
in (meta-)heuristics. In the following, we study different possibilities for such
approaches.

5.1 Creating Promising Initial Solutions

Sometimes an optimal solution to a relaxation can be repaired by a problem-
specific procedure in order to make it feasible for the original problem and to
use it as promising starting point for a subsequent metaheuristic (or exact)
search. Often, the linear programming (LP) relaxation is used for this purpose,
and only a simple rounding scheme is needed.

For example, Raidl and Feltl [73] describe a hybrid genetic algorithm (GA)
for the generalized assignment problem, in which the LP relaxation of the
problem is solved, and its solution is exploited by a randomized rounding pro-
cedure to create an initial population of promising integral solutions. These
solutions are, however, often infeasible; therefore, randomized repair and im-
provement operators are additionally applied, yielding an even more mean-
ingful initial population for the GA.

Plateau et al. [64] combine interior point methods and metaheuristics for
solving the multidimensional knapsack problem (MKP). In a first step an
interior point method is performed with early termination. By rounding and
applying several different ascent heuristics, a population of different feasible
candidate solutions is generated. This set of solutions is then used as initial
population for a path-relinking/scatter search. Obtained results show that the
presented combination is a promising research direction.

5.2 Guiding Repairing, Local Improvement, and Variation
Operators

Beside initialization, optima of LP relaxations are often exploited for guiding
local improvement or the repairing of infeasible candidate solutions. For ex-
ample, in [74] the MKP is considered, and variables are sorted according to
increasing LP-values. A greedy repair procedure considers the variables in this
order and removes items from the knapsack until all constraints are fulfilled.
In a greedy improvement procedure, items are considered in reverse order and
included in the knapsack as long as no constraint is violated.

Many similar examples for exploiting LP solutions, also including a biasing
of variation operators like recombination and mutation in EAs, exist.

Combining ILP Techniques and Metaheuristics 41

5.3 Exploiting Dual Variables

Occasionally, dual variable values are also exploited. Chu and Beasley [15]
make use of them in their GA for the MKP by calculating so-called pseudo-
utility ratios for the primal variables and using them in similar ways as de-
scribed above for the primal solution values. These pseudo-utility ratios tend
to give better indications of the likeliness of the corresponding items to be
included in an optimal solution; see [76] for more details on GA approaches
for the MKP.

5.4 Variable Fixing: Reduction to Core Problems

Another possibility of exploiting the optimal solution of an LP relaxation is
more direct and restrictive: Some of the decision variables having integral val-
ues in the LP-optimum are fixed to these values, and the subsequent optimiza-
tion only considers the remaining variables. Such approaches are sometimes
also referred to as core methods, since the original problem is reduced and only
its “hard core” is further processed. Obviously, the selection of the variables
in the core is critical.

The core concept has originally been proposed for the 0–1 knapsack prob-
lem [9] and also led to several very successful exact algorithms such as [63].
Puchinger et al. [72] extend this approach for the MKP and investigated sev-
eral variants for choosing approximate cores. Considering binary decision vari-
ables x1, . . . , xn ∈ {0, 1}, the basic technique first sorts all variables according
to some specific efficiency measure and determines the so-called split-interval,
which is the subsequence of the variables starting with the first and ending
with the last fractional variable. Different efficiency measures are studied, and
it is shown that the above already mentioned pseudo-utility ratios, which are
determined from dual variable values, are in general a good choice for the
MKP. The split interval is finally extended to an approximate core by adding
δ > 0 further variables on each side of the center of the split-interval. Em-
pirical investigations in [72] indicate that already with δ = 0.1n, high quality
solutions with average optimality gaps less than 0.1% can be achieved when
solving the remaining core problem to proven optimality. Applying an EA
and relaxation guided variable neighborhood search to the reduced problem
instances yields significantly better solutions in shorter time than when ap-
plying these metaheuristics to the original instances.

Staying with the MKP, another example for exploiting the LP relaxation
within metaheuristics is the hybrid tabu search algorithm from Vasquez and
Hao [86]. Here, the search space is reduced and partitioned via additional
constraints fixing the total number of items to be packed. Bounds for these
constraints are calculated by solving modified LP relaxations. For each re-
maining part of the search space, tabu search is independently applied, start-
ing with a solution derived from the LP relaxation of the partial problem.
The approach has further been improved in [87] by additional variable fixing.

42 Günther R. Raidl and Jakob Puchinger

To our knowledge, this method is currently the one yielding the best results
on a commonly used library of MKP benchmark instances.

5.5 Exploiting Lagrangian Relaxation

Also other relaxations besides the LP relaxation are occasionally successfully
exploited in conjunction with metaheuristics. The principal techniques for
such combinations are similar. A successful example is the hybrid Lagrangian
GA for the prize collecting Steiner tree problem from Haouaria and Siala [47].
They perform a Lagrangian decomposition on a minimum spanning tree for-
mulation of the problem and apply the volume algorithm for solving the La-
grangian dual. After termination, the genetic algorithm is started and exploits
results obtained from the volume algorithm in several ways:

• Graph reduction: The volume algorithm creates a sequence of intermediate
spanning trees as a by-product. All edges appearing in these intermediate
trees are marked, and only this reduced edge set is further considered by
the GA; i.e. a core of edges is derived from the intermediate primal results
when solving the Lagrangian dual.

• Initial population: A subset of diverse initial solutions is created by a La-
grangian heuristic, which greedily generates solutions based on the reduced
costs appearing as intermediate results in the volume algorithm.

• Objective function: Instead of the original objective function, an alternate
one is used, which is based on the reduced costs that are finally obtained
by the volume algorithm. The idea is to guide the search into regions of
the search space, where also better solutions with respect to the original
objective function can presumably be found.

Pirkwieser et al. [62] described a similar combination of Lagrangian de-
composition and a GA for the knapsack constrained maximum spanning tree
problem. By Lagrangian relaxation, the problem is decomposed into a mini-
mum spanning tree and a 0–1 knapsack problem. Again, the volume algorithm
is employed to solve the Lagrangian dual. While graph reduction takes place
as before, the objective function remains unchanged. Instead, final reduced
costs are exploited for biasing the initialization, recombination, and mutation
operators. In addition, the best feasible solution obtained from the volume
algorithm is used as a seed in the GA’s initial population. Results indicate
that the volume algorithm alone is already able to find solutions of extremely
high quality also for large instances. These solutions are polished by the GA,
and in most cases proven optimal solutions are finally obtained.

6 Using the Primal-Dual Relationship in Metaheuristics

Using the primal-dual relationship in metaheuristics is a relatively recent ap-
proach; only a few papers have been published in this area. One idea is to

Combining ILP Techniques and Metaheuristics 43

take advantage of the complementary slackness conditions (5) or (9). Starting
from a feasible dual solution u we try to find a primal feasible solution x sat-
isfying these conditions with respect to u. On the other hand, if one searches
in the dual as well as in the primal space, one may be able to give meaningful
performance guarantees for heuristically obtained primal feasible solutions.

6.1 Generating Tight Bounds

Hansen et al. [44] present a primal-dual variable neighborhood search (VNS)
for the simple plant location problem (SPLP). Since the tackled instances are
too big to be solved by linear programming techniques, the authors propose
to first perform a variable neighborhood decomposition search to the SPLP
yielding a primal feasible solution. An initial, possibly infeasible, dual solu-
tion is then devised by exploiting the complementary slackness conditions.
This solution is locally improved by applying variable neighborhood descent
(VND), which also reduces a potential infeasibility. An exact dual solution
is required to derive a correct lower bound for the SPLP. It is obtained by
applying the recently developed sliding simplex method. The authors further
use the generated bounds to strengthen a B&B algorithm exactly solving the
SPLP. The presented computational experiments show the efficiency of the
proposed approach, which is able to solve previously unsolved instances to
proven optimality.

6.2 Integrating Primal and Dual Solution Approaches

Rego [77] describes a metaheuristic framework, called relaxation adaptive
memory programming (RAMP), which combines principles of Lagrangian and
surrogate relaxation with those of adaptive memory programming (AMP) [81].
He further proposes a primal-dual extension PD-RAMP and a specific imple-
mentation of PD-RAMP based on Lagrangian and surrogate constraint relax-
ation on the dual side and scatter search and path-relinking on the primal
side.

Lagrangian and surrogate relaxation are combined into a cross-parametric
relaxation method, which uses subgradient optimization to generate good sur-
rogate constraints. Dual solutions are projected into the primal space by ap-
plying constructive and improvement heuristics. The approach yields primal
solutions as well as dual bounds and may therefore be able to prove opti-
mality or give performance guarantees for generated solutions. Using AMP
for projecting solutions from the dual to the primal space yields the RAMP
framework. The authors propose to use frequency based tabu search or a
method were tabu search and path-relinking are combined. The primal-dual
RAMP approach switches back and forth between a relaxation method and a
path-relinking in the primal space, both updating the same reference set. The
author describes preliminary computational experiments, where PD-RAMP
is dominating the performance of the best known methods from the literature
for different variants of the generalized assignment problem.

44 Günther R. Raidl and Jakob Puchinger

7 Following the Spirit of Local Search in B&B

Most metaheuristics are based on the principle of local search, i.e. starting
from an initial solution, a certain neighborhood around it is investigated, and
if a better solution can be identified, it becomes the new incumbent solution;
this process is repeated. Thus, the central idea is to focus the search for
better solutions on regions of the search space nearby already identified, good
solutions.

In comparison, most B&B algorithms choose the next B&B tree node to
be processed by a best-first strategy: a node with smallest lower bound is
always selected, since it is considered to be most promising to contain an
optimal solution. This approach is often the best strategy for minimizing the
total number of nodes that need to be explored until finding an optimum
and proving its optimality. However, good complete solutions and thus also
tight upper bounds are often found late during this search. The best-first
node selection strategy typically “hops around” on the search tree and in the
search space, and does not stay focused on subregions. When no strong primal
heuristic is applied for determining promising complete solutions, the best-
first strategy is often combined with an initial diving, in which a depth-first
strategy is followed at the beginning until some feasible solution is obtained.
In depth-first search, the next node to be processed is always one that has
been most recently been created by branching.

In the last years, several more sophisticated concepts have been proposed
with the aim to intensify B&B-search in an initial phase to neighborhoods
of promising incumbents in order to quickly identify high quality heuristic
solutions. In some sense, we can consider these strategies to “virtually” execute
a metaheuristic. We will review some of these strategies in the following.

7.1 Guided Dives

Danna et al. [22] describe guided dives, which are a minor, but effective mod-
ification of the already mentioned simple diving by temporarily switching to
depth-first search. Consider a classical branching in LP-based B&B over a
fractional variable, as described in Sect. 3.4. The subproblem to be processed
next in case of guided dives is always the one in which the branching variable
is allowed to take the value it has in a current incumbent solution. Diving is
therefore biased towards the neighborhood of the given incumbent. Instead of
performing only a single dive at the beginning, guided dives are repeatedly ap-
plied in regular intervals during the whole optimization. While this strategy
is trivial to implement, experimental results indicate significant advantages
over standard node selection strategies.

7.2 Local Branching

Fischetti and Lodi [32] propose local branching, an exact approach introduc-
ing the spirit of classical k-OPT local search in a generic branch-and-cut

Combining ILP Techniques and Metaheuristics 45

based MIP solver. They consider general MIPs with 0–1 variables. Let
x = (x1, . . . , xn) be the vector of all variables and B ⊆ {1, . . . , n} be the
index set of the 0–1 variables. The following local branching constraint is
used for defining a k-OPT neighborhood around a given incumbent solution
x = (x1, . . . , xn):

∆(x, x) :=
∑

j∈S

(1− xj) +
∑

x∈B\S

(xj) ≤ k, (10)

where S = {j ∈ B | xj = 1} being the index set of 0–1 variables set to 1 in
the incumbent solution. Note that ∆(x, x) resembles the classical Hamming
distance between x and x.

In the main algorithm, the whole problem is partitioned into the k-OPT
neighborhood of an initial solution x and the rest by branching according to
inequality (10) and the reverse constraint ∆(x, x) ≥ k + 1, respectively. The
MIP solver is then enforced to completely solve the k-OPT neighborhood
before considering the rest.

If an improved solution x′ has been found in the k-OPT neighborhood, a
new subproblem ∆(x, x′) ≤ k is split off from the rest and solved in the same
way; this process is repeated until no further improvements can be achieved.
Finally, the remaining problem corresponding to all not yet considered parts
of the search space is processed in a standard way.

This basic mechanism is extended by introducing time limits, automati-
cally modifying the neighborhood size k, and adding diversification strategies
in order to improve performance. Furthermore, an extension of the branching
constraint for general integer variables is also proposed. Reported results on
various benchmark MIP instances using CPLEX1 as MIP solver indicate the
advantages of the approach in terms of an earlier identification of high-quality
heuristic solutions.

Hansen et al. [46] present a variant of the local branching approach in
which they follow more closely the standard VNS strategy [45] when switching
between neighborhoods. Improved results are reported.

Another variant of the original local branching scheme is described by
Fischetti et al. [31]. They consider in particular problems in which the set of
variables partitions naturally into two levels, with the property that fixing the
values of the first-level variables yields a substantially easier subproblem.

Lichtenberger [53] describes an extended local branching framework in
which several k-OPT neighborhoods induced by a set of candidate solutions
can be processed in a pseudo-simultaneous (intertwined) way. This allows the
“virtual” implementation of population-based metaheuristics like EAs on top
of a B&B-based MIP solver. The framework was tested on the MKP. In order
to keep the computational effort for processing the k-OPT neighborhoods
reasonably low, an additional variable fixing strategy is applied.

1 http://www.ilog.com

46 Günther R. Raidl and Jakob Puchinger

7.3 The Feasibility Pump

Sometimes, it is already hard to identify any feasible initial solution for a
MIP. For this purpose, Fischetti et al. [30] suggest an algorithm called feasi-
bility pump. The method starts by solving the LP relaxation yielding a frac-
tional solution x∗. A (usually infeasible) integer solution x is derived by simple
rounding. From it, the nearest feasible point in the polytope defined by the
LP relaxation is determined by solving a linear program with the Hamming
distance ∆(x, x) as objective function. When the obtained solution is integral,
a feasible solution for the original MIP has been found; otherwise, the process
is repeated.

7.4 Relaxation Induced Neighborhood Search

Danna et al. [22] further suggest an alternative approach called relaxation
induced neighborhood search (RINS) in order to explore the neighborhoods of
promising MIP solutions more intensively. The main idea is to occasionally
devise a sub-MIP at a node of the B&B tree that corresponds to a special
neighborhood of an incumbent solution: First, variables having the same val-
ues in the incumbent and in the current solution of the LP relaxation are fixed.
Second, an objective cutoff based on the objective value of the incumbent is
set. Third, a sub-MIP is solved on the remaining variables. The time for solv-
ing this sub-MIP is limited. If a better incumbent could be found during this
process, it is passed to the global MIP-search which is resumed after the sub-
MIP termination. In the authors’ experiments, CPLEX is used as MIP solver,
and RINS is compared to standard CPLEX, local branching, combinations
of RINS and local branching, and guided dives. Results indicate that RINS
often performs best. The current version 10 of CPLEX also includes RINS as
a standard strategy for quickly obtaining good heuristic solutions.

8 ILP Techniques for Exploring Large Neighborhoods

A common approach in more sophisticated local search based metaheuristics is
to search neighborhoods by means of clever exact algorithms. If the neighbor-
hoods are chosen appropriately, they can be relatively large and nevertheless
an efficient search for the best neighbor is still reasonable. Such techniques are
known as very large-scale neighborhood (VLSN) search [3]. Probably most of
today’s combinations of local search based metaheuristics and ILP techniques
follow this approach. In the following, we present some examples.

In Dynasearch [17, 18] exponentially large neighborhoods are explored by
dynamic programming. A neighborhood where the search is performed con-
sists of all possible combinations of mutually independent simple search steps,
and one Dynasearch move corresponds to a set of independent moves that are

Combining ILP Techniques and Metaheuristics 47

executed in parallel in a single local search iteration. Independence in the con-
text of Dynasearch means that the individual moves do not interfere with each
other; in this case, dynamic programming can be used to find the best combi-
nation of independent moves. Dynasearch is restricted to problems where the
single search steps are independent, and to our knowledge it has so far only
been applied to problems where solutions are represented by permutations.
Ergun and Orlin [28] investigated several such neighborhoods in particular for
the traveling salesman problem.

For a class of partitioning problems, Thompson et al. [84, 85] suggest the
concept of a cyclic exchange neighborhood, which is based on the transfer of
single elements between an unrestricted number of subsets in a cyclic man-
ner. A 2-exchange move can be seen as the simplest case of a cyclic exchange
having length two. To efficiently determine a best cyclic exchange for a cur-
rent solution, a weighted, directed graph is constructed, in which each arc
represents a possible transfer of a single element and the arc’s weight cor-
responds to the induced difference in the objective value of the solution. A
best cyclic exchange can then be derived by finding a smallest negative-cost
subset-disjoint cycle in this graph. The authors consider exact and heuristic
methods for this purpose.

Puchinger et al. [71] describe a combined GA/B&B approach for solving a
real-world glass cutting problem. The GA uses an order-based representation,
which is decoded using a greedy heuristic. The B&B algorithm is applied with
a certain probability enhancing the decoding phase by generating locally opti-
mal subpatterns. Reported results indicate that the approach of occasionally
solving subpatterns to optimality often increase the overall solution quality.

Büdenbender et al. [14] present a tabu search hybrid for solving a real-
world direct flight network design problem. Neighborhoods are created by
fixing a large subset of the integer variables corresponding to the performed
flights and allowing the other variables to be changed. CPLEX is used to solve
the reduced problems corresponding to these neighborhoods. Diversification
is performed by closing flights frequently occurring in previously devised so-
lutions.

Prandtstetter and Raidl [65] apply variable neighborhood search to the car
sequencing problem and also use CPLEX for searching large neighborhoods.
A subset of the scheduled cars is selected, removed from the schedule, and
reinserted in an optimal way. The neighborhoods differ in the technique used
to choose the cars and their number. Results indicate that this approach can
compete well with leading algorithms from a competition organized by the
French Operations Research Society ROADEF in 2005.

Hu et al. [49] propose a VNS metaheuristic for the generalized minimum
spanning tree problem. The approach uses two dual types of representations
and associated exponentially large neighborhoods. Best neighbors are iden-
tified by means of dynamic programming algorithms, and – in case of the
so-called global subtree optimization neighborhood – by solving an ILP for-
mulation with CPLEX. Experimental results indicate that each considered

48 Günther R. Raidl and Jakob Puchinger

neighborhood contributes well to the whole success, and the algorithm ob-
tains significantly better solutions than previous metaheuristics.

Puchinger and Raidl [68] suggest a new variant of VNS: relaxation guided
variable neighborhood search. It is based on the general VNS scheme and
a new VND algorithm. The ordering of the neighborhood structures in this
VND is determined dynamically by solving relaxations of them. The objective
values of these relaxations are used as indicators for the potential gains of
searching the corresponding neighborhoods. The proposed approach has been
tested on the MKP. Computational experiments involving several ILP-based
neighborhoods show that relaxation guided VNS is beneficial to the search,
improving the obtained results. The concept is more generally applicable and
seems to be promising for many other combinatorial optimization problems
approached by VNS.

9 Solution Merging

In evolutionary algorithms (EAs), recombination is a traditionally essential
operator. Its purpose is to derive a new candidate solution from two (or more)
selected parental solutions by merging their attributes. Usually, this is done
in a simple way, which is heavily based on random decisions. While such
an operation is computationally cheap, created offspring is often worse than
respective parent solutions, and many repetitions are typically necessary for
achieving improvements.

As an alternative, one can put more effort into the determination of a new
solution that is constructed entirely or mainly of attributes appearing in the
parents. An established example from the domain of metaheuristics following
this idea is path-relinking [42]. In the search space, this approach traces a
path from one parent to another by always only exchanging a single attribute
(or, more generally, performing a simple move towards the second parent). An
overall best solution found on this path is finally taken as result.

This concept can further be extended by considering not just solutions on
an individual path between two parents, but the whole subspace of solutions
made up of parental properties only. An optimal merging operation returns
a best solution from this set. Identifying such a solution often is a hard op-
timization problem on its own, but due to the limited number of different
properties appearing in the parents, it can often be solved in reasonable time
in practice.

Merging has already been successfully applied multiple times. Applegate
et al. [7] were one of the first and describe such an approach for the traveling
salesman problem. They derive a set of diverse tours by a series of runs of an
iterated local search algorithm. The edge-sets of these solutions are merged
and the traveling salesman problem is finally solved to optimality on this
strongly restricted graph. In this way a solution is achieved that is typically
superior to the best solution of the iterated local search.

Combining ILP Techniques and Metaheuristics 49

Klau et al. [50] follow a similar idea and combine a memetic algorithm
with integer programming to heuristically solve the prize-collecting Steiner
tree problem. The proposed algorithmic framework consists of three parts:
extensive preprocessing, a memetic algorithm, and an exact branch-and-cut
algorithm applied as post-optimization procedure to the merged final solutions
of the memetic algorithm.

Besides the one-time application of merging to a set of heuristically de-
termined solutions, merging can also replace the classical crossover operator
in EAs. Aggarwal et al. [1] originally suggested such an approach for the in-
dependent set problem and called it optimized crossover. The subproblem of
combining two independent sets to obtain the largest independent set in their
union can be solved by an efficient algorithm.

Ahuja et al. [2] extend this concept to genetic algorithms for the quadratic
assignment problem. They present a matching-based optimized crossover
heuristic that finds an optimized child quickly in practice. This technique
can also be applied to other assignment-type problems, as it relies on the
structure of the problem rather than the objective function.

Cotta et al. [20] discuss the concept of merging in the light of a framework
for hybridizing B&B with EAs. The authors recall the theoretical concepts
on formal analysis (formae are generalized schemata), such as the dynastic
potential of two chromosomes x and y, which is the set of individuals that only
carry information contained in x and y. Based on these concepts the idea of
dynastically optimal recombination is developed. This results in an operator
exploring the potential of the recombined solutions using B&B, providing
the best possible combination of the ancestors’ features that can be attained
without introducing implicit mutation. Extensive computational experiments
on different benchmark sets show the usefulness of the approach.

Marino et al. [56] present an approach where a GA is combined with an
exact method for the linear assignment problem (LAP) to solve the graph
coloring problem. The LAP algorithm is incorporated into the crossover op-
erator and generates an optimal permutation of colors within a cluster of
nodes, thereby preventing the offspring from being less fit than its parents.
The algorithm does not outperform other approaches, but provides compa-
rable results. The main conclusion is that solving the LAP in the crossover
operator strongly improves the performance of the GA in comparison to the
GA using a classical crossover.

Clements et al. [16] propose a column generation approach in order to solve
a production-line scheduling problem. Each feasible solution of the problem
consists of a line-schedule for each production line. First, the squeaky wheel
optimization (SWO) heuristic is used to generate feasible solutions to the
problem. SWO is a heuristic using a greedy algorithm to construct a solution,
which is then analyzed in order to find the problematic elements. Higher prior-
ities, indicating that these elements should be considered earlier by the greedy
algorithm, are assigned to them and the process restarts until a termination
condition is reached. SWO is called several times in a randomized way in order

50 Günther R. Raidl and Jakob Puchinger

to generate a set of diverse solutions. In the second phase, the line-schedules
contained in these solutions are used as columns of a set-partitioning formu-
lation for the problem, which is solved by a general purpose MIP solver. This
process always provides a solution which is at least as good as, but usually
better than the best solution devised by SWO. Reported results indicate that
SWO performs better than a tabu search algorithm.

From a more theoretical point, Eremeev [27] studies the computational
complexity of producing the best possible offspring in an optimized crossover
for 0–1 ILPs. By means of efficient reductions of the merging subproblem, he
shows the polynomial solvability for the maximum weight set packing problem,
the minimum weight set partition problem, and for a version of the simple
plant location problem.

For general mixed integer programming, Rothberg [79] describes a tight
integration of an EA in a branch-and-cut based MIP solver. In regular inter-
vals, a certain number of iterations of the EA is performed as B&B tree node
heuristic. Recombination follows the idea of solution merging by first fixing
all variables that are common in selected parental solutions. The values of the
remaining variables are then determined by applying the MIP solver to the
reduced subproblem. Mutation is performed by selecting one parent, fixing
a randomly chosen set of variables, and again solving the resulting reduced
subproblem by the MIP solver. Since the number of variables to be fixed is a
critical parameter, an adaptive scheme is used to control it. Performed exper-
iments indicate that this hybrid approach is able to find significantly better
solutions than other heuristic methods for several very difficult MIPs. The
method is now also integrated in version 10 of the commercial MIP solver
CPLEX.

Last but not least, it should be pointed out that there exists a strong
relation between large neighborhood search and solution merging. In fact,
solution merging can also be seen as exploring a large neighborhood defined
by two or more parental solutions.

10 ILP Techniques as Decoders for Indirect
or Incomplete Representations

Often, candidate solutions are only indirectly or incompletely represented in
metaheuristics, and an “intelligent” decoding function is applied for deter-
mining an actual, complete solution. This in particular holds for many GAs.
Sometimes, ILP techniques are successfully used for the decoding step.

It is relatively straight-forward to approach a MIP by splitting it into the
integer and the continuous variable parts. One can then apply a metaheuris-
tic to optimize the integer part only; before evaluating a solution, a linear
programming solver is applied in order to augment the integer part with an
optimal choice of continuous variable values. Such approaches are described

Combining ILP Techniques and Metaheuristics 51

in conjunction with GRASP by Net and Pedroso [60] and in conjunction with
tabu search by Pedroso [61].

Glover [40] suggests a parametric tabu search for heuristically solving
MIPs. This approach also makes use of an underlying LP-solver to obtain
complete solution candidates. The current search point is indirectly repre-
sented by the LP relaxation of the MIP plus additional goal conditions that
restrict the domains of a subset of the integer variables. These goal conditions
are, however, not directly considered as hard constraints when applying the
LP-solver, but are relaxed and brought into the objective function similarly
as in Lagrangian relaxation. In this way, the approach can also be applied
to problems where it is hard to find any feasible integer solutions (constraint
satisfaction problems). Glover suggests a variety of intensification and diver-
sification strategies based on adaptive tabu memory for making the heuristic
search more efficient.

A more problem-specific example is the hybrid GA presented by Stagge-
meier et al. [80] for solving a lot-sizing and scheduling problem minimizing
inventory and backlog costs of multiple products on parallel machines. So-
lutions are represented as product subsets for each machine at each period.
Corresponding optimal lot sizes are determined when the solution is decoded
by solving a linear program. The approach outperforms a MIP formulation of
the problem directly solved by CPLEX.

11 Multi-Stage Approaches

Some optimization approaches consist of multiple sequentially performed
stages, and different techniques are applied at the individual phases.

In many real-world applications, the problem naturally decomposes into
multiple levels, and if the decision variables associated to the lower level(s)
have a significantly weaker impact on the objective value than the higher-
level variables, it is a reasonable approach to optimize the individual levels
in a strictly sequential manner. Metaheuristics and ILP techniques can be
considered and in combination be applied at the individual levels.

Multi-stage approaches are sometimes even applied when such a problem
decomposition is not so obvious. For example, in Sect. 9, we considered ap-
proaches, where a metaheuristic is used to derive a set of heuristic solutions
and an exact technique is used for merging them. Further examples are vari-
able fixing strategies as described in Sect. 5.4.

Tamura et al. [83] tackle a job-shop scheduling problem and start from
its ILP formulation. For each variable, they take the range of possible values
and partition it into a set of subranges, which are then indexed. The encoded
solutions of a GA are defined so that each position represents a variable, and
its value corresponds to the index of one of the subranges. The fitness of such
a chromosome is calculated using Lagrangian relaxation in order to obtain a
bound on the optimal solution subject to the constraints that the values of

52 Günther R. Raidl and Jakob Puchinger

the variables fall within the represented ranges. When the GA terminates, an
exhaustive search of the region identified as the most promising is carried out
to produce the final solution.

Lin et al. [54] propose an exact algorithm for generating the minimal set of
affine functions that describes the value function of the finite horizon partially
observed Markov decision process. In the first step a GA is used to generate
a set Γ of witness points, which is as large as possible. In the second step
a component-wise domination procedure is performed in order to eliminate
redundant points in Γ . The set generated so far does not, in general, fully
describe the value function. Therefore, a MIP is solved to generate the missing
points in the final third step of the algorithm. Reported results indicate that
this approach requires less time than some other numerical procedures.

Another kind of sequential combination of B&B and a GA has been de-
scribed by Nagar et al. [58] for a two-machine flowshop scheduling problem
in which solution candidates are represented as permutations of jobs. Prior
to running the GA, B&B is executed down to a predetermined depth k and
suitable bounds are calculated and recorded at each node of the explicitly
stored B&B tree. During the execution of the GA each partial solution up
to position k is mapped onto the corresponding tree node. If the associated
bounds indicate that no path below this node can lead to an optimal solution,
the permutation is subjected to a mutation operator that has been specifically
designed to change the early part of the permutation in a favorable way.

12 Cut and Column Generation by Metaheuristics

In cutting plane and column generation based methods, which we addressed
in Sects. 3.2 and 3.3, the dynamic separation of cutting planes and the pricing
of columns, respectively, is sometimes done by means of (meta-)heuristics in
order to speed up the whole optimization process. We consider these hybrid
approaches in the following in more detail.

12.1 Heuristic Cut Separation

In cutting plane and branch-and-cut algorithms, effective techniques are
needed for deriving cuts, i.e. inequalities that are satisfied by feasible integer
solutions but violated by the current solution to the LP relaxation. Although
heuristic separation routines are commonly applied for this purpose, more
sophisticated metaheuristics have only rarely been used.

An example is the work from Augerat et al. [8], who present a construc-
tive algorithm, a randomized greedy method, and a tabu search for separating
capacity constraints to solve a capacitated vehicle routing problem. The ILP
formulation includes an exponential number of capacity constraints ensuring
that for any given subset of customers S at least d(S)

C � vehicles are needed to
satisfy the demand in S (d(S) corresponds to the sum of the demands of the

Combining ILP Techniques and Metaheuristics 53

customers in set S and C is the capacity of one vehicle). A combination of a
cutting plane algorithm and branch-and-bound is used to solve the problem
optimally. The presented results indicate that using tabu search for identify-
ing violated valid inequalities is promising and the use of metaheuristics in
separation procedures is worth investigating.

Another example concerns the acceleration of Benders decomposition by
local branching, as described by Rei et al. [78]. Benders decomposition is a
promising solution approach in particular for MIPs with diagonal block struc-
ture. The basic principle is to project the MIP into the space of complicating
integer variables only; real variables and the constraints involving them are
replaced by corresponding constraints on the integer variables. These con-
straints, however, are not directly available but need to be dynamically sep-
arated in a cutting plane algorithm-like approach. According to the classical
method, an optimal solution to the relaxed master problem (including only the
already separated cuts) is needed and a linear program involving this solution
must be solved in order to separate a single new cut. Rei et al. [78] improved
this method by introducing phases of local branching on the original problem
in order to obtain multiple feasible heuristic solutions. These solutions provide
improved upper bounds on one hand, but also allow the derivation of multiple
additional cuts before the relaxed master problem needs to be resolved. Tests
on certain multicommodity flow formulations of a capacitated network design
problem indicate the advantages over the traditional Benders decomposition
approach.

12.2 Heuristic Column Generation

In column generation approaches and branch-and-price algorithms, it is im-
portant to have fast algorithms available for repeatedly solving the pricing
subproblem, i.e. identifying a variable (column) with negative reduced costs.
For many hard problems, however, this subproblem is also hard. Fast heuris-
tics are therefore sometimes used for approaching the pricing problem. Note
that it is fine when pricing in a column with negative reduced costs even when
it is not one with minimum reduced costs. However, at the end of column gen-
eration it is necessary to prove that no further column with negative reduced
costs exists, i.e. the pricing problem must finally be solved exactly. Otherwise,
no quality guarantees can be given for the final solution of the whole column
generation or branch-and-price algorithm, and they must be considered to be
heuristic methods only.

Most heuristic approaches for solving pricing problems are relatively simple
construction methods. More sophisticated metaheuristics have so far been
used less frequently. Filho and Lorena [29] apply a heuristic column generation
approach to graph coloring. A GA is used to generate initial columns and
to solve the pricing problem, which corresponds to the weighted maximum
independent set problem, at every iteration. Column generation is performed

54 Günther R. Raidl and Jakob Puchinger

as long as the GA finds columns with negative reduced costs. The master
problem is solved using CPLEX. Some encouraging results are shown.

Puchinger and Raidl [66, 69] describe a branch-and-price approach for
the three-stage two-dimensional bin packing problem. The pricing problem
corresponds to the NP-hard three-stage two-dimensional knapsack problem
with additional side-constraints coming from a special branching technique.
Fast column generation is performed by applying a hierarchy of four methods:
(a) a greedy heuristic, (b) an EA, (c) solving a restricted form of the pricing
problem using CPLEX, and finally (d) solving the complete pricing problem
using CPLEX. From this hierarchy, a strategy is always only applied when
all lower level methods have been tried and were not successful in finding a
column with negative reduced costs. Computational experiments on standard
benchmark instances document the benefits of this fine-grained approach. The
combination of all four pricing algorithms in the proposed branch-and-price
framework yields the best results in terms of the average objective value, the
average run-time, and the number of instances solved to proven optimality.

13 Strategic Guidance of Search and Collaboration

Last but not least, we consider approaches where metaheuristics are applied in
order to explicitly guide ILP techniques and collaborative combinations where
metaheuristics as well as ILP techniques provide each other mutual guidance.

13.1 Guidance of ILP Search

In principle, any metaheuristic that provides incumbent solutions to a B&B-
based approach might already be considered to fall into this class of ap-
proaches; see also Sect. 4. Two more sophisticated methods, which go beyond
this, are the following.

French et al. [35] suggest an EA/B&B hybrid to solve general ILPs. This
hybrid algorithm combines the generic B&B of the MIP solver XPRESS-MP2

with a steady-state EA. It starts with a B&B phase, in which information
from the B&B tree nodes is collected in order to derive candidate solutions
which are added to the originally randomly initialized EA-population. When
a certain criterion is fulfilled, the EA takes over for a certain time using the
augmented initial population. After termination of the EA, its best solutions
are passed back and grafted onto the B&B tree. Full control is given back to
the B&B-engine after the newly added nodes had been examined to a certain
degree. Reported results on instances of the maximum satisfiability problem
show that this hybrid approach yields better solutions than B&B or the EA
alone.

2 http://www.dashoptimization.com/

Combining ILP Techniques and Metaheuristics 55

Kotsikas and Fragakis [51] determine improved node selection strategies
within B&B for solving MIPs by using genetic programming. After running
B&B for a certain amount of time, information is collected from the B&B
tree and used as a training set for genetic programming, which is performed
to find a node selection strategy more appropriate for the specific problem
at hand. The following second B&B phase then uses this new node selection
strategy. Reported results show that this approach has potential, but needs
to be enhanced in order to be able to compete with today’s state-of-the-art
node selection strategies.

13.2 Mutual Guidance

Several systems have been proposed where different optimization techniques,
including metaheuristics and ILP methods, run in parallel or in an intertwined
way and communicate with each other in order to provide mutual guidance.

Denzinger and Offerman [24] described a multi-agent based approach
called TECHS (TEams for Cooperative Heterogenous Search). It consists of
teams of one or more agents using the same search paradigm. Communica-
tion between the agents is controlled by so-called send- and receive-referees,
in order to filter exchanged data. Each agent is in a cycle between searching
and processing received information. In order to demonstrate the usefulness
of TECHS, a system with multiple GA and B&B agents is considered for
job-shop scheduling. GA and B&B agents exchange only positive informa-
tion (solutions), whereas B&B agents can also exchange negative information
(closed subtrees) among each other. Computational experiments show that
this cooperation results in finding better solutions given a fixed time-limit
and in finding solutions comparable to the ones of the best individual system
alone in less total time.

Gallardo, Cotta, and Fernández [36] present another EA/B&B hybrid eval-
uated on the MKP. The algorithms are executed in an intertwined way and are
cooperating by exchanging information. The EA provides bounds for B&B,
while B&B provides best and partial solutions to the EA. In more detail, the
EA is executed first until a certain convergence criterion is reached, yielding
an initial bound. Then B&B is performed until it obtains an improved solu-
tion. Next, control is again given back to the EA, which possibly incorporates
the new incumbent solution as well as some promising partial solutions from
the ongoing B&B search into its population. Control is switched between the
algorithms until a run-time limit is reached. Experimental results show that
the collaborative approach yields better results than the individual techniques
executed on their own.

In [37], the same authors described a refined variant of their approach,
which uses beam search as truncated B&B. The method is also applied to the
shortest common supersequence problem, where the results are again very
encouraging.

56 Günther R. Raidl and Jakob Puchinger

Another cooperative approach involving a memetic algorithm and branch-
and-cut has been described by Puchinger et al. [70] for the MKP. Both meth-
ods are performed in parallel and exchange information in a bidirectional
asynchronous way. In addition to promising primal solutions, the memetic al-
gorithm also receives dual variable values of certain LP relaxations and uses
them for improving its repair and local improvement functions by updating
the items’ pseudo-utility ratios (see also Sect. 5.3).

The MALLBA project [4, 5] and its follow-up TRACER facilitate the
direct development of parallel hybrid algorithms over local and wide area
networks. It consists of a library of skeletons for combinatorial optimization,
hiding complex parallelization and hybridization implementation details from
the user. Several skeletons of exact and heuristic methods such as B&B, dy-
namic programming, tabu search, and GAs are available.

14 Conclusions

We have surveyed a multitude of examples where more powerful optimiza-
tion systems were constructed by combining mathematical programming tech-
niques and metaheuristics. Many very different ways exist for such hybridiza-
tions, and we have classified them into ten major methodological categories.
The probably most traditional approach is to use some metaheuristic for pro-
viding high-quality incumbents and bounds to a B&B-based exact method.
On the other hand, quickly solved relaxations or the primal-dual relationship
are often used for guiding or narrowing the search in metaheuristics. A rela-
tively new and highly promising stream are those methods in which B&B is
modified in some way in order to follow the spirit of local search based meta-
heuristics. A nowadays frequently and successfully applied approach is large
neighborhood search by means of ILP techniques. When extending this con-
cept towards searching the neighborhood defined by the common and disjoint
properties of two or more parental solutions, we come to solution merging
approaches. Then, we have considered ILP techniques as decoders for indirect
or incomplete representations. Furthermore, some problems are naturally ap-
proached by multi-stage approaches. So far less frequently applied, but in the
opinion of the authors highly promising hybrid approaches are those where
metaheuristics are utilized within more complex branch-and-cut and branch-
and-price algorithms for cut separation and column generation, respectively.
Last but not least we have considered collaborative hybrid systems in which
one method provides some kind of strategic guidance for the other or even
mutual guidance is achieved. As noted, some approaches from the literature
can be considered to fall into several of the methodological categories we have
identified.

Although a lot of experience already exists with such hybrid systems, it
is usually still a tough question which algorithms and kinds of combinations
are most promising for a new problem at hand. Despite the many successful

Combining ILP Techniques and Metaheuristics 57

examples of hybrids, the reader should also keep in mind that a more complex
system does not automatically perform better than a simpler “pure” algo-
rithm. Many less successful trials of combining mathematical programming
techniques and metaheuristics also exist, but they are usually not published.
The primary advice the authors are able to give for developing superior hy-
brid systems is to carefully study the literature looking for most successful
approaches to similar problems and to adopt and eventually recombine (hy-
bridize) their key-features. We hope that this chapter provides a good starting
point and some references for this purpose.

Acknowledgements

This work is partly supported by the European RTN ADONET under grant
504438 and the “Hochschuljubiläumsstiftung” of Vienna, Austria, under con-
tract number H-759/2005.

National ICT Australia is funded by the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian Research Council.

References

1. C. Aggarwal, J. Orlin, and R. Tai. Optimized crossover for the independent set
problem. Operations Research, 45:226–234, 1997.

2. R. Ahuja, J. Orlin, and A. Tiwari. A greedy genetic algorithm for the quadratic
assignment problem. Computers & Operations Research, 27:917–934, 2000.

3. R. K. Ahuja, Ö Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-
scale neighborhood search techniques. Discrete Applied Mathematics, 123(1-3):
75–102, 2002.

4. E. Alba, F. Almeida, M. Blesa, C. Cotta, M. Dı́az, I. Dorta, J. Gabarró,
J. González, C. León, L. Moreno, J. Petit, J. Roda, A. Rojas, and F. Xhafa.
MALLBA: Towards a combinatorial optimization library for geographically dis-
tributed systems. In Proceedings of the XII Jornadas de Paralelismo, pages
105–110. Editorial U.P.V., 2001.

5. E. Alba, F. Almeida, M. Blesa, C. Cotta, M. Dı́az, I. Dorta, J. Gabarró,
J. González C., León, L. Moreno, J. Petit, J. Roda, A. Rojas, and F. Xhafa.
MALLBA: A library of skeletons for combinatorial optimisation. In B. Monien
and R. Feldman, editors, Euro-Par 2002 Parallel Processing, volume 2400 of
Lecture Notes in Computer Science, pages 927–932. Springer-Verlag, Berlin,
Germany, 2002.

6. F. Almeida, M. Blesa, C. Blum, J. M. Moreno, M. Pérez, A. Roli, and
M. Sampels, editors. Hybrid Metaheuristics – Third International Workshop,
HM 2006, volume 4030 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, Germany, 2006.

7. D. Applegate, R. Bixby, V. Chvátal, and W. Cook. On the solution of the trav-
eling salesman problem. Documenta Mathematica, Extra Volume ICM III:645–
656, 1998.

58 Günther R. Raidl and Jakob Puchinger

8. P. Augerat, J. M. Belenguer, E. Benavent, A. Corberan, and D. Naddef. Sepa-
rating capacity constraints in the CVRP using tabu search. European Journal
of Operational Research, 106(2):546–557, 1999.

9. E. Balas and E. Zemel. An algorithm for large zero-one knapsack problems.
Operations Research, 28:1130–1154, 1980.

10. F. Barahona and R. Anbil. The volume algorithm: Producing primal solutions
with a subgradient method. Mathematical Programming, Series A, 87(3):385–
399, 2000.

11. D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, 1997.

12. M. Blesa, C. Blum, A. Roli, and M. Sampels, editors. Hybrid Metaheuristics –
Second International Workshop, HM 2005, volume 3636 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Germany, 2005.

13. C. Blum, A. Roli, and M. Sampels, editors. Hybrid Metaheuristics – First
International Workshop, HM 2004. Proceedings, Valencia, Spain, 2004.

14. K. Büdenbender, T. Grünert, and H.-J. Sebastian. A hybrid tabu search/branch-
and-bound algorithm for the direct flight network design problem. Transporta-
tion Science, 34(4):364–380, 2000.

15. P. C. Chu and J. E. Beasley. A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristics, 4:63–86, 1998.

16. D. Clements, J. Crawford, D. Joslin, G. Nemhauser, M. Puttlitz, and M. Savels-
bergh. Heuristic optimization: A hybrid AI/OR approach. In A. Davenport and
C. Beck, editors, Proceedings of the Workshop on Industrial Constraint-Directed
Scheduling, 1997. Held in conjunction with the Third International Conference
on Principles and Practice of Constraint Programming (CP97).

17. R. K. Congram. Polynomially Searchable Exponential Neighbourhoods for Se-
quencing Problems in Combinatorial Optimisation. PhD thesis, University of
Southampton, Faculty of Mathematical Studies, UK, 2000.

18. R. K. Congram, C. N. Potts, and S. L. van de Velde. An iterated dynasearch
algorithm for the single-machine total weighted tardiness scheduling problem.
INFORMS Journal on Computing, 14(1):52–67, 2002.

19. C. Cotta. A study of hybridisation techniques and their application to the design
of evolutionary algorithms. AI Communications, 11(3–4):223–224, 1998.

20. C. Cotta and J. M. Troya. Embedding branch and bound within evolutionary
algorithms. Applied Intelligence, 18:137–153, 2003.

21. E. Danna and C. Le Pape. Two generic schemes for efficient and robust coopera-
tive algorithms. In Michela Milano, editor, Constraint and Integer Programming,
pages 33–57. Kluwer Academic Publishers, 2003.

22. E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neigh-
borhoods to improve MIP solutions. Mathematical Programming, Series A,
102:71–90, 2005.

23. G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson. Solution of a large scale
traveling salesman problem. Operations Research, 2:393–410, 1954.

24. J. Denzinger and T. Offermann. On cooperation between evolutionary algo-
rithms and other search paradigms. In William Porto et al., editors, Proceed-
ings of the 1999 Congress on Evolutionary Computation (CEC), volume 3, pages
2317–2324. IEEE Press, 1999.

25. I. Dumitrescu and T. Stützle. Combinations of local search and exact algorithms.
In Günther R. Raidl et al., editors, Applications of Evolutionary Computation,

Combining ILP Techniques and Metaheuristics 59

volume 2611 of Lecture Notes in Computer Science, pages 211–223. Springer-
Verlag, Berlin, Germany, 2003.

26. M. El-Abd and M. Kamel. A taxonomy of cooperative search algorithms. In
Blesa Aguilera et al. [12], pages 32–41.

27. A. Eremeev. On complexity of optimized crossover for binary representations.
In Dirk V. Arnold, Thomas Jansen, Michael D. Vose, and Jonathan E. Rowe,
editors, Theory of Evolutionary Algorithms, number 06061 in Dagstuhl Sem-
inar Proceedings, Dagstuhl, Germany, 2006. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

28. Ö. Ergun and J. B. Orlin. A dynamic programming methodology in very large
scale neighborhood search applied to the traveling salesman problem. Discrete
Optimization, 3(1):78–85, 2006.

29. G. Ribeiro Filho and L. A. Nogueira Lorena. Constructive genetic algorithm
and column generation: an application to graph coloring. In Lui Pao Chuen,
editor, Proceedings of APORS 2000, the Fifth Conference of the Association of
Asian-Pacific Operations Research Societies within IFORS, 2000.

30. M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical
Programming, 104(1):91–104, 2005.

31. M. Fischetti, C. Polo, and M. Scantamburlo. Local branching heuristic for
mixed-integer programs with 2-level variables, with an application to a telecom-
munication network design problem. Networks, 44(2):61–72, 2004.

32. M. Fischetti and A. Lodi. Local Branching. Mathematical Programming,
Series B, 98:23–47, 2003.

33. M. L. Fisher. The Lagrangian Relaxation Method for Solving Integer Program-
ming Problems. Management Science, 27(1):1–18, 1981.

34. A. Frangioni. About Lagrangian methods in integer optimization. Annals of
Operations Research, 139(1):163–193, 2005.

35. A. P. French, A. C. Robinson, and J. M. Wilson. Using a hybrid genetic algo-
rithm/branch and bound approach to solve feasibility and optimization integer
programming problems. Journal of Heuristics, 7:551–564, 2001.

36. J. E. Gallardo, C. Cotta, and A. J. Fernández. Solving the multidimensional
knapsack problem using an evolutionary algorithm hybridized with branch and
bound. In Mira and Álvarez [57], pages 21–30.

37. J. E. Gallardo, C. Cotta, and A. J. Fernández. On the hybridization of memetic
algorithms with branch-and-bound techniques. IEEE Transactions on Systems,
Man and Cybernetics, Part B, 37(1):77–83, 2007.

38. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York, 1979.

39. P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting
stock problem. Operations Research, 9:849–859, 1961.

40. F. Glover. Parametric tabu-search for mixed integer programming. Computers &
Operations Research, 33(9):2449–2494, 2006.

41. F. Glover and G. Kochenberger, editors. Handbook of Metaheuristics, volume 57
of International Series in Operations Research & Management Science. Kluwer
Academic Publishers, 2003.

42. F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path
relinking. Control and Cybernetics, 39(3):653–684, 2000.

43. F. Glover. Surrogate constraints. Operations Research, 16(4):741–749, 1968.

60 Günther R. Raidl and Jakob Puchinger

44. P. Hansen, J. Brimberg, N. Mladenović, and D. Urosević. Primal-dual variable
neighborhood search for the simple plant location problem. INFORMS Journal
on Computing, to appear.

45. P. Hansen and N. Mladenović. An introduction to variable neighborhood search.
In S. Voß, S. Martello, I. Osman, and C. Roucairol, editors, Meta-heuristics:
advances and trends in local search paradigms for optimization, pages 433–438.
Kluwer Academic Publishers, 1999.

46. P. Hansen, N. Mladenović, and D. Urosević. Variable neighborhood search and
local branching. Computers & Operations Research, 33(10):3034–3045, 2006.

47. M. Haouaria and J. C. Siala. A hybrid Lagrangian genetic algorithm for the prize
collecting Steiner tree problem. Computers & Operations Research, 33(5):1274–
1288, 2006.

48. H. Hoos and T. Stützle. Stochastic Local Search – Foundations and Applications.
Morgan Kaufmann, 2004.

49. B. Hu, M. Leitner, and G. R. Raidl. Combining variable neighborhood search
with integer linear programming for the generalized minimum spanning tree
problem. Journal of Heuristics, to appear.

50. G. W. Klau, I. Ljubić, A. Moser, P. Mutzel, P. Neuner, U. Pferschy, G. R. Raidl,
and R. Weiskircher. Combining a memetic algorithm with integer programming
to solve the prize-collecting Steiner tree problem. In K. Deb et al., editors,
Genetic and Evolutionary Computation – GECCO 2004, volume 3102 of Lecture
Notes in Computer Science, pages 1304–1315. Springer-Verlag, Berlin, Germany,
2004.

51. K. Kostikas and C. Fragakis. Genetic programming applied to mixed integer
programming. In Maarten Keijzer et al., editors, Genetic Programming – Eu-
roGP 2004, volume 3003 of Lecture Notes in Computer Science, pages 113–124.
Springer-Verlag, Berlin, Germany, 2004.

52. E. L. Lawler and D. E. Wood. Branch and bounds methods: A survey. Opera-
tions Research, 4(4):669–719, 1966.

53. D. Lichtenberger. An extended local branching framework and its application to
the multidimensional knapsack problem. Master’s thesis, Vienna University of
Technology, Institute of Computer Graphics and Algorithms, Vienna, Austria,
March 2005.

54. A. Z.-Z. Lin, J. Bean, and C. C. White. A hybrid genetic/optimization algo-
rithm for finite horizon partially observed Markov decision processes. Journal
on Computing, 16(1):27–38, 2004.

55. M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Oper-
ations Research, 53(6):1007–1023, 2005.

56. A. Marino, A. Prügel-Bennett, and C. A. Glass. Improving graph colouring with
linear programming and genetic algorithms. In K. Miettinen, M. M. Makela, and
J. Toivanen, editors, Proceedings of EUROGEN 99, pages 113–118, Jyväskyiä,
Finland, 1999.

57. J. Mira and J. R. Álvarez, editors. Artificial Intelligence and Knowledge Engi-
neering Applications: A Bioinspired Approach, volume 3562 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Germany, 2005.

58. A. Nagar, S. S. Heragu, and J. Haddock. A meta-heuristic algorithm for a bi-
criteria scheduling problem. Annals of Operations Research, 63:397–414, 1995.

59. G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, 1988.

Combining ILP Techniques and Metaheuristics 61

60. T. Neto and J. P. Pedroso. GRASP for linear integer programming. In J. P.
Sousa and M. G. C. Resende, editors, Metaheuristics: Computer Decision Mak-
ing, Combinatorial Optimization Book Series, pages 545–574. Kluwer Academic
Publishers, 2003.

61. J. P. Pedroso. Tabu search for mixed integer programming. In C. Rego and
B. Alidaee, editors, Metaheuristic Optimization via Memory and Evolution, vol-
ume 30 of Operations Research/Computer Science Interfaces Series, pages 247–
261. Springer-Verlag, Berlin, Germany, 2005.

62. S. Pirkwieser, G. R. Raidl, and J. Puchinger. Combining Lagrangian decompo-
sition with an evolutionary algorithm for the knapsack constrained maximum
spanning tree problem. In Carlos Cotta and Jano van Hemert, editors, Evolu-
tionary Computation in Combinatorial Optimization – EvoCOP 2007, volume
4446 of Lecture Notes in Computer Science, pages 176–187. Springer-Verlag,
Berlin, Germany, 2007.

63. D. Pisinger. An expanding-core algorithm for the exact 0–1 knapsack problem.
European Journal of Operational Research, 87:175–187, 1995.

64. A. Plateau, D. Tachat, and P. Tolla. A hybrid search combining interior point
methods and metaheuristics for 0–1 programming. International Transactions
in Operational Research, 9:731–746, 2002.

65. M. Prandtstetter and G. R. Raidl. A variable neighborhood search approach for
solving the car sequencing problem. In Pierre Hansen et al., editors, Proceedings
of the 18th Mini Euro Conference on Variable Neighborhood Search, Tenerife,
Spain, 2005.

66. J. Puchinger and G. R. Raidl. An evolutionary algorithm for column generation
in integer programming: an effective approach for 2D bin packing. In X. Yao
et al., editors, Parallel Problem Solving from Nature – PPSN VIII, volume 3242
of Lecture Notes in Computer Science, pages 642–651. Springer-Verlag, Berlin,
Germany, 2004.

67. J. Puchinger and G. R. Raidl. Combining metaheuristics and exact algorithms
in combinatorial optimization: A survey and classification. In Proceedings of
the First International Work-Conference on the Interplay Between Natural and
Artificial Computation, Part II, volume 3562 of Lecture Notes in Computer
Science, pages 41–53. Springer-Verlag, Berlin, Germany, 2005.

68. J. Puchinger and G. R. Raidl. Bringing order into the neighborhoods: Relaxation
guided variable neighborhood search. Journal of Heuristics, to appear.

69. J. Puchinger and G. R. Raidl. Models and algorithms for three-stage two-
dimensional bin packing. European Journal of Operational Research, to appear.

70. J. Puchinger, G. R. Raidl, and M. Gruber. Cooperating memetic and branch-
and-cut algorithms for solving the multidimensional knapsack problem. In Pro-
ceedings of MIC 2005, the 6th Metaheuristics International Conference, pages
775–780, Vienna, Austria, 2005.

71. J. Puchinger, G. R. Raidl, and G. Koller. Solving a real-world glass cutting
problem. In J. Gottlieb and G. R. Raidl, editors, Evolutionary Computation in
Combinatorial Optimization – EvoCOP 2004, volume 3004 of Lecture Notes in
Computer Science, pages 162–173. Springer-Verlag, Berlin, Germany, 2004.

72. J. Puchinger, G. R. Raidl, and U. Pferschy. The core concept for the multidi-
mensional knapsack problem. In J. Gottlieb and G. R. Raidl, editors, Evolution-
ary Computation in Combinatorial Optimization – EvoCOP 2006, volume 3906
of Lecture Notes in Computer Science, pages 195–208. Springer-Verlag, Berlin,
Germany, 2006.

62 Günther R. Raidl and Jakob Puchinger

73. G. R. Raidl and H. Feltl. An improved hybrid genetic algorithm for the gen-
eralized assignment problem. In H. M. Haddadd et al., editors, Proceedings of
the 2003 ACM Symposium on Applied Computing, pages 990–995. ACM Press,
2004.

74. G. R. Raidl. An improved genetic algorithm for the multiconstrained 0–1 knap-
sack problem. In D. B. Fogel et al., editors, Proceedings of the 1998 IEEE
International Conference on Evolutionary Computation, pages 207–211. IEEE
Press, 1998.

75. G. R. Raidl. A unified view on hybrid metaheuristics. In Almeida et al. [6],
pages 1–12.

76. G. R. Raidl and J. Gottlieb. Empirical analysis of locality, heritability and
heuristic bias in evolutionary algorithms: A case study for the multidimensional
knapsack problem. Evolutionary Computation Journal, 13(4):441–475, 2005.

77. C. Rego. RAMP: A new metaheuristic framework for combinatorial optimiza-
tion. In C. Rego and B. Alidaee, editors, Metaheuristic Optimization via Memory
and Evolution, pages 441–460. Kluwer Academic Publishers, 2005.

78. W. Rei, J.-F. Cordeau, M. Gendreau, and P. Soriano. Accelerating Benders
decomposition by local branching. Technical Report C7PQMR PO2006-02-X,
HEC Montréal, Canada, 2006.

79. E. Rothberg. An evolutionary algorithm for polishing mixed integer program-
ming solutions. INFORMS Journal on Computing, 19(4):534–541, 2007.

80. A. Toniolo Staggemeier, A. R. Clark, U. Aickelin, and J. Smith. A hybrid
genetic algorithm to solve a lot-sizing and scheduling problem. In B. Lev, editor,
Proceedings of the 16th triannual Conference of the International Federation of
Operational Research Societies, Edinburgh, U.K., 2002.

81. E. D. Taillard, L.-M. Gambardella, M. Gendreau, and J.-Y. Potvin. Adaptive
memory programming: A unified view of meta-heuristics. European Journal of
Operational Research, 135:1–16, 2001.

82. E. Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8(5):541–
565, 2002.

83. H. Tamura, A. Hirahara, I. Hatono, and M. Umano. An approximate solution
method for combinatorial optimisation. Transactions of the Society of Instru-
ment and Control Engineers, 130:329–336, 1994.

84. P. M. Thompson and J. B. Orlin. The theory of cycle transfers. Technical
Report OR-200-89, MIT Operations Research Center, Boston, MA, 1989.

85. P. M. Thompson and H. N. Psaraftis. Cycle transfer algorithm for multivehicle
routing and scheduling problems. Operations Research, 41:935–946, 1993.

86. M. Vasquez and J.-K. Hao. A hybrid approach for the 0–1 multidimensional
knapsack problem. In B. Nebel, editor, Proceedings of the 17th International
Joint Conference on Artificial Intelligence, IJCAI 2001, pages 328–333, Seattle,
Washington, 2001. Morgan Kaufman.

87. M. Vasquez and Y. Vimont. Improved results on the 0–1 multidimensional
knapsack problem. European Journal of Operational Research, 165:70–81, 2005.

88. L. A. Wolsey. Integer Programming. Wiley-Interscience, 1998.
89. D. L. Woodruff. A chunking based selection strategy for integrating meta-

heuristics with branch and bound. In S. Voß et al., editors, Meta-Heuristics:
Advances and Trends in Local Search Paradigms for Optimization, pages 499–
511. Kluwer Academic Publishers, 1999.

The Relation Between
Complete and Incomplete Search

Steven Prestwich

Cork Constraint Computation Centre
University College, Cork, Ireland
s.prestwich@cs.ucc.ie

Summary. This chapter compares complete and incomplete search methods, dis-
cusses hybrid approaches, contrasts modelling techniques, and speculates that the
boundary between the two is more blurred than it might seem.

1 Introduction

Complete and incomplete search are two quite distinct approaches to solving
combinatorial problems. Most constraint programming (CP) and mixed in-
teger programming (MIP) solvers are complete, but there also exist software
libraries for genetic algorithms and local search, and stand-alone local search
algorithms for Boolean satisfiability (SAT). Both types of search algorithm are
highly successful on different problems, and on some problems they are com-
petitive with each other. But choosing between them is not easy, especially as
features of the problem or the chosen model, such as symmetry, might affect
the choice of algorithm.

In this chapter we compare and contrast the two search paradigms and
their hybrids, discuss their strengths and weaknesses, and argue that the
boundary between the two is more blurred than it might seem. The remainder
of this section provides background on complete and incomplete search search,
and discusses their differences. Sect. 2 surveys hybrids of complete and incom-
plete search. Sect. 3 uses a case study to explore the boundary between the
two paradigms. Sect. 4 discusses problem symmetry and its effect on different
search algorithms. Finally, Sect. 5 concludes the chapter.

It should be noted that, while effort has been made to provide a balanced
account, this chapter naturally reflects the author’s technical background and
interests. This results in a bias towards CP, SAT, artificial intelligence (AI)
and local search, at the expense of MIP, operations research and evolutionary
computation.

S. Prestwich: The Relation Between Complete and Incomplete Search, Studies in Computational

Intelligence (SCI) 114, 63–83 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

64 Steven Prestwich

1.1 Complete Search

Complete search algorithms have some very desirable properties. They are
complete: on a feasibility problem (such as SAT) they are guaranteed either
to find a solution, or to prove that there is no solution; on an optimisation
problem (such as job-shop scheduling) they are guaranteed to find an optimum
solution and to prove it optimum, or to prove that there is no solution. They
usually have no runtime parameters to tune, making them easy to use (though
the user still has to choose a problem model, and possibly branching or other
heuristics).

A variety of complete search algorithms are described in standard AI texts,
including best-first search, breadth-first search and iterative deepening, but
CP and MIP solvers are usually based on a particular complete search al-
gorithm: depth-first search (DFS) with chronological backtracking. DFS has
in fact been known for thousands of years. It was supposedly used by The-
seus to locate the Minotaur at the centre of a maze, who unwound a silk
thread to locate the last choice-point, then chose the leftmost corridor that
he had not already explored. DFS is exhaustive: it explores all possibilities,
except those ruled out by (for example) constraint propagation, relaxation or
some other form of reasoning. This property makes it complete. DFS is also
non-redundant: it never explores a possibility more than once, unlike iterative
deepening which is exhaustive but performs some redundant recomputation.
DFS has the advantage over breadth-first search of requiring far less memory:
the latter must maintain multiple states, whereas DFS can reclaim memory on
backtracking. DFS can also be extended in several ways to so-called intelligent
backtracking algorithms such as backjumping, which are able to backtrack to
higher points in the search tree and thus avoid some unnecessary computation.

1.2 Incomplete Search

In contrast to DFS and other complete search algorithms, metaheuristic al-
gorithms are almost always redundant (they may recompute the same results
more than once) and incomplete. The latter property means that they may
fail to return an answer on a satisfiable problem, or fail to find an optimal
solution to an optimisation problem. Many modern search heuristics are de-
signed to escape from any local minima, and have the property of probabilistic
approximate completeness (PAC): the probability of finding a solution tends
to 1 as search time tends to infinity [31]. A simple way to achieve this is to
allow, with some small probability, an arbitrary move at each step; then there
is a non-zero probability of making a sequence of moves that leads directly to
an optimal solution. Another way is to periodically restart the search from a
random state; such a state has a non-zero probability of being an optimal so-
lution, or of being sufficiently close to one that hill-climbing will move directly
to it.

Complete and Incomplete Search 65

Despite the PAC property, metaheuristic algorithms cannot usually prove
a problem unsatisfiable. However, two recent local search algorithms [1, 59]
can prove the unsatisfiability of SAT problems, though not their satisfiability.
They use the general resolution rule in a greedy, nonsystematic way to search
for a refutation by deriving the empty clause. The hope is that such algo-
rithms will find refutations more quickly than backtrack search, at least on
some problems, though these new algorithms have not yet found their niche.
Local search algorithms with learning, such as Complete Local Search [15] and
Partial-Order Dynamic Backtracking [22], can prove unsatisfiability as well as
satisfiability. But the aim of these algorithms is to improve performance on
satisfiable problems, not to speed up proof of unsatisfiability. Learning al-
gorithms may also require exponential memory in the worst case, though in
practice polynomial memory is often sufficient.

Metaheuristic algorithms come in many forms. They explore a search space
of states, with an objective function defined on the space. Some maintain a
single search state and attempt to improve it by exploring neighbourhoods,
while others maintain a population of states and combine them to form new
ones that are intended to be better. Metaheuristics algorithms are most nat-
urally applied to unconstrained optimisation problems, but they can handle
constraints in several ways.

1.3 Contrasting the Two Approaches

The relationship between complete and incomplete search is an area of active
research. In principle the No Free Lunch Theorem [71] guarantees that no
search algorithm is better than any other. However, in practice this seems to
be an unprofitable observation, as both complete and incomplete search have
distinct strengths and weaknesses.

It is interesting to ask: what are the essential differences between the two
paradigms and can their strengths be combined? Answering these questions
may lead to useful insights and interesting new hybrids. In a panel discussion
on systematic versus stochastic constraint satisfaction [17] a group of experts
debated which are the important properties of each class of algorithm for
solving satisfiable problems, and whether properties from both classes can
profitably be combined. From our point of view several very interesting points
were made:

• Each type of search beats the other on some classes of problem, so a useful
exercise is to identify class-superior algorithms.

• The two paradigms can be combined in a brute force way via algorithm
portfolios, for example by parallel execution, but more fine-grained hy-
brids have greater potential. A likely advantage of incomplete search is its
ability to follow gradients in the search space, whereas complete search
usually ignores such gradients so that it can enumerate possibilities in a
non-redundant way. An interesting research direction is therefore to allow
complete search to follow local gradients [15, 22, 45].

66 Steven Prestwich

• It may never be possible to combine all the advantages of both in a single
algorithm, because there is a fundamental asymmetry between finding a
solution and proving a problem unsatisfiable. To boost complete search
we need more powerful inference methods, and an interesting research
direction is the nonsystematic derivation of proofs [1, 59].

• Because very large problems are too hard to solve to completion, the sup-
posed disadvantage of incompleteness may be illusory. In some real ap-
plications we can only perform an incomplete search whichever algorithm
we use, so we may as well use the one that gives the best results in the
shortest time – often an incomplete, metaheuristic algorithm.

These viewpoints are somewhat incompatible, showing that we are far from a
consensus on this issue. But this can be seen as a healthy situation that spurs
competition between different types of algorithm on hard problems.

2 Hybrid Approaches

Neither backtracking nor local search is seen as adequate for all problems.
Real-world problems may have a great deal of structure and are often solved
most effectively by backtrackers, which are able to exploit structure via con-
straint propagation. Unfortunately, backtrackers do not always scale well to
very large problems, even when augmented with constraint propagation, relax-
ation and intelligent backtracking. For some large problems it is more efficient
to use incomplete search, which tends to have superior scalability. However, in-
complete search often cannot exploit structure, and is quite unsuitable for cer-
tain problems. This situation has motivated research into hybrid approaches,
with the aim of combining features of both classes of algorithm in order to
solve currently intractable problems.

The simplest hybrid is a parallel or distributed implementation of more
than one algorithm in an algorithm portfolio. This approach can be augmented
by learning techniques to predict the most successful algorithm to try next.
This is a practical way of using the most powerful algorithms known. However,
it can do no better than the best known algorithm on a given problem, whereas
a more fine-grained hybrid (perhaps allowing communication between different
algorithms) might do better. In this section we survey hybrid approaches.
These are divided (in some cases arbitrarily) into incomplete algorithms that
exploit reasoning techniques from complete search, and complete algorithms
that try to improve scalability by exploiting incomplete search techniques. We
also discuss what kinds of problem demand hybrid approaches.

2.1 Complete Techniques in Incomplete Search

A variety of hybrids apply incomplete search without violating constraints,
or only sometimes violating them, or use constraint propagation within local

Complete and Incomplete Search 67

search. In [13] partial assignments to key variables are generated by local
search, then passed to a constraint solver that checks consistency. The EFLOP
algorithm [73] uses constraint propagation to escape local minima, while al-
lowing some constraint violation. The timetabling algorithm of [65], extended
to constraint satisfaction problems, searches the space of all partial assign-
ments (not only the consistent ones) using an objective function that includes
a measure of constraint violation. Decision Repair [36] is designed for con-
straint satisfaction problems and applied to open shop problems, and is de-
scribed as a generalisation of the method of [65]. It uses learning (allowing
complete versions to be devised) and has heuristics such as clause weighting,
a TABU list and greedy hill climbing. Weak Commitment Search [72] greed-
ily constructs consistent partial assignments. On reaching a dead-end (from
which any further assignment leads to inconsistency) it randomly restarts, and
it uses learning to maintain completeness. A SAT algorithm called learn-SAT
based on Weak Commitment Search is described in [64]. UnitWalk [29] is a
SAT local search algorithm that uses unit propagation. It starts in the same
way as a backtracker, selecting a variable, assigning a value to it, propagating
where possible, and repeating, until a dead-end is reached (propagation leads
to a domain wipe-out). It then restarts using a slightly different variable order-
ing, and possibly a modified value ordering. It has also been hybridised with
standard local search techniques to improve its performance on some bench-
marks. In [37] preprocessing is used to add extra constraints enforcing local
consistency, which improves the performance of GSAT [67] on structured prob-
lems. In [57] relaxation is used to prune local search space on an optimisation
problem, by randomising the backtracking component of a branch-and-bound
algorithm. In [43] constraint propagation is used to prune candidate solutions
for an Ant Colony Optimisation algorithm. The evolutionary computation lit-
erature contains several techniques for constraint handling: penalty functions,
rejection of infeasible solutions, repair of infeasible solutions, decoders (sep-
arate algorithms that handle constraints and are controlled indirectly by the
genotype), and coevolution between populations of solutions and constraints;
see the survey of [44].

Complete search may be used to explore local search neighbourhoods.
In [49] branch-and-bound is used to explore local search neighbourhoods ef-
ficiently. Large Neighbourhood Search [68] performs local search and uses
backtracking to test the legality of moves. Some exponentially large neigh-
bourhoods can be explored in polynomial time by dynamic programming [51].
A different approach is Complete Local Search [15], which uses learning to
achieve completeness in a local search algorithm for SAT. Though in principle
this may require exponential memory, in practice the memory requirements
seem to be manageable. Local search has also been used to finding a good
variable ordering, which is then used to speed up a DPLL proof of unsatisfia-
bility [8]. This author’s Incomplete Dynamic Backtracking algorithm has been
applied to a variety of problems (see Sect. 3 for a description of the algorithm
and its applications).

68 Steven Prestwich

2.2 Incomplete Techniques in Complete Search

Other hybrids are based on backtrack search, but improve scalability by bor-
rowing techniques from incomplete search. Several exploit the idea of restarts.
Iterative Sampling [39] restarts a backtracker using randomised heuristics
every time a dead-end is reached (so no actual backtracking takes place).
Squeaky Wheel Optimization algorithm [34] operates in two search spaces: a
solution space and a prioritisation space. Both searches influence each other:
each solution is analysed and used to change the prioritisation, which guides
the search strategy used to find the next solution, found by restarting the
search. Bounded Backtrack Search [26] is a hybrid of Iterative Sampling
and chronological backtracking, alternating a limited amount of chronological
backtracking with random restarts. In [24] chronological or intelligent back-
tracking is periodically restarted with slightly randomised heuristics. Disco-
Novo-GoGo [66] aims to enhance backtracking so that it can solve undercon-
strained problems in a time comparable to local search. It regularly restarts a
backtracker with random variable ordering, learning good value orderings be-
tween restarts. Multi-Point Constructive Search [6] regularly restarts a back-
tracker, and maintains a small set of elite solutions. At each restart it either
begins from a random state or an elite solution, depending on a probability
parameter. Whenever an improved solution is found, it replaces one of the
elite set. In [4] search restarts are combined with learning for solving hard,
real-world SAT instances. Their algorithm is complete, since the backtrack
cutoff value increases after each restart.

Other approaches aim to make backtrack search more flexible or guided.
In [41] backtrack points within backtrack search are randomly selected.
Restricted Backtracking [23] constructs maximum cliques using a trade-off
between solution quality and search completeness. Partial Order Dynamic
Backtracking [22] is a hybrid of the GSAT [67] local search algorithm and
Dynamic Backtracking [21] that increases flexibility in the choice of back-
tracking variable. They note that to achieve total flexibility while preserving
completeness would require exponential memory, and recommend a less flexi-
ble version using only polynomial memory. Local Changes algorithm [69] is a
complete search strategy used to solve dynamic and static constraint satisfac-
tion problems. It extends a consistent partial assignment to a larger one by
unassigning variables that are inconsistent with a new assignment, performing
the new assignment then reassigning variables to the same values where possi-
ble. Limited Discrepancy Search [27] searches the neighbourhood of a consis-
tent partial assignment, trying neighbours in increasing order of distance from
the partial assignment. It relies on the user having a “good” value selection
heuristic that is likely to lead to a near-solution, which could be derived from
a greedy or local search algorithm. It is complete though slightly redundant.
In [11] local search is used within a complete SAT solver to select the best
branching variable.

Complete and Incomplete Search 69

Hybrid approaches have also been designed for QBF (Quantified Boolean
Formulae, a quantified generalisation of SAT). WalkQSAT [19] has two main
components. The first is the QBF engine, which performs a backjumping
search based on conflict and solution directed backjumping. The second is the
SAT engine, which is a slightly adapted version of the WalkSAT local search
algorithm used as an auxiliary search procedure to find satisfying assignments
quickly. The resulting solver is incomplete as it can terminate without a def-
inite result. WalkMinQBF [32] also has two main components. The first is
a local search algorithm that attempts to find an assignment to the univer-
sal variables that is a witness for unsatisfiability. The second is a complete
SAT solver that tests the truth or falsity of SAT formulae that result from
assigning the universal variables. WalkMinQBF is also incomplete: it outputs
unsatisfiable if a certificate of unsatisfiability is found, otherwise it outputs
unknown.

2.3 Application to Structured Problems

For what kind of problems are hybrid approaches most useful? In recent SAT
solver competitions, local search has performed much worse than backtracking
algorithms on “structured” problems classed as industrial (see for example
[74]). The recent GASAT genetic algorithm performed even more badly on
these problems [40]. Why is this? If we could determine the cause then we
might be able to improve both methods by hybridisation, possibly solving
larger industrial SAT problems than is currently possible.

Most local search and population-based algorithms have a drawback be-
sides that of incompleteness: they do not exploit the powerful pruning tech-
niques available to backtrackers. MCHC [46] was found to perform poorly on
crossword puzzles and some graph colouring problems [33], while GSAT and
other more recent local search algorithms for SAT are beaten by backtrackers
on problems such as quasigroup existence [76]. This makes local search un-
suitable for certain problems, typically those with a great deal of structure
and few solutions. However, the word structure is used vaguely in this con-
text, and it is unclear exactly what types of problem local search is good at.
In fact local search is the best way of solving some problems that are highly
regular and thus structured in some sense (for example round-robin sports
scheduling).

A possible explanation is that real-world problems often contain dependent
variables, that is variables that are functionally dependent on others. These
are known to slow down local search [38], and when they form long chains
they may cause local search to take polynomial or even exponential time to
solve problems that can be solved in linear time by constraint propagation or
other techniques [55, 70]. An attempt to alleviate this problem is the Dagsat
algorithm [38], which uses a special SAT problem representation (directed
acyclic graphs) that makes variable dependencies explicit. Local search is then
applied to the independent variables. The Incomplete Dynamic Backtracking

70 Steven Prestwich

(see Sect. 3) and UnitWalk [29] hybrid local search algorithms handle variable
dependencies by unit propagation.

Similar observations have been made in the genetic algorithm literature.
It is well known that a problem representation must be designed to minimise
epistasis, a concept similar to variable dependency. An example of a mod-
elling technique explicitly designed to reduce epistasis is expansive coding [5].
This involves splitting the task into a number of separate subproblems. By
adding extra dimensions to the problem much of the gene interaction can be
eliminated. Though the problem space becomes larger the problem becomes
easier to solve.

3 Boundary Between Complete and Incomplete Search

Despite the existence of many hybrids, complete and incomplete search appear
to be quite different (though there are some similarities such as conflict-based
heuristics). Firstly, they typically explore different search spaces: complete
backtrackers explore partial variable assignments that are consistent under
some form of propagation or relaxation, while incomplete algorithms usually
explore inconsistent total variable assignments. Secondly, backtrackers may
use randomised value and variable selection (though they often use heuristics
to guide these choices) but are very restricted in their choice of backtrack
variable, whereas incomplete algorithms are totally flexible and tend to be
more random. Thirdly, they tend to use different heuristics: backtrackers focus
on branching rules that maximise the amount of reasoning that can be used
to prune the search tree, whereas incomplete algorithms try to follow local
gradients.

Despite these differences, we argue that the two paradigms are more closely
related than they appear. We illustrate this viewpoint using a case study: a
particular hybrid called Incomplete Dynamic Backtracking (IDB) applied to
the well-known N -queens problem. This hybrid was chosen partly because it
is most familiar to the author, but also because it illustrates clearly that the
boundary between complete and incomplete search can be blurred. We use a
popular model of the N -queens problem: N variables each taking a value from
the finite domain {1, . . . , N}, each variable corresponding to a queen and row,
and each value to a column. The constraints for this problem are that no two
queens may attack each other (a queen attacks another if they lie on the same
row, column or diagonal).

3.1 Two Forms of Local Search for N-queens

The usual local search approach is to explore a space of total assignments, that
is with all N queens placed somewhere on the board. Fig. 1(i) shows a total
assignment containing two constraint violations: the last queen can attack
two others and vice-versa (attack is symmetrical). We may try to remove

Complete and Incomplete Search 71

these violations, at the risk of introducing new ones, by repositioning a queen
involved in a conflict – that is by reassigning a variable to another value. This is
the idea behind most local search algorithms for constraint satisfaction, which
has been highly successful on many problems; for example Min-Conflicts Hill
Climbing [46] for binary CSPs, GSAT [67] for Boolean satisfiability, and many
more recent algorithms.

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

(i) total assignment (ii) consistent partial assignment

Fig. 1. Local search spaces for N -queens

However, a non-computer scientist (for example a child) might design a
very different form of local search for N -queens: begin placing queens ran-
domly in non-attacked positions; when a queen cannot be placed, randomly
remove one or more placed queens (let us call this number B); continue until
all queens are placed. The states of this algorithm correspond to consistent
partial assignments in our model, as shown in Fig. 1(ii). We may add and re-
move B queens randomly, or bias the choice using heuristics. This algorithm
explores a different space but is still local search. We may view the number of
unassigned variables (unplaced queens) as the cost function to be minimized.
No queens can be added to the state in Fig. 1(ii), which is therefore a local
minimum under this function. This approach is taken by the IMPASSE class
of graph colouring algorithms [47], where a consistent partial assignment is
called a coloration neighbourhood. A heuristic we shall use below is to set the
number B to a fixed positive integer before starting the search. This integer
is chosen by trial and error to suit the problem to be solved, as metaheuristic
algorithm parameters often are.

An advantage of this type of local search is that constraints are never vio-
lated, avoiding the need for weighted sums of cost and infeasibility functions

72 Steven Prestwich

Q

Q

Q

Q

2 2

0 2 2 0

1 2

0 2 02

1 1 3 1 1

1 3 2 2 1

2 3 1

1 1 3 1 1

2 2

0

0

0

0

(i) FC-consistent partial assignment (ii) corresponding conflict counts

Fig. 2. Forward checking in local search

in optimisation problems. Another advantage is that this form of local search
can be integrated with at least some forms of constraint propagation, by using
it to prune states from the search space as in backtracking search. This idea
was applied to graph colouring in [58], where IMPASSE’s coloration neigh-
bourhoods were restricted to those consistent under forward checking (FC), a
simple form of constraint propagation, with improved results over IMPASSE.
Notice that although the state in Fig. 1(ii) is consistent, under FC it is in-
consistent: the domain of the variable corresponding to the last row is empty
because all its squares are attacked, so this state cannot be extended to a fea-
sible solution. Local search enhanced with constraint propagation can prune
such states. Removing the queen on row 1 makes it consistent under FC as
shown in Fig. 2(i); squares on free rows that are under attack by at least one
queen are shaded, and both free rows contain empty squares. However, this
state cannot be extended while maintaining FC-consistency (placing a queen
in column 1 or 6 on row 1 or 6 causes all squares to be under attack on the
other row) so it is a local minimum.

3.2 IDB With Forward Checking

This form of search is called IDB because of a similarity to Dynamic Back-
tracking (DB) [21]: it can backtrack to an earlier variable without unassigning
the variables in between. DB does this in a careful way to maintain complete-
ness, and PODB [22] (cited above) allows more flexible choices but is still
complete, but IDB allows totally free choices and is incomplete. However, we
need a special technique to combine it with constraint propagation. To up-
date variable domains while backtracking we maintain a conflict count for each

Complete and Incomplete Search 73

variable-value pair. The conflict counts for the state in Fig. 2(i) are shown in
Fig. 2(ii). A conflict count denotes the number of constraints that would be vi-
olated if the corresponding assignment were to be made. (This is distinct from
local search algorithms in which conflicts do occur and are counted.) They are
computed incrementally on assigning and unassigning a variable. Notice that
the number of attacking queens on other rows are counted (each potential
attack corresponds to a binary constraint that would be violated), and that
the queens are placed on squares with zero conflict counts (corresponding to
values that have not been deleted from domains by FC). Conflict counts can
be generalised to non-binary constraints, and to enforce more powerful forms
of constraint processing such as arc consistency.

Now that we have a local search algorithm for exploring this search space,
which is usually explored by backtrack search, we are free to experiment with
heuristics. An obvious direction is to try standard variable ordering heuristics,
for example selecting the variable with smallest domain (optionally breaking
ties by maximum forward degree in the constraint graph). An additional bene-
fit of conflict counts is that we can obtain a domain size for assigned variables
as well as unassigned ones. In the example of Fig. 2 the variables for rows
2–5 each have domain size 1, but in general these may be different. This can
be used to guide the selection of variables for unassignment, for example the
variable with greatest domain size. We mention here a value ordering heuris-
tic that has been found useful: reassign each variable to its previous assigned
value where possible, otherwise to a different value. This speeds up the redis-
covery of consistent partial assignments, but to avoid stagnation it attempts
to use a different (randomly chosen) value for just one variable after each
dead-end.

3.3 Empirical Results

We now demonstrate empirically that IDB compares well with other algo-
rithms on this problem, behaving like a local search algorithm or even better.
In [46] the performance of DFS and local search on N -queens problems up to
N = 106 were compared. They executed each algorithm 100 times for various
values of N , with an upper bound of 100n on the number of steps (backtracks
or repairs), and reported the mean number of steps and the success rate as
a percentage. We reproduce the experiment up to N = 1000, citing their re-
sults for the Min-Conflicts hill climbing algorithm (denoted here by MCHC)
and a backtracker augmented with the Min-Conflicts heuristic (denoted by
MCBT). We compute results for DFS alone with random variable selection
(DFS1), DFS1 with FC (DFS2), and DFS2 with dynamic variable ordering
based on minimum domain size (DFS3). (Our results differ from those of
[46], possibly because of algorithmic details such as random tie-breaking dur-
ing variable ordering.) We also obtain results for these three algorithms with
DFS replaced by IDB (denoted by IDB1, IDB2, IDB3); also for IDB3 plus
the backtracking heuristic that unassigns variables with maximum domain

74 Steven Prestwich

size (IDB4), and for IDB4 plus the value ordering heuristic described above
(IDB5). The IDB parameter is set to B = 1 for N = 1000 and N = 100, and
B = 2 for N = 10 (B = 1 sometimes causes stagnation when N = 10). All
results are taken from [54] and evaluated over 100 runs.

Table 1. Results for N -queens

N = 10 N = 100 N = 1000
algorithm steps success (%) steps success (%) steps success (%)
DFS1 81.0 100 9929 1 —
DFS2 25.4 100 7128 39 98097 3
DFS3 14.7 100 1268 92 77060 24
IDB1 112 100 711 100 1213 100
IDB2 33.0 100 141 100 211 100
IDB3 23.8 100 46.3 100 41.2 100
IDB4 13.0 100 8.7 100 13.3 100
IDB5 12.7 100 8.0 100 12.3 100

The results in Table 1 show that replacing DFS by IDB greatly boosts scal-
ability in three cases: the simple backtracking algorithm, backtracking with
FC, and the same algorithm with dynamic variable ordering. Even the basic
IDB algorithm scales much better than all the DFS algorithms, and IDB3
performs like MCHC. The additional backtracking and value ordering heuris-
tics further boost performance, making IDB the best reported algorithm in
terms of backtracks. It also compares well with Weak Commitment Search [72]
which requires approximately 35 steps for large N [50]. In terms of execution
time IDB is also efficient, each backtrack taking a time linear in the problem
size.

It should be noted that IDB is not the only backtracker to perform like
local search on N -queens. Similar results were obtained by MCBT and others
because of their Min-Conflicts value ordering heuristic. In MCBT an initial
total assignment I is generated by the Min-Conflicts heuristic and used to
guide DFS in two ways. Firstly, variables are selected for assignment on the
basis of how many violations they cause in I. Secondly, values are tried in
ascending order of number of violations with currently unassigned variables.
This informed backtracking algorithm performs almost identically to MCHC
on N -queens and is complete. However, MCBT is still prone to the same
drawback as most backtrackers: a poor choice of assignment high in the search
tree will still take a very long time to recover from. IDB is able to modify
earlier choices (as long as the B parameter is sufficiently high) so it can recover
from poor early decisions. This difference is not apparent on N -queens, but
it is significant on problems for which value ordering heuristics are of little
help. In fact IDB has performed very well on other problems: an IDB-modified
constraint solver for Golomb rulers out-performed the systematic original, and

Complete and Incomplete Search 75

also a genetic algorithm [53]; an IDB-modified branch-and-bound algorithm
for a hard optimisation problem outperformed the systematic original, and all
known local search algorithms at the time [52]; and competitive results were
obtained on DIMACS maximum clique benchmarks using FC with IDB [53].

3.4 Blurring the Boundary

The point of describing IDB in detail was to motivate the following question:
should IDB and similar hybrids be classed as backtrackers, as local search,
as both, or as hybrids? IDB may appear to be simply an inferior version of
DB, sacrificing the important property of completeness to no good purpose. A
counterexample to this view is the N -queens problem, on which DB performs
like DFS [33], whereas IDB performs like local search. Another counterexam-
ple is the random 3-SAT problem, on which DB is slower than chronological
backtracking (though a modified DB is similar) [3] while IDB again performs
like local search. We claim that IDB is in fact a local search algorithm, as de-
scribed above when discussing alternative forms of local search for N -queens.
Our view is that it stochastically explores a space of consistent partial assign-
ments, which is usually explored by backtrack search, while trying to minimise
an objective function: the number of unassigned variables. The forward local
moves are variable assignments, while the backward local moves are unas-
signments (backtracks). Under this view, complete search is distinguishable
from incomplete search only by its completeness: the fact that they usually
explore different search spaces and use different heuristics is merely a matter
of technology.

An interesting possibility is to combine all forms of search algorithm into
a single, unified framework. Such a framework would lead in a natural way
to new hybrids combining techniques from different fields, and would be an
antidote to the current proliferation of software systems. This is the aim of
[30] in which a wide variety of techniques are generalised into a search-infer-
and-relax algorithm. In this algorithm, search enumerates restrictions of the
problem via techniques such as branching, neighbourhood search and sub-
problem generation. The motivation is to examine a problem that may be
easier to solve, for example by setting a binary variable to 0, or by solving
a subproblem in Benders decomposition [7]. The algorithm may infer cut-
ting planes, domain filtering or nogood generation, which are all constraints
that were implicit in the original problem. Relaxation sets bounds on the ob-
jective function, a common technique being the relaxation of the integrality
constraints in a mixed integer program in order to find a lower bound in a
minimisation problem. This framework generalises CP solvers, branch-and-
bound algorithms, Benders decomposition, local search, GRASP, and hybrids
of these, though it does not yet include population-based search.

76 Steven Prestwich

4 Problem Symmetry

In this section we discuss an important property that is handled differently in
complete and incomplete search: problem symmetry. This property is exhib-
ited by many combinatorial problems, for example the N -queens problem has
eight symmetries: each solution may be rotated by 0, 90, 180 or 270 degrees,
each rotation optionally followed by a reflection. A more practical example
arises in planning with interchangeable resources, where there is little point
in exploring multiple versions of essentially the same plan. Interestingly, it has
been found that problem symmetry has different effects on different forms of
search.

4.1 Symmetry and Complete Search

Problem symmetry makes the search space larger than necessary for complete
search, sometimes slowing it down dramatically, and considerable research has
recently been devoted to symmetry breaking techniques for reducing search
space size. This is especially true in CP and SAT but also in MIP. Probably
the simplest and most popular approach is to add constraints to the problem
formulation, so that each equivalence class of solutions to the original problem
corresponds to a single solution in the new problem. Symmetries may be de-
tected in propositional satisfiability (SAT) encodings [12] or lifted (quantified)
versions of constraint satisfaction problems (CSPs) [35], and good results are
reported. A formal framework for this approach is given in [62].

The benefit of symmetry breaking for reducing the search space size is
clear, though its overheads are sometimes greater than its benefits. However,
it is known that symmetry breaking does not necessarily aid the search for
a single solution. It is remarked in [20] that the more easily-found solutions
may inadvertently be eliminated, and in [28, 63] that symmetry breaking
does not always improve performance. Another approach, designed partly to
avoid these drawbacks, is to detect and exploit symmetries dynamically during
search. An ordering can be defined on solutions, and the search restricted
to the first solutions under this ordering within each equivalence class [9];
constraints may be posted [2, 20] or choices pruned [14] at each branch point
in the search tree; nogoods may be added during search [16]; and search may
be guided towards subspaces with many non-symmetric states [42].

4.2 Symmetry and Population-Based Search

Problem symmetry can also be harmful for population-based search, but for a
different reason than for complete search. A symmetric optimisation problem
has multiple optimum solutions that are symmetrically equivalent. A genetic
algorithm may try to approach more than one of these optima simultane-
ously, via different population members. But recombination applied to these

Complete and Incomplete Search 77

members may yield offspring with very poor fitness. For example in a graph
3-colouring problem on a clique of 3 vertices, two solutions are (red,green,blue)
and (green,blue,red). But single-point crossover between the second and third
genes yields the non-solution (red,green,red). This effect can be alleviated
by designing more complex genetic operators and problem models [18] or by
clustering techniques [48]. Whereas in the CP literature, symmetry breaking
means adding constraints to exclude symmetric solutions, in the genetic algo-
rithm literature it refers to a clustering of the population within a region of
the search space. The risk of this form of symmetry breaking is that genetic
diversity may be lost if the clustering effect is too strong [61].

4.3 Symmetry and Local Search

Perhaps surprisingly, recent research has shown that symmetry is not harmful
for local search, in contrast to complete and population-based search. More-
over, adding symmetry breaking constraints to a model often harms local
search performance [56]. The reasons are unclear, but an obvious effect of
symmetry breaking is that it reduces the number of solutions to the problem,
and therefore the solution density of the local search space (defined as the
number of solutions divided by the number of possible search states). The idea
that greater solution density makes a problem easier to solve seems so natural
that it was taken as axiomatic in [25]. It was also pointed out by [10] that one
might expect a search algorithm to solve a (satisfiable) problem more quickly
if it has higher solution density. In detailed experiments on random problems
across solvability phase transitions they did find a correlation between local
and backtrack search performance and the number of solutions, though not a
simple one. Problem features other than solution density also seem to affect
search cost. For example [72] showed that adding more constraints to take a
random problem beyond the phase transition removes local minima, making
them easier for local search algorithms to solve despite removing solutions.

It was shown by [60], both empirically and by analysis, that symmetry
breaking constraints have two distinct negative effects on a local search space:
they increase the relative size of local optima, and they reduce the relative size
of global basins of attraction. These effects were observed using two different
symmetry breaking methods: using symmetry breaking constraints to modify
an objective function, and using them to restrict the search space. They also
showed that the bad effects of symmetry breaking are reduced by using more
complex local search algorithms with good diversification strategies.

The effect of symmetry breaking on local search suggests that these two
techniques should not be combined. This is an advantage for highly symmet-
ric problems, for which symmetry breaking may be costly in both time and
space. It also suggests a novel modelling technique: artificially adding sym-
metry to a model in order to improve local search performance. Some with
this technique success was reported by [56], and the idea was generalised to
artificially increasing the number of dominated solutions in [58].

78 Steven Prestwich

5 Conclusion

We have seen that complete and incomplete search have complementary
strengths and weaknesses, and that their strengths can to some extent be
combined in hybrid algorithms. No hybrid currently possesses all strengths,
except possibly an algorithm portfolio – and this approach cannot do better
than the best algorithm in the portfolio, while novel hybrids can sometimes
outperform all other known algorithms.

Some hybrids blur the distinction between the two search paradigms, and
in the future it may be possible to generalise them to a more abstract form
of search algorithm with a wide range of techniques that can be combined in
arbitrary ways. However, to obtain efficient performance the different forms
of search must handle features, such as problem symmetry and functionally
dependent variables, in different ways. Achieving this within a single frame-
work is likely to be challenging, but it is this sort of challenge that makes the
field so interesting.

References

1. G. Audemard, L. Simon. GUNSAT: A Greedy Local Search Algorithm for Un-
satisfiability. Poster paper, Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence, 2007.

2. R. Backofen, S. Will. Excluding Symmetries in Constraint-Based Search. Pro-
ceedings of the Fifth International Conference on Principles and Practice
of Constraint Programming, Lecture Notes in Computer Science vol. 1713,
Springer-Verlag 1999, pp. 73–87.

3. A. B. Baker. The Hazards of Fancy Backtracking. Proceedings of the Twelfth
National Conference on Artificial Intelligence, vol. 1, AAAI Press, 1994, pp.
288–293.

4. L. Baptista, J. P. Marques-Silva. Using Randomization and Learning to Solve
Hard Real-World Instances of Satisfiability. Proceedings of the Sixth Interna-
tional Conference on Principles and Practice of Constraint Programming, Lec-
ture Notes in Computer Science vol. 1894, Springer-Verlag 2000, pp. 489–494.

5. D. Beasley, D. R. Bull, R. R. Martin. Reducing Epistasis in Combinatorial
Problems by Expansive Coding. Fifth International Conference on Genetic Al-
gorithms, 1993, pp. 400–407.

6. J. C. Beck. Solution-Guided, Multi-Point Constructive Search. Journal of Arti-
ficial Intelligence Research 29:49–77, 2007.

7. J. F. Benders. Partitioning Procedures for Solving Mixed Variables Program-
ming Problems. Numerische Mathematik 4:238–252, 1962.

8. F. Boussemart, F. Hemery, C. Lecoutre, L. Säıs. Boosting Systematic Search
by Weighting Constraints. Proceedings of the Sixteenth European Conference on
Artificial Intelligence, IOS Press, 2004, pp. 146–150.

9. C. A. Brown, L. Finkelstein, P. W. Purdom Jr. Backtrack Searching in the Pres-
ence of Symmetry. T. Mora (ed.), Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes. Lecture Notes in Computer Science vol. 357, Springer-
Verlag 1988, pp. 99–110.

Complete and Incomplete Search 79

10. D. Clark, J. Frank, I. Gent, E. MacIntyre, N. Tomov, T. Walsh. Local Search and
the Number of Solutions. Proceedings of the Second International Conference on
Principles and Practices of Constraint Programming, 1996, pp. 119–133.

11. J. M. Crawford. Solving Satisfiability Problems Using a Combination of Sys-
tematic and Local Search. Second DIMACS Challenge: Cliques, Coloring, and
Satisfiability, October 1993, Rutgers University, NJ, USA.

12. M. Crawford, M. Ginsberg, E. Luks, A. Roy. Symmetry Breaking Predicates for
Search Problems. Proceedings of the Fifth International Conference on Princi-
ples of Knowledge Representation and Reasoning, 1996, pp. 148–159.

13. B. De Backer, V. Furnon, P. Kilby, P. Prosser, P. Shaw. Local Search in Con-
straint Programming: Application to the Vehicle Routing Problem. Proceedings
of the CP’97 Workshop on Industrial Constraint-Directed Scheduling, 1997.

14. T. Fahle, S. Schamberger, M. Sellman. Symmetry Breaking. Proceedings of the
Seventh International Conference on Principles and Practices of Constraint Pro-
gramming, Lecture Notes in Computer Science vol. 2239, Springer-Verlag, 2001,
pp. 93–107.

15. H. Fang, W. Ruml. Complete Local Search for Propositional Satisfiability. Pro-
ceedings of the Nineteenth National Conference on Artificial Intelligence, AAAI
Press, 2004, pp. 161–166.

16. F. Focacci, M. Milano. Global Cut Framework for Removing Symmetries. Pro-
ceedings of the Seventh International Conference on Principles and Practices
of Constraint Programming, Lecture Notes in Computer Science vol. 2239,
Springer-Verlag 2001, pp. 77–92.

17. E. C. Freuder, R. Dechter, M. L. Ginsberg, B. Selman, E. Tsang. Systematic
Versus Stochastic Constraint Satisfaction. Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence 2027–2032, Morgan Kauf-
mann, 1995.

18. P. Galinier, J. K. Hao. Hybrid Evolutionary Algorithms for Graph Coloring.
Journal of Combinatorial Optimization 3(4):379–397, 1999.

19. I. P. Gent, H. H. Hoos, A. G. D. Rowley, K. Smyth. Using Stochastic Local
Search to Solve Quantified Boolean Formulae. Proceedings of the Ninth Interna-
tional Conference on Principles and Practice of Constraint Programming, Lec-
ture Notes in Computer Science vol. 2833, Springer-Verlag, 2003, pp. 348–362.

20. I. P. Gent, B. Smith. Symmetry Breaking During Search in Constraint Pro-
gramming. Proceedings of the Fourteenth European Conference on Artificial In-
telligence, 2000, pp. 599–603.

21. M. L. Ginsberg, Dynamic Backtracking, Journal of Artificial Intelligence Re-
search 1:25–46, 1993.

22. M. L. Ginsberg, D. McAllester. GSAT and Dynamic Backtracking. Proceed-
ings of the International Conference on Principles of Knowledge and Reasoning,
1994, pp. 226–237.

23. M. K. Goldberg, R. D. Rivenburgh. Constructing Cliques Using Restricted Back-
tracking. D. S. Johnson, M. A. Trick (eds.), Cliques, Coloring and Satisfiability:
Second DIMACS Implementation Challenge, DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science vol. 26, American Mathematical So-
ciety, 1996, pp. 89–102.

24. C. P. Gomes, B. Selman, H. Kautz. Boosting Combinatorial Search Through
Randomization. Proceedings of the Fifteenth National Conference on Artificial
Intelligence, AAAI Press, 1998, pp. 431–437.

80 Steven Prestwich

25. Y. Hanatani, T. Horiyama, K. Iwama. Density Condensation of Boolean For-
mulas. Proceedings of the Sixth International Conference on the Theory and
Applications of Satisfiability Testing, Santa Margherita Ligure, Italy, 2003, pp.
126–133.

26. W. D. Harvey. Nonsystematic Backtracking Search. PhD thesis, Stanford Uni-
versity, 1995.

27. W. D. Harvey, M. L. Ginsberg. Limited Discrepancy Search. Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence, Morgan
Kaufmann, 1995, pp. 607–615.

28. M. Henz. Constraint Programming – An Oz Perspective. Tutorial at the Fifth
Pacific Rim International Conferences on Artificial Intelligence, 1998, NUS,
Singapore, November 1998.

29. E. A. Hirsch, A. Kojevnikov. Solving Boolean Satisfiability Using Local Search
Guided by Unit Clause Elimination. Proceedings of the Seventh International
Conference on Principles and Practice of Constraint Programming, Lecture
Notes in Computer Science vol. 2239, Springer-Verlag, 2001, pp. 605–609.

30. J. N. Hooker. A Search-Infer-and-Relax Framework for Integrating Solution
Methods. Roman Bartk and Michela Milano, eds., Proceedings of the Confer-
ence on Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, Lecture Notes in Computer Science vol.
3524, Springer-Verlag, 2005, pp. 243–257.

31. H. H. Hoos, T. Stützle. Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann, San Francisco, CA, USA, 2004.

32. Y. Interian, G. Corvera, B. Selman, R. Williams. Finding Small Unsatisfiable
Cores to Prove Unsatisfiability of QBFs. Proceedings of the Ninth International
Symposium on AI and Mathematics, 2006.

33. A. K. Jonsson, M. L. Ginsberg. Experimenting with New Systematic and Non-
systematic Search Techniques. Proceedings of the AAAI Spring Symposium on
AI and NP-Hard Problems, Stanford, California, 1993.

34. D. E. Joslin, D. P. Clements. Squeaky Wheel Optimization. Journal of Artificial
Intelligence Research 10:353–373, 1999.

35. D. Joslin, A. Roy. Exploiting Symmetry in Lifted CSPs. Proceedings of the
Fourteenth National Conference on Artificial Intelligence, American Association
for Artificial Intelligence 1997, pp. 197–203.

36. N. Jussien and O. Lhomme. Local Search With Constraint Propagation and
Conflict-Based Heuristics. Artificial Intelligence 139(1):21–45, 2002.

37. K. Kask, R. Dechter. GSAT and Local Consistency. Proceedings of the Four-
teenth International Joint Conference on Artificial Intelligence, Morgan Kauf-
mann 1995, pp. 616–622.

38. H. Kautz, D. McAllester, B. Selman. Exploiting Variable Dependency in Local
Search. Poster Sessions, Proceedings of the Fifteenth International Joint Con-
ference on Artificial Intelligence, 1997.

39. P. Langley. Systematic and Nonsystematic Search Strategies. Artificial Intel-
ligence Planning Systems: Proceedings of the First International Conference,
1992.

40. F. Lardeux, F. Saubion, J.-K. Hao. GASAT: a genetic local search algorithm
for the satisfiability problem. Evolutionary Computation 14(2):223–253, 2006.

41. I. Lynce, J. P. Marques-Silva. Random Backtracking in Backtrack Search Algo-
rithms for Satisfiability. Discrete Applied Mathematics 155(12):1604–1612, 2007.

Complete and Incomplete Search 81

42. P. Meseguer, C. Torras. Exploiting Symmetries Within Constraint Satisfaction
Search. Artificial Intelligence 129(1–2):133–163, 2001.

43. B. Meyer, A. Ernst, Integrating ACO and Constraint Propagation. Proceed-
ings of the Fourth International Workshop on Ant Colony Optimization and
Swarm Intelligence, Lecture Notes in Computer Science vol. 3172, Springer-
Verlag, 2004, pp. 166–177.

44. Z. Michalewicz. A Survey of Constraint Handling Techniques in Evolutionary
Computation Methods. Proceedings of the Fourth Annual Conference on Evolu-
tionary Programming 1995, pp. 135–155.

45. M. Milano, A. Roli. On the Relation Between Complete and Incomplete Search:
An Informal Discussion. Proceedings of the Fourth International Workshop on
Integration of AI and OR techniques in Constraint Programming for Combina-
torial Optimization Problems, le Croisic, France, 2002, pp. 237–250.

46. S. Minton, M. D. Johnston, A. B. Philips, P. Laird. Minimizing Conflicts: A
Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems.
Artificial Intelligence 58(1–3):160–205, 1992.

47. C. Morgenstern, Distributed Coloration Neighborhood Search. D. S. Johnson,
M. A. Trick (eds.), Cliques, Coloring and Satisfiability: Second DIMACS Imple-
mentation Challenge, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science vol. 26, American Mathematical Society, 1996, pp. 335–357.

48. M. Pelikan and D. E. Goldberg. Genetic Algorithms, Clustering, and the Break-
ing of Symmetry. Proceedings of the Sixth International Conference on Parallel
Problem Solving from Nature, 2000.

49. G. Pesant, M. Gendreau. A View of Local Search in Constraint Programming.
Proceedings of the Second International Conference on Principles and Prac-
tice of Constraint Programming, Lecture Notes in Computer Science vol. 1118,
Springer-Verlag, 1996, pp. 353–366.

50. D. G. Pothos, E. B. Richards. An Empirical Study of Min-Conflict Hill Climb-
ing and Weak Commitment Search. CP’95 Workshop on Studying and Solving
Really Hard Problems, 1995, pp. 140–146.

51. C. N. Potts, S. L. van de Velde. Dynasearch – Iterative Local Improvement
by Dynamic Programming: Part I, the Travelling Salesman Problem. Technical
report, University of Twente, The Netherlands, 1995.

52. S. D. Prestwich. A Hybrid Search Architecture Applied to Hard Random 3-SAT
and Low-Autocorrelation Binary Sequences. Proceedings of the Sixth Interna-
tional Conference on Principles and Practice of Constraint Programming, Lec-
ture Notes in Computer Science vol. 1894, Springer-Verlag, 2000, pp. 337–352.

53. S. D. Prestwich. Trading Completeness for Scalability: Hybrid Search for Cliques
and Rulers. Proceedings of the Third International Workshop on Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems, 2001, pp. 159–174.

54. S. D. Prestwich. Local Search and Backtracking vs Non-Systematic Backtrack-
ing. AAAI Fall Symposium on Using Uncertainty within Computation, Technical
report FS-01-04, AAAI Press, 2001, pp. 109–115.

55. S. D. Prestwich. SAT Problems With Chains of Dependent Variables. Discrete
Applied Mathematics 3037:1–22, Elsevier, 2002.

56. S. D. Prestwich. Negative Effects of Modeling Techniques on Search Perfor-
mance. Annals of Operations Research 118:137–150, Kluwer Academic Publish-
ers, 2003.

82 Steven Prestwich

57. S. D. Prestwich. Exploiting Relaxation in Local Search. Proceedings of the First
International Workshop on Local Search Techniques in Constraint Satisfaction,
Toronto, Canada, 2004.

58. S. D. Prestwich. Increasing Solution Density by Dominated Relaxation. Pro-
ceedings of the Fourth International Workshop on Modelling and Reformulating
Constraint Satisfaction Problems, 2005, pp. 1–13.

59. S. D. Prestwich, Ines Lynce. Local Search for Unsatisfiability. Proceedings of
the Ninth International Conference on Theory and Applications of Satisfiability
Testing, Lecture Notes in Computer Science vol. 4121, Springer-Verlag, 2006,
pp. 283–296.

60. S. D. Prestwich, A. Roli. Symmetry Breaking and Local Search Spaces. Pro-
ceedings of the Second International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Prob-
lems, Lecture Notes in Computer Science vol. 3524, Springer-Verlag, 2005, pp.
273–287.

61. A. Prügel-Bennett. Symmetry Breaking in Population-Based Optimization.
IEEE Transactions on Evolutionary Computation 8(1):63–79, 2004.

62. J.-F. Puget. On the Satisfiability of Symmetrical Constrained Satisfaction Prob-
lems. J. Komorowski, Z. W. Ras (eds.), Methodologies for Intelligent Systems,
Proceedings of the International Symposium on Methodologies for Intelligent
Systems, Lecture Notes in Computer Science vol. 689, Springer-Verlag 1993,
pp. 350–361.

63. J.-C. Régin. Minimization of the Number of Breaks in Sports League Scheduling
Problems Using Constraint Programming. DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science vol. 57, 2001.

64. E. T. Richards, B. Richards. Non-Systematic Search and No-Good Learning.
Journal of Automated Reasoning 24(4):483–533, 2000.

65. A. Schaerf. Combining Local Search and Look-Ahead for Scheduling and Con-
straint Satisfaction Problems. Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, Morgan Kaufmann, 1997, pp. 1254–1259.

66. M. Sellmann, C. Ansótegui. Disco-Novo-GoGo: Integrating Local Search and
Complete Search with Restarts. Proceedings of the Twenty First National Con-
ference on Artificial Intelligence and the Eighteenth Innovative Applications of
Artificial Intelligence Conference, AAAI Press, 2006.

67. B. Selman, H. Levesque, D. Mitchell. A New Method for Solving Hard Satis-
fiability Problems. Proceedings of the Tenth National Conference on Artificial
Intelligence, MIT Press, 1992, pp. 440–446.

68. P. Shaw. Using Constraint Programming and Local Search Methods to Solve
Vehicle Routing Problems. Proceedings of the Principles and Practice of Con-
straint Programming, Proceedings of the Fourth International Conference, Lec-
ture Notes in Computer Science vol. 1520, Springer-Verlag, 1998, pp. 417–431.

69. G. Verfaillie, T. Schiex. Solution Reuse in Dynamic Constraint Satisfaction
Problems. Proceedings of the Twelfth National Conference on Artificial Intel-
ligence, AAAI Press 1994, pp. 307–312.

70. W. Wei, B. Selman. Accelerating Random Walks. Proceedings of the Eighth In-
ternational Conference on Principles and Practice of Constraint Programming,
Lecture Notes in Computer Science vol. 2470, Springer-Verlag, 2002, pp. 216–
232.

71. D. H. Wolpert, W. G. Macready. No Free Lunch Theorems for Optimization.
IEEE Transactions on Evolutionary Computation 1(1):67–82, 1997.

Complete and Incomplete Search 83

72. M. Yokoo. Weak-Commitment Search for Solving Constraint Satisfaction Prob-
lems. Proceedings of the Twelfth National Conference on Artificial Intelligence
313–318, AAAI Press, 1994.

73. N. Yugami, Y. Ohta and H. Hara, Improving repair-based constraint satisfaction
methods by value propagation, Proceedings of the Twelfth National Conference
on Artificial Intelligence vol. 1, AAAI Press, 1994, pp. 344–349.

74. E. Zarpas. Back to the SAT05 Competition: an a Posteriori Analysis of Solver
Performance on Industrial Benchmarks. Journal on Satisfiability, Boolean Mod-
eling and Computation 2:229–237, 2006, research note.

75. W. Zhang. Depth-First Branch-and-Bound versus Local Search: A Case Study.
Proceedings of the Seventeenth National Conference on Artificial Intelligence,
2002, pp. 930–935.

76. H. Zhang, M. E. Stickel. Implementing the Davis-Putnam Method. Journal of
Automated Reasoning 24(1–2):77–296, 2000.

77. J. Zhang, H. Zhang. Combining Local Search and Backtracking Techniques for
Constraint Satisfaction. Proceedings of the Thirteenth National Conference on
Artificial Intelligence and Eighth Conference on Innovative Applications of Ar-
tificial Intelligence, AAAI Press / The MIT Press, 1996, pp. 369–374.

Hybridizations of Metaheuristics
With Branch & Bound Derivates

Christian Blum1, Carlos Cotta2, Antonio J. Fernández2, José E. Gallardo2,
and Monaldo Mastrolilli3

1 ALBCOM research group
Universitat Politècnica de Catalunya
cblum@lsi.upc.edu

2 Dept. Lenguajes y Ciencias de la Computación
Universidad de Málaga
{ccottap,afdez,pepeg}@lcc.uma.es

3 Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)
monaldo@idsia.ch

Summary. An important branch of hybrid metaheuristics concerns the hybridiza-
tion with branch & bound derivatives. In this chapter we present examples for two
different types of hybridization. The first one concerns the use of branch & bound fea-
tures within construction-based metaheuristics in order to increase their efficiancy.
The second example deals with the use of a metaheuristic, in our case a memetic
algorithm, in order to increase the efficiancy of branch & bound, respectively branch
& bound derivatives such as beam search. The quality of the resulting hybrid tech-
niques is demonstrated by means of the application to classical string problems:
the longest common subsequence problem and the shortest common supersequence
problem.

1 Introduction

One of the basic ingredients of an optimization technique is a mechanism for
exploring the search space, that is, the space of valid solutions to the con-
sidered optimization problem. Algorithms belonging to the important class of
constructive optimization techniques tackle an optimization problem by ex-
ploring the search space in form of a tree, a so-called search tree. The search
tree is generally defined by an underlying solution construction mechanism.
Each path from the root node of the search tree to one of the leaves corre-
sponds to the process of constructing a candidate solution. Inner nodes of the
tree can be seen as partial solutions. The process of moving from an inner
node to one of its child nodes is called a solution construction step, or exten-
sion of a partial solution.

C. Blum et al.: Hybridizations of Metaheuristics With Branch & Bound Derivates, Studies in

Computational Intelligence (SCI) 114, 85–116 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

86 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

The class of constructive optimization techniques comprises approximate
methods as well as complete methods. Recall that complete algorithms are
guaranteed to find for every finite size instance of a combinatorial optimiza-
tion problem an optimal solution in bounded time. This is in contrast to
incomplete methods such as heuristics and metaheuristics where we sacrifice
the guarantee of finding optimal solutions for the sake of getting good so-
lutions in a significantly reduced amount of time. A prominent example of
a deterministic constructive heuristic is a greedy heuristic. Greedy heuristics
make use of a weighting function that gives weights to the child nodes of each
inner node of the search tree. At each construction step the child node with
the highest weight is chosen.

Apart from greedy heuristics, the class of constructive optimization tech-
niques also includes metaheuristics such as ant colony optimization (ACO) [12]
and greedy randomized adaptive search procedures (GRASP) [13].1 They are
iterative algorithms that employ repeated probabilistic (randomized) solution
constructions at each iteration. For each child node of an inner node of the
tree they compute the probability of performing the corresponding construc-
tion step. These probabilities may depend on weighting functions and/or the
search history of the algorithm. They are sometimes called transition proba-
bilities and define a probability distribution over the search space. In GRASP,
this probability distribution does not change during run-time, while in ACO
the probability distribution is changed during run-time with the aim of bi-
asing the probabilistic construction of solutions towards areas of the search
space containing high quality solutions.

In addition to the methods mentioned above, the class of constructive
optimization techniques also includes complete algorithms such as backtrack-
ing [36] and branch & bound [25]. A common backtracking scheme is imple-
mented in the depth-first search (DFS) algorithm. The un-informed version
of DFS starts from the root node of the search tree and progresses by always
moving to the best unexplored child of the current node, going deeper and
deeper until a leaf node is reached. Then the search backtracks, returning to
the most recently visited node of which remain unexplored children, and so
on. This systematic search method explicitly visits all possible solutions ex-
actly once.

Branch & bound algorithms belong to the class of implicit enumeration
techniques. The branch & bound view on the search tree is slightly different
to that exhibited by the algorithms mentioned before. More specifically, the
subtree rooted at an inner node of the search tree is seen as a subspace of the
search space. Accordingly, the subspaces represented by the subtrees rooted
at the children of an inner node consitute a partition of the subspace that is

1 See Chapter 1 of this book for a comprehensive introduction to metaheuristics.

Hybridization With Branch & Bound Derivatives 87

represented by the inner node itself. The partitioning of the search space is
called branching. A branch & bound algorithm produces for each inner node of
the search tree an upper bound as well as a lower bound of the objective func-
tion values of the solutions contained by the corresponding subspace. These
bounds are used to decide if the whole subspace can be discarded, or if it has
to be further partitioned. As in backtracking, there are different schemes such
as depth-first search or breadth-first search for traversing over the search tree.

An interesting heuristic version of a breadth-first branch & bound is beam
search [33]. Instead of considering all nodes of a certain level of the search
tree, beam search restricts the search to a certain number of nodes based on
the bounding information (lower bounds for minimization, and upper bounds
for maximization).

Each of the algorithms mentioned above has advantages as well as dis-
advantages. Greedy heuristics, for example, are usually easy to implement
and fast in execution. However, the obtained solution quality is often not
sufficient. Metaheuristics, on the other side, can find good solutions in a rea-
sonable amount of time, without providing performance guarantees. However,
metaheuristics can generally not avoid visiting the same solution more than
once, which might lead to a waste of computation time. Finally, complete
techniques guarantee to find an optimal solution. However, a user might not
be prepared to accept overly large running times. In recent years it has been
shown that a hybridization of concepts originating from different types of al-
gorithms can often result in more efficient techniques. For example, the use
of backtracking in metaheuristics is relatively wide-spread. Examples of their
use in construction-based metaheuristics are [2, 3, 9]. Backtracking is also
used in evolutionary algorithms (see, for example, [10, 24]), and even in tabu
search settings [32]. The hybridization of metaheuristics with branch & bound
(respectively, beam search) concepts is rather recent. We distinguish between
two different lines of hybridization. On one side, it is possible to use branch &
bound concepts within construction-based metaheuristics in order to increase
the efficiency of the metaheuristics search process. On the other side, meta-
heuristics can be used within branch & bound in order to reduce the space
and time consumption of branch & bound. This chapter is dedicated to out-
line representative examples of both types of hybrid algorithms. The reader
interested in a broader discussion on the combination of metaheuristics and
exact techniques is referred to [34].

2 Using Branch & Bound Concepts
Within Construction-Based Metaheuristics

Recent hybrid metaheuristics include some important features that are in-
spired by deterministic branch & bound derivatives such as beam search:

88 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

1. Bounding information is used for evaluating partial solutions; sometimes
also for choosing among different partial solutions, or discarding partial
solutions.

2. The extension of partial solutions is allowed in more than one way. The
number of nodes which can be selected at each search tree level is hereby
limited from above by a parametric constraint, resulting in parallel and
non-independent solution constructions.

This type of hybrid algorithm includes probabilistic beam search (PBS) [6],
Beam-ACO algorithms [4, 5], and approximate and non-deterministic tree
search (ANTS) procedures [27, 28, 29].2 These works give empiricial evidence
of the usefulness of including the two features mentioned above in the con-
struction process of construction-based metaheuristics.3

In the following we first give a motivation of why the above mentioned
branch & bound features should be incorporated in construction-based meta-
heuristics. Afterwards, we present some representative approaches.

2.1 A Tree Search Model

The following tree search model captures the essential elements common to all
constructive procedures. In general, we are given an optimization problem P
and an instance x of P. Typically, the search space Sx is exponentially large in
the size of the input x. Without loss of generality we intend to maximize the
objective function f : Sx �→ R

+. The optimization goal is to find a solution
y ∈ Sx to x with f(y) as great as possible. Assume that each element y ∈ Sx

can be viewed as a composition of ly,x ∈ N elements from a set Σ. From this
point of view, Sx can be seen as a set of strings over an alphabet Σ. Any
element y ∈ Sx can be constructed by concatenating ly,x elements of Σ.

The following method for constructing elements of Sx is instructive: A so-
lution construction starts with the empty string ε. The construction process
consists of a sequence of construction steps. At each construction step, we
select an element of Σ and append it to the current string t. The solution
construction may end for two reasons. First, it may end in case t has no fea-
sible extensions. This happens in case t is already a complete solution, or
when no solution of Sx has prefix t. Second, a solution construction ends in
case of available upper bound information that indicates that each solution
with prefix t is worse than any solution that is already known. Henceforth we
denote the upper bound value of a partial solution t by UB(t).

2 Note that the algorithms presented in [27, 28] only use the first one of the features
mentioned above.

3 Related work that is not subject of this chapter can be found, for example, in [20].

Hybridization With Branch & Bound Derivatives 89

Algorithm 7 Solution construction: SC(f̂)

1: input: the best known objective function value f̂ (which might be 0)
2: initialization: v := v0

3: while |C(v)| > 0 and v �= null do
4: w := ChooseFrom(C(v))
5: if UB(w) < f̂ then
6: v := null

7: else
8: v := w
9: end if

10: end while
11: output: v (which is either a complete solution, or null)

The application of such an algorithm can be equivalently described as a
walk from the root v0 of the corresponding search tree to a node at level ly,x.
The search tree has nodes for all y ∈ Sx and for all prefixes of elements of Sx.
The root of the tree is the empty string, that is, v0 corresponds to ε. There is
a directed arc from node v to node w if w can be obtained by appending an
element of Σ to v. Note that henceforth we identify a node v of the search tree
with its corresponding string t. We will use both notations interchangeably.
The set of nodes that can be reached from a node v via directed arcs are called
the children of v, denoted by C(v). Note, that the nodes at level i correspond
to strings of length i. If w is a node corresponding to a string of length l > 0
then the length l−1 prefix v of w is also a node, called the father of w denoted
by F(w). Thus, every y ∈ Sx corresponds to exactly one path of length ly,x

from the root node of the search tree to a specific leaf. The above described
solution construction process is pseudo-coded in Algorithm 7. In the following
we assume function ChooseFrom(C(v)) of this algorithm to be implemented
as a probabilistic choice function.

2.2 Primal and Dual Problem Knowledge

The analysis provided in the following assumes that there is a unique optimal
solution, represented by leaf node vd of the search tree, also referred to as
the target node. Let us assume that – without loss of generality – the target
node vd is at the maximum level d ≥ 1 of the search tree. A probabilistic
constructive optimization algorithm is said to be successful, if it can find the
target node vd with high probability.

In the following let us examine the success probability of repeated applica-
tions of Algorithm 7 in which function ChooseFrom(C(v)) is implemented as a
probabilisitc choice function. Such solution constructions are employed, for ex-
ample, within the ACO metaheuristic. The value of the input f̂ is not important

90 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

for the following analysis. Given any node vi at level i of the search tree, let
p(vi) be the probability that a solution construction process includes node
vi. Note that there is a single path from v0, the root node, to vi. We denote
the corresponding sequence of nodes by (v0, v1, v2, ..., vi). Clearly, p(v0) = 1
and p(vi) =

∏i−1
j=0 p(vj+1|vj). Let Success(ρ) denote the event of finding the

target node vd within ρ applications of Algorithm 7. Note that the probability
of Success(ρ) is equal to 1 − (1− p(vd))

ρ, and it is easy to check that the
following inequalities hold:

1− e−ρp(vd) ≤ 1− (1− p(vd))
ρ ≤ ρp(vd) (1)

By (1), it immediately follows that the chance of finding node vd is large if
and only if ρp(vd) is large, namely as soon as

ρ = O (1/p(vd)) (2)

In the following, we will not assume anything about the exact form of the given
probability distribution. However, let us assume that the transition proba-
bilities are heuristically related to the attractiveness of child nodes. In other
words, we assume that in a case in which a node v has two children, say w and
q, and w is known (or believed) to be more promising, then p(w|v) > p(q|v).
This can be achieved, for example, by defining the transition probabilities
proportional to the weights assigned by greedy functions.

Clearly, the probability distribution reflects the available knowledge on
the problem, and it is composed of two types of knowledge. If the probability
p(vd) of reaching the target node vd is “high”, then we have a “good” prob-
lem knowledge. Let us call the knowledge that is responsible for the value of
p(vd) the primal problem knowledge (or just primal knowledge). From
the dual point of view, we still have a “good” knowledge of the problem if
for “most” of the wrong nodes (i.e. those that are not on the path from v0 to
vd) the probability that they are reached is “low”. We call this knowledge the
dual problem knowledge (or just dual knowledge). Note that the quality
of the dual knowledge grows with the value f̂ that is provided as input to
Algorithm 7. This means, the better the solution that we already know, the
higher is the quality of the dual knowledge. Observe that the two types of
problem knowledge outlined above are complementary, but not the same. Let
us make an example to clarify these two concepts. Consider the search tree of
Figure 1, where the target node is v5. Let us analyze two different probability
distributions:

Case (a) For each v and w ∈ C(v) let p(w|v) = 0.5. Moreover, let us as-
sume that no upper bound information is available. This means that each
solution construction is performed until a leaf node is reached. When
probabilistically constructing a solution the probability of each child is
therefore the same at each construction step.

Hybridization With Branch & Bound Derivatives 91

v0

v1

v2

v3

v4

v5

Fig. 1. Example of a search tree. v5 is the unique optimal solution.

Case (b) In general, the transition probabilities are defined as in case (a),
with one exception. Let us assume that the available upper bound indi-
cates that the subspaces represented by the black nodes do not contain
any better solutions than the ones we already know, that is, UB(v) ≤ f̂ ,
where v is a black node. Accordingly, the white children of the black nodes
have probability 0 to be reached.

Note that in both cases the primal knowledge is “scarce”, since the proba-
bility that the target node vd is reached by a probabilistic solution construction
decreases exponentially with d, that is, p(vd) = 2−d. However, in case (b)
the dual knowledge is “excellent”, since for most of the wrong nodes (i.e. the
white nodes), the probability that any of them is reached is zero. Viceversa, in
case (a) the dual knowledge is “scarce”, because there is a relatively “high”
probability that a white node is reached.

By using the intuition given by the provided example, let us try to better
quantify the quality of the available problem knowledge. Let Vi be the set of
nodes at level i, and let

�(i) =
∑

v∈Vi

p(v), i = 1, . . . , d . (3)

Note that �(i) is equal to the probability that the solution construction
process reaches level i of the search tree. Observe that the use of the upper
bound information makes the probabilities �(i) smaller than one. Case (b)

92 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

was obtained from case (a) by decreasing �(i) (for i = 1, . . . , d) down to 2i−1

(and without changing the probability p(vi) of reaching the ancestor vi of
the target node at level i), whereas in case (a) it holds that �(i) = 1 (for
i = 1, . . . , d). In general, good dual knowledge is supposed to decrease �(i)
without decreasing the probability of reaching the ancestor vi of the target
node vd. This discussion may suggest that a characterization of the available
problem knowledge can be given by the following knowledge ratio:

Kvd
= min

1≤i≤d

p(vi)
�(i)

(4)

The larger this ratio the better the knowledge we have on the target node
vd. In case (a) it is Kvd

= 1/2d, whereas the knowledge ratio of case (b) is
Kvd

= 1/2, which is exponentially larger.

Finally, it is important to observe that the way of (repeatedly) constructing
solutions in a probabilistic way does not exploit the dual problem knowledge.
For example in case (b), although the available knowledge is “excellent”, the
target node vd is found after an expected number of runs that is proportional
to 1/p(vd) = 2d (see Equation (2)), which is the same as in case (a). In
other words, the number of necessary probabilistic solution constructions only
depends on the primal knowledge.

2.3 How to Exploit the Dual Knowledge?

The problem of Algorithm 7 is clearly the following one: When encountering a
partial solution whose upper bound is less or equal to the value of the best so-
lution found so far, the construction process is aborted, and the computation
time invested in this construction is lost. Generally, this situation may occur
very often. In fact, the probability for the abortion of a solution construction
is 1−p(vd) in the example outlined in the previous section, which is quite high.

In the following let us examine a first simple extension of Algorithm 7.
The corresponding algorithm – henceforth denoted by PSC(α,f̂) – is pseudo-
coded in Algorithm 8. Hereby, α denotes the maximum number of allowed
extensions of partial solutions at each construction step; in other words, α
is the maximum number of solutions to be constructed in parallel. We use
the following additional notation: For any given set S of search tree nodes let
C(S) be the set of children of the nodes in S. Morever, Bi denotes the set of
reached nodes of tree level i. Recall that the root node v0 is the only node at
level 0.

The algorithm works as follows. Given the selected nodes Bi of level i
(with |Bi| ≤ α)), the algorithm probabilistically chooses at most α solutions
from C := C(Bi), the children of the nodes in Bi. The probabilistic choice of a

Hybridization With Branch & Bound Derivatives 93

Algorithm 8 Parallel solution construction: PSC(α,f̂)

1: input: α ∈ Z
+, the best known objective function value f̂

2: initialization: i := 0, Bi := {v0}, z := null

3: while Bi �= ∅ do
4: Bi+1 := ∅
5: C := C(Bi)
6: for k = 1, . . . ,min{α, |C(Bi)|} do
7: w := ChooseFrom(C)
8: if |C(w)| > 0 then
9: if UB(w) > f̂ then Bi+1 := Bi+1 ∪ {w} end if

10: else
11: if f(w) > f̂ then z := w, f̂ := f(z) end if
12: end if
13: C := C \ {w}
14: end for
15: i := i + 1
16: end while
17: output: z (which might be null)

child is performed in function ChooseFrom(C) proportionally to the following
probabilities:

p(w|C) =
p(w|F(w))∑

v∈C

p(v|F(v))
,∀ w ∈ C (5)

Remember that F(w) denotes the father of node w. After choosing a node
w it is first checked if w is a complete solution, or not. In case it is not a
complete solution, it is checked if the available bounding information allows
the further extension of this partial solution, in which case w is added to Bi+1.
However, if w is already a complete solution, it is checked if its value is better
than the value of the best solution found so far. The algorithm returns the
best solution found, in case it is better than the f̂ value that was provided as
input. Otherwise the algorithm returns null.

Observe that when α = 1, PSC(α,f̂) is equivalent to SC(f̂). In con-
trast, when α > 1 the algorithm constructs (maximally) α solutions non-
independently in parallel. Concerning the example outlined in the previous
section with the probability distribution as defined in case(b), we can ob-
serve that algorithm PSC(α,f̂) with α > 1 solves this problem even within
one application. At each step i, Bi will only contain the brother of the cor-
responding black node, because the upper bound information does not allow
the inclusion of the black nodes in Bi. This shows that algorithm PSC(α,f̂),
in contrast to algorithm SC(f̂), benefically uses the dual problem knowledge.

94 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

2.4 Probabilistic Beam Search

For practical optimization, algorithm PSC(α,f̂) has some drawbacks. First, in
most cases algorithms for optimization are applied with the goal of finding a
solution as good as possible, without having a clue beforehand about the value
of good solutions. Second, the available upper bound function might not be
very tight. For both reasons, solution constructions that lead to unsatisfying
solutions are discarded only at very low levels of the search tree, that is, close
to the leaves. Referring to the example of Section 2.2, this means that black
nodes will only appear close to the leaves. In those cases, algorithm PSC(α,f̂)
will have practically no advantage over algorithm SC(f̂). It might even have
a disadvantage due to the amount of computation time invested in choosing
children from bigger sets.

The following simple extension can help in overcoming the drawbacks of
algorithm PSC(α,f̂). At each algorithm iteration we allow the choice of µ · α
nodes from Bi, instead of α nodes. µ ≥ 1 is a parameter of the algorithm.
Moreover, after the choice of the child nodes we restrict set Bi+1 to the (max-
imally) α best solutions with respect to the upper bound information. This
results in a so-called (probabilistic) beam search algorithm – henceforth de-
noted by PBS(α,µ,f̂) – pseudo-coded in Algorithm 9. Note that algorithm
PBS(α,µ,f̂) is a generalization of algorithm PSC(α,f̂), that is, when µ = 1
both algorithms are equivalent. Algorithm PBS(α,µ,f̂) is also a generalization
of algorithm SC(f̂), which is obtained by α = µ = 1.

2.5 Adding a Learning Component: Beam-ACO

In general, algorithm PBS(α,µ,f̂) can be expected to produce good solutions
if (at least) two conditions are fullfilled: Neither the greedy function nor the
upper bound function are misleading. If at least one of these two functions
is misleading, the algorithm might not be able to find solutions above a cer-
tain threshold. One possibility of avoiding this drawback is to add a learning
component to algorithm PBS(α,µ,f̂), that is, adding a mechanism that is sup-
posed to adapt the primal knowledge, the dual knowledge, or both, over time,
based on accumulated search experience.

Ant colony optimization (ACO) [12] is the most prominent construction-
based metaheuristics that attempts to learn the primal problem knowledge
during run-time. ACO is inspired by the foraging behavior of ant colonies. At
the core of this behavior is the indirect communication between the ants by
means of chemical pheromone trails, which enables them to find short paths
between their nest and food sources. This characteristic of real ant colonies
is exploited in ACO algorithms in order to solve, for example, combinatorial
optimization problems. In general, the ACO approach attempts to solve an
optimization problem by iterating the following two steps:

Hybridization With Branch & Bound Derivatives 95

Algorithm 9 Probabilistic beam search: PBS(α,µf̂)

1: input: α, µ ∈ Z
+, the best known objective function value f̂

2: initialization: i := 0, Bi := {v0}, z := null

3: while Bi �= ∅ do
4: Bi+1 := ∅
5: C := C(Bi)
6: for k = 1, . . . ,min{µ · α, |C(Bi)|} do
7: w := ChooseFrom(C)
8: if |C(w)| > 0 then
9: if UB(w) > f̂ then Bi+1 := Bi+1 ∪ {w} end if

10: else
11: if f(w) > f̂ then z := w, f̂ := f(z) end if
12: end if
13: C := C \ {w}
14: end for
15: Restrict Bi+1 to the (maximally) α best nodes w.r.t. their upper bound
16: i := i + 1
17: end while
18: output: z (which might be null)

• At each iteration, a certain number of α candidate solutions is probabilis-
tically constructed. The respective probability distribution is derived from
an available greedy function and from the values of so-called pheromone
trail parameters, the pheromone values. The set of pheromone trail para-
meters is denoted by T .

• The constructed candidate solutions are used to modify the pheromone
values in a way that is deemed to bias future solution constructions towards
areas of the search space containing high quality solutions. Hereby, the
greedy function can be seen as the a priori available primal knowledge,
whereas the pheromone values are used to modify (ideally, to improve)
this a priori given primal knowledge over time.

While standard ACO algorithms use α applications of algorithm SC(f̂) at
each iteration for the probabilistic construction of solutions, the idea of Beam-
ACO [4, 5] is to use one application of probabilistic beam search PBS(α,µ,f̂)
instead.

A related ACO approach is labelled ANTS (see [27, 28, 29]). The charac-
terizing feature of ANTS is the use of upper bound information for defining
the primal knowledge. The latest version of ANTS [29] uses at each iteration
algorithm PSC(α,f̂) to construct candidate solutions.

96 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

2.6 Example: Longest Common Subsequence Problem

The longest common subsequence (LCS) problem is one of the classical string
problems. Given a problem instance (S, Σ), where S = {s1, s2, . . . , sn} is a set
of n strings over a finite alphabet Σ, the problem consists in finding a longest
string t∗ that is a subsequence of all the strings in S. Such a string t∗ is called
a longest common subsequence of the strings in S. Note that a string t is called
a subsequence of a string s, if t can be produced from s by deleting charac-
ters. For example, dga is a subsequence of adagtta. If n = 2 the problem is
polynomially solvable, for example, by dynamic programming [17]. However,
when n > 2 the problem is in general NP-hard [26]. Traditional applications of
this problem are in data compression, syntactic pattern recognition, and file
comparison [1], whereas more recent applications also include computational
biology [38].

In order to apply algorithm PBS(α,µ,f̂) to the LCS problem, we have to
define the solution construction mechanism, the greedy function that defines
the primal knowledge, and the upper bound function that defines the dual
knowledge. We use the construction mechanism of the so-called Best-Next

heuristic [15, 22] for our algorithm. Given a problem instance (S, Σ), this
heuristic produces a common subsequence t sequentially by appending at each
construction step a letter to t such that t maintains the property of being a
common subsequence of all strings in S. Given a common subsequence t of
the strings in S, we explain in the following how to derive the children of t.
For that purpose we introduce the following notations:

1. Let si = sA
i · sB

i be the partition of si into substrings sA
i and sB

i such
that t is a subsequence of sA

i and sB
i has maximal length. Given this

partition, which is well-defined, we introduce position pointers pi := |sA
i |

for i = 1, . . . , n (see Figure 2 for an example).
2. The position of the first appearance of a letter a ∈ Σ in a string si ∈ S

after the position pointer pi is well-defined and denoted by ia. In case a
letter a ∈ Σ does not appear in sB

i , ia is set to ∞ (see Figure 2).
3. A letter a ∈ Σ is called dominated, if exists at least one letter b ∈ Σ such

that ib < ia for i = 1, . . . , n;
4. Σnd

t ⊆ Σ henceforth denotes the set of non-dominated letters of the al-
phabet Σ with respect to a given t. Moreover, for all a ∈ Σnd

t it is required
that ia < ∞, i = 1, . . . , n. Hence, we require that in each string si a letter
a ∈ Σnd

t appears at least once after position pointer pi.

The children C(t) of a node t are then determined as follows: C(t) := {v =
ta | a ∈ Σnd

t }. The primal problem knowledge is derived from the greedy
function η(·) that assigns to each child v = ta ∈ C(t) the following greedy
weight:

η(v) = min{|si| − ia | i = 1, . . . , n} (6)

Hybridization With Branch & Bound Derivatives 97

sA
1︷ ︸︸ ︷

a c b c a d

sB
1︷ ︸︸ ︷

b b d

p1 1b 1d

(a) String s1

sA
2︷ ︸︸ ︷

c a b d a c d

sB
2︷︸︸︷

c d

p2 2c2d

(b) String s2

sA
3︷ ︸︸ ︷

b a b c d

sB
3︷ ︸︸ ︷

d a a b

p3 3d3a 3b

(c) String s3

Fig. 2. Given is the problem instance (S = {s1, s2, s3}, Σ = {a, b, c, d}) where
s1 = acbcadbbd, s2 = cabdacdcd, and s3 = babcddaab. Let us assume that t = abcd.
(a), (b), and (c) show the corresponding division of si into sA

i and sB
i , as well as the

setting of the pointers pi and the next positions of the 4 letters in sB
i . Note that in

case a letter does not appear in sB
i (for example, letter a does not appear in sB

1),
the corresponding pointer is set to ∞. For example, as letter a does not appear in
sB
1 , we set 1a := ∞.

The child with the highest greedy weight is considered the most promising
one. Instead of the greedy weights themselves, we will use the corresponding
ranks. More in detail, the child v = ta with the highest greedy weight will be
assigned rank 1, denoted by r(v) = 1, the child w = tb with the second-highest
greedy weight will be assigned rank 2 (that is, r(w) = 2), and so on.

In the following we explain the implementation of function ChooseFrom(C)
of algorithm PBS(α,µ,f̂). Remember that C denotes the set of children ob-
tained from the nodes that are contained in the beam Bi (that is, C := C(Bi)).
For evaluating a child v ∈ C we use the sum of the ranks of the greedy weights
that correspond to the construction steps performed to construct string v. Let
us assume that v is on the i-th level of the search tree, and let us denote the
sequence of characters that forms string v by v1 . . . vi, that is, v = v1 . . . vi.
Then,

ν(v) :=
i∑

j=1

r(v1 . . . vj), (7)

where v1 . . . vj denotes the substring of v from position 1 to position j. With
this definition, Equation 5 can be defined for the LCS problem as follows:

p(v|C) =
ν(v)−1

∑
w∈C ν(w)−1

, ∀ v ∈ C (8)

Finally, we outline the upper bound function UB(·) that the PBS(α,µ,f̂) algo-
rithm requires. Remember that a given subsequence t splits each string si ∈ S
into a first part sA

i and into a second part sB
i , that is, si = sA

i ·sB
i . Henceforth,

|sB
i |a denotes the number of occurrences of letter a in sB

i for all a ∈ Σ. Then,

UB(t) := |t|+
∑

a∈Σ

min{|sB
i |a | i = 1, . . . , n}, (9)

that is, for each letter a ∈ Σ we take the minimum of the occurrences of a
in sB

i , i = 1, . . . , n. Summing up these minima and adding the result to the

98 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

length of t results in the upper bound. This completes the description of the
implementation of the PBS(α,µ,f̂) algorithm for the LCS problem.

In the following, we use algorithm PBS(α,µ,f̂) in two different ways: First,
we use PBS(α,µ,f̂) in a multi-start fashion as shown in Algorithm 10, denoted
by MS-PBS(α,µ). Second, we use PBS(α,µ,f̂) within a Beam-ACO algorithm
as explained in the following.

Algorithm 10 Multi-start probabilistic beam search: MS-PBS(α,µ)
1: input: α, µ ∈ Z

+

2: z := null

3: f̂ := 0
4: while CPU time limit not reached do
5: v := PBS(α,µ,f̂) {see Algorithm 9}
6: if v �= null then z := v, f̂ := |z|
7: end while
8: output: z

The first step of defining a Beam-ACO approach – and, in general, any
ACO algorithm – consists in the specification of the set of pheromone values
T . In the case of the LCS problem T contains for each position j of a string
si ∈ S a pheromone value 0 ≤ τij ≤ 1, that is, T = {τij | i = 1, . . . , n, j =
1, . . . , |si|}. A value τij ∈ T indicates the desirability of adding the letter at
position j of string i to a solution: the greater τij , the greater is the desir-
ability of adding the corresponding letter. In addition to the definition of the
pheromone values, we also introduce a solution representation that is suitable
for ACO. Any common subsequence t of the strings in S can be translated
into an ACO-solution T = {Tij ∈ {0, 1} | i = 1, . . . , n, j = 1, . . . , |si|} where
Tij = 0 if the letter at position j of string i was not added to t during the
solution construction, and Tij = 1 otherwise. Note that the translation of t
into T is well-defined due to the construction mechanism. For example, given
solution t = abcdd for the problem instance of Figure 2, the corresponding
ACO-solution is T1 = 101101001, T2 = 011001101, and T3 = 011111000,
where Ti refers to the sequence Ti1 . . . Ti|si|. In the following, for each given
solution, the lower case notation refers to its string representation, and the
upper case notation refers to its binary ACO representation.

The particular ACO framework that we used for our algorithm is the so-
called MAX −MIN ant system (MMAS) algorithm implemented in the
hyper-cube framework (HCF), an ACO variant that generally performs very
well. One of the particularities of this algorithm is the use of an upper bound
for the pheromone values with the aim of preventing convergence to a solution,

Hybridization With Branch & Bound Derivatives 99

see [7]. A high level description of the algorithm is given in Algorithm 11. The
data structures used, in addition to counters and to the pheromone values,
are: (1) the best-so-far solution T bs, i.e., the best solution generated since
the start of the algorithm; (2) the restart-best solution T rb, that is, the best
solution generated since the last restart of the algorithm; (3) the convergence
factor cf, 0 ≤ cf ≤ 1, which is a measure of how far the algorithm is from con-
vergence; and (4) the Boolean variable bs update, which becomes true when
the algorithm reaches convergence.

Roughly, the algorithm works as follows. First, all the variables are initial-
ized. In particular, the pheromone values are set to their initial value 0.5. Each
algorithm iteration consists of the following steps. First, algorithm PBS(α,µ,f̂)
is applied with f̂ = 0 to generate a solution T pbs. The setting of f̂ = 0 is
chosen, because in ACO algorithms it is generally useful to learn also from
solutions that are worse than the best solution found so far. The only change
in algorithm PBS(α,µ,f̂) occurs in the definition of the choice probabilities.
Instead of using Equation 8, these probabilities are now defined as follows:

p(v = ta|C) =

(
min

i=1,...,n
{τiia

} · ν(v)−1

)

∑
w=tb∈C

(
min

i=1,...,n
{τiib

} · ν(w)−1

) , ∀ v = ta ∈ C (10)

Remember in this context, that ia was defined as the next position of letter a
after position pointer pi in string si. The intuition of choosing the minimum
of the pheromone values corresponding to the next positions of a letter in the
n given strings is as follows: If at least one of these pheromone values is low,
the corresponding letter should not yet be appended to the string, because
apparently there is another letter that should be appended first.

The second action at each iteration concerns the pheromone update con-
ducted in the ApplyPheromoneUpdate(cf , bs update, T , T pbs, T rb, T bs) proce-
dure. Third, a new value for the convergence factor cf is computed. Depending
on this value, as well as on the value of the Boolean variable bs update, a de-
cision on whether to restart the algorithm or not is made. If the algorithm
is restarted, all the pheromone values are reset to their initial value (that
is, 0.5). The algorithm is iterated until the CPU time limit is reached. Once
terminated, the algorithm returns the string version tbs of the best-so-far
ACO-solution T bs. In the following we describe the two remaining procedures
of Algorithm 11 in more detail.

ApplyPheromoneUpdate(cf ,bs update,T ,T pbs,T rb,T bs): In general, three so-
lutions are used for updating the pheromone values. These are the solution
T pbs generated by the PBS algorithm, the restart-best solution T rb, and the
best-so-far solution T bs. The influence of each solution on the pheromone up-
date depends on the state of convergence of the algorithm as measured by the

100 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

Algorithm 11 Beam-ACO for the LCS problem
1: input: α, µ ∈ Z

+

2: T bs := null, T rb := null, cf := 0, bs update := false

3: τij := 0.5, i = 1, . . . , n, j = 1, . . . , |si|
4: while CPU time limit not reached do
5: T pbs := PBS(α,µ,0) {see Algorithm 9}
6: if |tpbs| > |trb| then T rb := T pbs

7: if |tpbs| > |tbs| then T bs := T pbs

8: ApplyPheromoneUpdate(cf ,bs update,T ,T pbs,T rb,T bs)
9: cf := ComputeConvergenceFactor(T)

10: if cf > 0.99 then
11: if bs update = true then
12: τij := 0.5, i = 1, . . . , n, j = 1, . . . , |si|
13: T rb := null

14: bs update := false

15: else
16: bs update := true

17: end if
18: end if
19: end while
20: output: tbs (that is, the string version of ACO-solution T bs)

convergence factor cf. Each pheromone value τij ∈ T is updated as follows:

τij := τij + ρ · (ξij − τij) , (11)

where
ξij := κpbs · T pbs

ij + κrb · T rb
ij + κbs · T bs

ij , (12)

where κpbs is the weight (that is, the influence) of solution T pbs, κrb is the
weight of solution T rb, κbs is the weight of solution T bs, and κpbs + κrb +
κbs = 1. After the application of the pheromone update rule (Equation 11),
pheromone values that exceed τmax = 0.999 are set back to τmax (similarly for
τmin = 0.001). This is done in order to avoid a complete convergence of the
algorithm, which is a situation that should be avoided. Equation 12 allows
to choose how to schedule the relative influence of the three solutions used
for updating the pheromone values. For our application we used a standard
update schedule as shown in Table 1.

ComputeConvergenceFactor(T): The convergence factor cf , which is a func-
tion of the current pheromone values, is computed as follows:

cf := 2

⎛

⎜⎝

⎛

⎜⎝

∑
τij∈T

max{τmax − τij , τij − τmin}

|T | · (τmax − τmin)

⎞

⎟⎠− 0.5

⎞

⎟⎠

Hybridization With Branch & Bound Derivatives 101

Table 1. Setting of κpbs, κrb, κbs, and ρ depending on the convergence factor cf
and the Boolean control variable bs update

bs update = false bs update

cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8 = true

κib 1 2/3 1/3 0 0

κrb 0 1/3 2/3 1 0

κbs 0 0 0 0 1

ρ 0.2 0.2 0.2 0.15 0.15

In this way, cf = 0 when the algorithm is initialized (or reset), that is, when
all pheromone values are set to 0.5. On the other side, when the algorithm
has converged, then cf = 1. In all other cases, cf has a value in (0, 1). This
completes the description of our Beam-ACO approach for the LCS problem.

Experimental Results

We implemented algorithms MS-PBS(α,µ) and Beam-ACO in ANSI C++
using GCC 3.2.2 for compiling the software. The experimental results that
we outline in the following were obtained on a PC with an AMD64X2 4400
processor and 4 Gb of memory. We applied algorithm MS-PBS(α,µ) with
three different settings:

1. α = µ = 1: The resulting algorithm corresponds to a multi-start version
of algorithm SC(f̂); see Algorithm 7. In the following we refer to this
algorithm by MS-SC.

2. α = 10, µ = 1: This setting corresponds to a multi-start version of algo-
rithm PSC(α,f̂); see Algorithm 8. We refer henceforth to this algorithm
by MS-PSC.

3. α = 10, µ > 1: These settings generate a multi-start version of algorithm
PBS(α,µ,f̂); see Algorithm 9. This algorithm version is referred to simply
by MS-PBS. Note that the setting of µ will depend on the alphabet size,
that is, the number of expected children of a partial solution.

In addition we applied Beam-ACO with α = 10 and with the same settings
for µ as chosen for MS-PBS.

For the experimentation we used a set of benchmark instances that was
generated as explained in the following. Given h ∈ {100, 200, . . . , 1000} and Σ
(where |Σ| ∈ {2, 4, 8, 24}), an instance is produced as follows. First, a string
s of length h is produced randomly from the alphabet Σ. String s is in the
following called base string. Each instance contains 10 strings. Each of these
strings is produced from the base string s by traversing s and by deciding for
each letter with a probabilitiy of 0.1 whether to remove it, or not. Note that

102 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

the 10 strings of such an instance are not necessarily of the same length. As
we produced 10 instances for each combination of h and |Σ|, 400 instances
were generated in total. Note that the values of optimal solutions of these
instances are unknown. However, a lower bound is obtained as follows. While
producing the 10 strings of an instance, we record for each position of the base
string s, whether the letter at that position was removed for the generation
of at least one of the 10 strings. The number of positions in s that were never
removed constitutes the lower bound value henceforth denoted by LBI with
respect to an instance I.

We applied each of the 4 algorithms exactly once for h/10 seconds to each
problem instance. We present the results averaged over the 10 instances for
each combination of h (the length of the base string that was used to produce
an instance) and the alphabet size |Σ|. Two measures are presented:

1. The (average) length of the solutions expressed in deviation (percentage)
from the respective lower bounds, which is computed as follows:

(
f

LBI
− 1
)
· 100, (13)

where f is the length of the solution achieved by the respective algorithm.
2. The computation time of the algorithms, which refers to the time the

best solution was found within the given CPU time (averaged over the 10
instances of each type).

The results are shown graphically in Figure 3. The graphics on the left hand
side show the algorithm performance (in percentage of deviation from the
lower bound), and the graphics on the right hand side show the computation
times. The following observations are of interest. First, while having a com-
parable computation time, algorithm MS-PBS is always clearly better than
algorithms MS-PSC and MS-SC. Second, algorithm Beam-ACO is consistently
the best algorithm of the comparison. This shows that it can pay off adding
a learning component to algorithm (MS-)PBS. The advantage of Beam-ACO
over MS-PBS grows with growing alphabet size, that is, with growing prob-
lem complexity. This advantage of Beam-ACO comes with a slight increase in
computational cost. However, this is natural: due to the learning component,
Beam-ACO has a higher probability than MS-PBS of improving on the best
solution found even at late stages of a run. Finally, a last interesting remark
concerns the comparison of MS-PSC with MS-SC. Despite of the construction
of solutions in parallel, MS-PSC is always slightly beaten by MS-SC. This is
due to fact that the used upper bound function is not tight at all, which re-
sults in the fact that constructing solutions in parallel in the way of algorithm
(MS-)PSC is rather a waste of computation time.

Hybridization With Branch & Bound Derivatives 103

Algorithm 12 Pseudocode of a memetic algorithm
1: for i := 1 to popsize do
2: pop[i] := Heuristic Solution(ProblemData)
3: pop[i] := Local Search(pop[i])
4: Evaluate(pop[i])
5: end for
6: while allowed runtime not exceeded do
7: for i := 1 to offsize do
8: if recombination is performed then
9: parent1 := Select(pop)

10: parent2 := Select(pop)
11: offspring [i] := Recombine(parent1,parent2)
12: else
13: offspring [i] := Select(pop)
14: end if
15: if mutation is performed then
16: offspring [i] := Mutate(offspring [i])
17: end if
18: offspring [i] := Local Search(offspring [i])
19: Evaluate(offspring [i])
20: end for
21: pop := Replace(pop, offspring)
22: end while

3 Using Metaheuristics Concepts Within Branch
& Bound

In this section, we present a collaborative technique that integrates a pop-
ulation based metaheuristics, a memetic algorithm (MA) [31, 19, 23], with
the beam search variant of the branch & bound procedure. MAs are based on
the systematic exploitation of knowledge about the problem being solved, and
the synergistic combination of ideas taken from both population-based tech-
niques and trajectory-based metaheuristics. A very common way to achieve
this combination is using the template of an evolutionary algorithm, endowing
it with local search add-ons. A general sketch of this kind of MA is shown in
Algorithm 12. Several things must be noted: firstly, initialization is very often
done by means of problem-dependent constructive heuristics, thus ensuring
that a good starting point is used for the evolutionary search. Local search
can be also used in this initialization stage (to supplement the lack of an
adequate constructive heuristic, or to complement the latter). The remaining
components of the algorithm are typically chosen so that they incorporate
problem-knowledge (if possible) as well.

According to the previous description, it is clear that MAs are specifi-
cally concerned with exploiting as much problem-knowledge as available. This

104 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

makes MAs specifically suited for taking part in hybrid approaches, either in-
tegrative or collaborative [34]. In this case, we have considered an approach in
which the control flows of BS and MA are intertwined: phases of BS and MA
alternate, and both processes share the best known solution. The technique
provides the following benefits:

• The best known solution can be used by the beam search part to purge
its problem queue, by not expanding partial nodes whose upper bound is
worse than the one obtained by the MA.

• The beam search can guide the search of the MA by injecting information
about more promising regions of the search space into the MA population.

The resulting algorithm for a minimization problem is pseudo-coded in
Algorithm 13. The procedure performs a standard beam search procedure (Bi

is used to maintain the beam at level i of the search tree and α is the beam
width, i.e., the maximum number of partial solutions to be expanded at each
level). After spreading out each level, if a level dependent problem specific
condition is fulfilled (represented in the pseudocode by the runMA variable),
the MA is run with a population that is initialized using the best nodes (w.r.t
some criteria) in the current beam. Note that nodes in the beam are partial
solutions, whereas the MA population consists of complete solutions, so a
problem specific procedure must be used to complete them. After the MA
stabilizes, if the solution it provides improves the incumbent one, this one is
updated.

Example: Shortest Common Supersequence Problem

The Shortest Common Supersequence Problem (SCSP) is a well-known prob-
lem in the area of string analysis. Essentially, given a certain alphabet Σ and
a set L of strings from Σ, the aim is to find a minimal-length sequence s, such
that all strings in the given set L can be embedded in s. The SCSP can be
shown to be NP−hard, even if strong constraints are posed on L, or on Σ. For
example, it is NP−hard in general when all si have length two [39], or when
the alphabet size |Σ| is two [30]. This combinatorial problem is interesting as
it constitutes a formalization of different real-world problems. For example, it
has many implications in bioinformatics [18]: it is a problem with a close re-
lationship to multiple sequence alignment [37], and to probe synthesis during
microarray production [35]. Besides this, it also has applications in planning
[14] and data compression [39], among other fields.

Formally, the notion of embedding can be described as follows. Let s and r
be two strings of symbols taken from Σ. String s can be said to embed string
r (denoted as s � r) using the following recursive definition:

s � ε = True
ε � r = False, if r �= ε

αs � αr = s � r
αs � βr = s � βr, if α �= β

(14)

Hybridization With Branch & Bound Derivatives 105

Algorithm 13 Beam Search and MA Hybrid: Hybrid(α,f̂)

1: input: α ∈ Z
+, the best known objective function value f̂

2: initialization: i := 0, Bi := {ε}, z := null

3: while Bi �= ∅ do
4: Bi+1 := ∅
5: for w ∈ C(Bi) do
6: if |C(w)| > 0 then
7: if LB(w) < f̂ then Bi+1 := Bi+1 ∪ {w} end if
8: else
9: if f(w) < f̂ then z := w, f̂ := f(z) end if

10: end if
11: end for
12: Restrict Bi+1 to the (maximally) α best nodes
13: if runMA then
14: pop := select popsize best nodes from Bi+1

15: for j = 1, . . . , popsize do
16: complete partial solution popj

17: end for
18: sol := run MApop

19: if f(sol) < f̂ then z := sol, f̂ := f(z) end if
20: end if
21: i := i + 1
22: end while
23: output: z (which might be null)

Plainly, s � r means that all symbols in r are present in s in the very same
order (although not necessarily consecutive).

Formally, an instance I = (Σ,L) for the SCSP is given by a finite alphabet
Σ and a set L of m strings {s1, · · · , sm}, si ∈ Σ∗. The problem consists of
finding a string s of minimal length that embeds each string in L (s � si,∀si ∈
L and |s| is minimal).

A branch & bound algorithm to solve an instance I = (Σ,L) of the SCSP
can start from a single node containing as tentative solution ε. In order to
implement function C(w), |Σ| subproblems are generated, each of them ob-
tained by appending a symbol from Σ to the partial solution w. Nodes with
unproductive characters (i.e., not contributing to embedding any string in L)
are pruned from the search tree. To obtain a lower bound for a node st, the
set of remaining strings in L not embedded by st must first be calculated as
follows:

R = {ri | (se
i , ri) = st � si, si ∈ L} (15)

where s� r = (re, rr) if re is the longest initial segment of string r embedded
by s and rr is the remaining part of r not embedded by s. Let M(α,R) be

106 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

the maximum number of occurrences of symbol α in any string in R:4

M(α,R) = max{|ri|α | ri ∈ R} (16)

Clearly, every common supersequence for the remaining strings must contain
at least M(α,R) copies of the symbol α. Thus a lower bound can be obtained
by summing the length of the tentative solution and the maximum number of
occurrences in any string in R of each symbol of the alphabet:

LB(st) = |st|+
∑

α∈Σ

M(α,R) (17)

In order to rank nodes in the branch & bound queue, the following quality
function was used for each node:

quality (st, L) =
∑

si∈L

{ |se
i | | (se

i , ri) = st � si} (18)

so that tentative solutions embedding more symbols in L are selected. As all
tentative solutions in the same level of the search tree have the same length,
the algorithm selects nodes that provide good initial segments for constructing
a short supersequence. Before being injected into the MA population, solutions
were randomly completed and repaired using the following function:

ρ (s, L) = s, if ∀i : si = ε
ρ (αs′, L) = ρ(s′, L), if �i : si = αs′i
ρ (αs′, L) = αρ(s′, L|α), if ∃i : si = αs′i
ρ (ε, L) = MM(L), if ∃i : si �= ε

(19)

where MM is the Majority Merge algorithm (see Algorithm 14) described in
[8]. This is a greedy algorithm that constructs a supersequence incrementally
by adding the symbol most frequently found at the front of the strings in L,
and removing these symbols from the corresponding strings.

Note that, apart from completing a string in order to have a valid su-
persequence, this function also removes unproductive steps from the repaired
string, acting thus as a local searcher.

Preliminary tests show that partial good solutions were only obtained after
descending a substantial number of levels in the beam search tree. This led
us to the following strategy for interleaving the MA and the branch & bound
in the hybrid algorithm: start by running in isolation the branch & bound
part of the algorithm for a initial number of levels, and then periodically
interleave both algorithms afterwards. To be precise, an estimation for the
SCSP solution s0 was calculated using the Weighted Majority Merge (WMM)
algorithm [8] and its length was used to set l0 = 0.7 · |s0|. The condition
for running the MA was (i > l0) and (i mod l = 0), where variable i (see
Algorithm 13) is the current level explored by the beam search part of the
4 As in Section 2.6, |ri|α denotes the number of occurrences of symbol α in ri.

Hybridization With Branch & Bound Derivatives 107

Algorithm 14 Majority Merge algorithm
1: input: L = {s1, · · · , sm}
2: s := ε
3: repeat
4: for α ∈ Σ do
5: ν(α) :=

∑
si∈L,si=αs′

i
1

6: end for
7: β ← max−1{ν(α) | α ∈ Σ}
8: for si ∈ L, si = βs′i do
9: si := s′i

10: end for
11: s := sβ
12: until

∑
si∈L |si| = 0

13: output: s

algorithm, and parameter l controls the balance between the MA and beam
search, i.e., an execution of the MA is performed every l iterations of the beam
search. A sensitivity analysis of the parameters was done in a similar way to
that described in [16] and, based on it, the following values were used for the
different parameters of the algorithm: α = 10000 and l = 10.

As to the MA used, it evolves sequences in |Σ|λ, where λ =
∑

si∈L |si|.
Before being evaluated, sequences in the population are repaired using the ρ
function. After this repairing, raw fitness (to be minimized) is simply com-
puted as:

fit (s, L) = 0, if ∀i : si = ε
fit (αs′, L) = 1 + fit(s′, L|α), if ∃i : si �= ε

(20)

Selection in the MA was performed by binary tournament selection, the
mutation operator randomly flips a character in the sequence, and recom-
bination is carried out using an standard uniform crossover operator. The
local search technique used is based on the neighborhood defined by the
Delk : Σ∗ × (Σ∗)m → Σ∗ operation [35]. The functioning of this procedure
is as follows:

Delk (αs, L) = ρ(s, L), if k = 1
Delk (αs, L) = αDelk−1(s, L|α),if k > 1 (21)

This operation thus removes the k-th symbol from a string, and then submits
it to the repair function so that all strings in L can be embedded. Notice that
the repairing function can actually find that the sequence is feasible, hence
resulting in a reduction of length by one symbol. A full local-search scheme
is defined by iterating this operation until no single deletion results in length
reduction (see Algorithm 15). The improvement in solution quality attainable
via the application of this LS operator comes obviously at the expenses of
an increased computational cost. This additional cost might be too high if

108 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

Algorithm 15 Local search for MA(s, L)
1: input: s ∈ Σ∗, L = {s1, · · · , sm}
2: initialization: k := 1
3: while k < |s| do
4: r := Delk(s, L)
5: if fit(r, L) < fit(s, L) then
6: s := r
7: k := 1
8: else
9: k := k + 1

10: end if
11: end while
12: output: s

LS were massively applied. On the other hand, the extreme option of simply
removing LS handicaps the search capabilities of the algorithm. A pragmatic
solution can be found in the use of partial lamarckism [21], namely using
LS but with some intermediate probability. Preliminary experiments were
conducted with probabilities to apply local search in {0, 0.01, 0.1, 0.5, 1} (see
[11]), and setting this parameter to 0.01 provided a better tradeoff between
the attainable improvement, and the additional computational cost implied.

Experimental Results

In this section, we do a experimental comparison of the beam search and MA
hybrid algorithm with respect to the probabilistic beam search (PBS) algo-
rithm for the SCSP described in [6]. For this purpose, two sets of benchmark
instances have been used:

The first one – henceforth referred to as RandomSet – consists of ran-
dom strings with different alphabet lengths. To be precise, each instance is
composed of eight strings, four of them of length 40, and the other four of
length 80. Each of these strings is randomly generated, using an alphabet Σ.
The benchmark set consists of 5 classes of each 5 instances characterized by
different alphabet sizes, namely |Σ| = 2, 4, 8, 16, and 24. Thus, the benchmark
set consists of 25 different problem instances.

A second set of instances – henceforth referred to as RealSet – is com-
posed of strings obtained from molecular sequences, comprising both DNA
sequences (|Σ| = 4) and protein sequences (|Σ| = 20). In the first case, we
have taken two DNA sequences of the SARS coronavirus from a genomic data-
base5; these sequences are 158 and 1269 nucleotides long. As to the protein
sequences, we have considered four of them, extracted from Swiss-Prot6:

5 http://gel.ym.edu.tw/sars/genomes.html
6 http://www.expasy.org/sprot/

Hybridization With Branch & Bound Derivatives 109

• Oxytocin: quite important in pregnant women, this protein causes contrac-
tion of the smooth muscle of the uterus and of the mammary gland. The
sequence is 125-aminoacid long.

• p53 : this protein is involved in the cell cycle, and acts as tumor suppressor
in many tumor types; the sequence is 393-aminoacid long.

• Estrogen: involved in the regulation of eukaryotic gene expression, this
protein affects cellular proliferation and differentiation; the sequence is
595-aminoacid long.

• Myelin: this sequence correspond to a transcription factor of myelin, and is
associated with neuronal differentiation. The sequence is 1186-aminoacid
long.

Problem instances in RealSet are obtained from the target sequence
by removing symbols from the latter with a certain probability p %
(p ∈{10 %,15 %,20 %} in our experiments).

Figure 4 shows results for RandomSet. Results are averaged over 5 inde-
pendent runs for each problem instance and further averaged over 5 different
problem instances with the same alphabet length. For the beam search and
MA hybrid, executions were performed on a Pentium IV PC (2400MHz and
512MB of main memory), and a time limit of 600 seconds per execution was
imposed. As to the PBS, tests were performed on a AMD64X2 4400 processor
and 4 Gb of memory. The time limit was set to 350 seconds, that roughly cor-
responds to the time given to other algorithm on a different machine. Results
show that PBS performs better for this instance set, as it finds better solutions
except for |Σ| = 2. Note that PBS performs several iterations of the beam
search part of the algorithm, and thus exhausts the allowed time, whereas the
beam search and MA hybrid only performs a beam search execution, and does
not necessarily use all the permitted time. We also studied the performance
of a variation of the beam search and MA hybrid (labelled MA-BS 2 in Fig-
ure 4) that exhausts the allowed time by performing several iterations of the
beam search. In order to introduce more randomness in the algorithm, each
time the MA was executed, its population was initialized by selecting nodes
from the beam using binary tournament selection. Results show that MA-BS
2 outperforms PBS for |Σ| ∈ {2, 24}, and is slightly worse for |Σ| = 4.

Figure 5 shows results for RealSet. In this case, the beam search and
MA hybrid performs better, as it always finds the presumed optimal solution
in all runs (except for the MYELIN instance with p %=20 %). Note that in
this latter instance, PBS finds a non-optimal better result. We also make note
that the second version of the MA-BS hybrid does not improve these results
because the allowed time is exhausted in the first iteration of the beam search;
for this reason the results obtained by MA-BS 2 are not shown in Figure 5.

110 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

4 Conclusions

In this chapter we have dealt with hybridizations of branch & bound deriv-
atives (i.e., beam search) and metaheuristic techniques and have shown that
the resulting hybrid algorithms provide better results than their counterparts
working alone. Particularly, we have highlighted two different proposals: in the
first one, a construction-based metaheuristic is enriched with branch & bound
features. Here, we start from a (parallel) solution construction method with
a probabilistic component in the election of the next step to execute (i.e., the
set of nodes that can be reached from the current state). Then we improve it
by incorporating first a beam search component in the election, resulting in a
probabilistic beam search algorithm, and second adding a learning component
to adjust the knowledge acquired from the accumulated experience.

Our second proposal consists of a branch & bound technique that collab-
orates in an interleaved way with a metaheuristic, namely a memetic algo-
rithm. Here, the branch & bound technique is used to identify the promising
regions of the search space in which the optimal solution can be found. The
metaheuristics is then used to exploit this knowledge in order to improve the
bounds employed by the branch & bound technique to force further branch
pruning.

Our hybrid algorithms have been first described in detail and then applied
on practical problems to show their effectiveness. This paper clearly shows
that both exact techniques such as branch & bound (including non-complete
derivatives such as beam search) and metaheuristics can clearly benefit one
from each other.

Acknowledgements

This work was partially supported by the Spanish Ministry of Science and
Technology (MCyT) under contracts TIC2002-04498-C05-02, TIN2004-7943-
C04-01, and TIN-2005-08818-C04-01; and by the Ramón y Cajal program
of which Christian Blum is a research fellow. Monaldo Mastrolilli acknowl-
edges support from the Swiss National Science Foundation projects 200021-
104017/1 (Power Aware Computing) and 200021-100539/1 (Approximation
Algorithms for Machine scheduling Through Theory and Experiments).

References

1. A. Aho, J. Hopcroft, and J. Ullman. Data structures and algorithms. Addison-
Wesley, Reading, MA, 1983.

2. S. Al-Shihabi. Backtracking ant system for the traveling salesman problem.
In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and
T. Stützle, editors, Proceedings of ANTS 2004 – 4th International Workshop on
Ant Colony Optimization and Swarm Intelligence, volume 3172 of Lecture Notes
in Computer Science, pages 318–325. Springer-Verlag, Berlin, 2004.

Hybridization With Branch & Bound Derivatives 111

3. M. J. Blesa and C. Blum. Ant colony optimization for the maximum edge-
disjoint paths problem. In G. R. Raidl et al., editors, Applications of Evolu-
tionary Computing, Proceedings of EvoWorkshops 2004, volume 3005 of Lecture
Notes in Computer Science, pages 160–169. Springer-Verlag, Berlin, 2004.

4. C. Blum. Beam-ACO–hybridizing ant colony optimization with beam search:
an application to open shop scheduling. Computers and Operations Research,
32:1565–1591, 2005.

5. C. Blum, J. Bautista, and J. Pereira. Beam-ACO applied to assembly line bal-
ancing. In M. Dorigo, L. M. Gambardella, A. Martinoli, R. Poli, and T. Stützle,
editors, Proceedings of ANTS 2006 – Fifth International Workshop on Swarm
Intelligence and Ant Algorithms, volume 2463 of Lecture Notes in Computer
Science, pages 14–27. Springer-Verlag, Berlin, Germany, 2006.

6. C. Blum, C. Cotta, A. J. Fernández, and J. E. Gallardo. A probabilistic beam
search algorithm for the shortest common supersequence problem. In C. Cotta
et al., editor, Proceedings of EvoCOP 2007 – Seventh European Conference on
Evolutionary Computation in Combinatorial Optimisation, volume 4446 of Lec-
ture Notes in Computer Science, pages 36–47. Springer-Verlag, Berlin, Germany,
2007.

7. C. Blum and M. Dorigo. The hyper-cube framework for ant colony optimization.
IEEE Transactions on Systems, Man, and Cybernetics – Part B, 34(2):1161–
1172, 2004.

8. J. Branke, M. Middendorf, and F. Schneider. Improved heuristics and a genetic
algorithm for finding short supersequences. OR-Spektrum, 20:39–45, 1998.

9. S. Casey and J. Thompson. GRASPing the examination scheduling problem. In
E. K. Burke and P. De Causmaecker, editors, Proceedings of PATAT 2002 – 4th
International Conference on Practice and Theory of Automated Timetabling,
volume 2740 of Lecture Notes in Computer Science, pages 232–246. Springer-
Verlag, Berlin, 2003.

10. C. Cotta. Protein structure prediction using evolutionary algorithms hybridized
with backtracking. In J. Mira and J. R. Álvarez, editors, Proceedings of the
7th International Work-Conference on Artificial and Natural Neural Networks
(IWANN 2003), volume 2687 of Lecture Notes in Computer Science, pages 321–
328. Springer-Verlag, Berlin, 2003.

11. C. Cotta. Memetic algorithms with partial lamarckism for the shortest common
supersequence problem. In J. Mira and J. R. Álvarez, editors, Artificial Intelli-
gence and Knowledge Engineering Applications: a Bioinspired Approach, num-
ber 3562 in Lecture Notes in Computer Science, pages 84–91, Berlin Heidelberg,
2005. Springer-Verlag.

12. M. Dorigo and T. Stuetzle. Ant Colony Optimization. MIT Press, 2004.
13. T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search proce-

dures. Journal of Global Optimization, 6:109–133, 1995.
14. D. E. Foulser, M. Li, and Q. Yang. Theory and algorithms for plan merging.

Artificial Intelligence, 57(2-3):143–181, 1992.
15. C. B. Fraser. Subsequences and supersequences of strings. PhD thesis, University

of Glasgow, 1995.
16. J. E. Gallardo, C. Cotta, and A. J. Fernández. On the hybridization of memetic

algorithms with branch-and-bound techniques. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 37(1):77–83, 2007.

17. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Science
and Computational Biology. Cambridge University Press, Cambridge, 1997.

112 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

18. M. T. Hallet. An integrated complexity analysis of problems from computational
biology. PhD thesis, University of Victoria, 1996.

19. W. E. Hart, N. Krasnogor, and J. E. Smith. Recent Advances in Memetic
Algorithms. Springer-Verlag, Berlin Heidelberg, 2005.

20. J. N. Hooker. Unifying local and exhaustive search. In L. Villaseñor and A. I.
Martinez, editors, Proceedings of ENC 2005 – Sixth Mexican International Con-
ference on Computer Science, pages 237–243. IEEE press, 2005.

21. C. Houck, J. A. Joines, M. G. Kay, and J. R. Wilson. Empirical investigation
of the benefits of partial lamarckianism. Evolutionary Computation, 5(1):31–60,
1997.

22. K. Huang, C. Yang, and K. Tseng. Fast algorithms for finding the common sub-
sequences of multiple sequences. In Proceedings of the International Computer
Symposium, pages 1006–1011. IEEE press, 2004.

23. N. Krasnogor and J. E. Smith. A tutorial for competent memetic algorithms:
model, taxonomy, and design issues. IEEE Transactions on Evolutionary Com-
putation, 9(5):474–488, 2005.

24. G. B. Lamont, S. M. Brown, and G. H. Gates Jr. Evolutionary algorithms com-
bined with deterministic search. In V. W. Porto, N. Saravanan, D. E. Waagen,
and A. E. Eiben, editors, Proceedings of Evolutionary Programming VII, 7th
International Conference, volume 1447 of Lecture Notes in Computer Science,
pages 517–526. Springer-Verlag, Berlin, 1998.

25. E. Lawler and D. Wood. Branch and bound methods: A survey. Operations
Research, 4(4):669–719, 1966.

26. D. Maier. The complexity of some problems on subsequences and superse-
quences. Journal of the ACM, 25:322–336, 1978.

27. V. Maniezzo. Exact and Approximate Nondeterministic Tree-Search Procedures
for the Quadratic Assignment Problem. INFORMS Journal on Computing,
11(4):358–369, 1999.

28. V. Maniezzo and A. Carbonaro. An ANTS heuristic for the frequency assign-
ment problem. Future Generation Computer Systems, 16:927–935, 2000.

29. V. Maniezzo and M. Milandri. An ant-based framework for very strongly con-
strained problems. In M. Dorigo, G. Di Caro, and M. Sampels, editors, Proceed-
ings of ANTS 2002: 3rd International Workshop on Ant Algorithms, volume
2463 of Lecture Notes in Computer Science, pages 222–227. Springer-Verlag,
Berlin, 2002.

30. M. Middendorf. More on the complexity of common superstring and superse-
quence problems. Theoretical Computer Science, 125:205–228, 1994.

31. P. Moscato and C. Cotta. A gentle introduction to memetic algorithms. In
Handbook of Metaheuristics, pages 105–144. Kluwer Academic Press, Boston,
Massachusetts, USA, 2003.

32. E. Nowicki and C. Smutnicki. A fast taboo search algorithm for the job-shop
problem. Management Science, 42(2):797–813, 1996.

33. P. S. Ow and T. E. Morton. Filtered beam search in scheduling. International
Journal of Production Research, 26:297–307, 1988.

34. J. Puchinger and G. R. Raidl. Combining metaheuristics and exact algorithms
in combinatorial optimization: A survey and classification. In J. Mira and J. R.
Álvarez, editors, Artificial Intelligence and Knowledge Engineering Applications:
a Bioinspired Approach, number 3562 in Lecture Notes in Computer Science,
pages 41–53, Berlin Heidelberg, 2005. Springer-Verlag.

Hybridization With Branch & Bound Derivatives 113

35. S. Rahmann. The shortest common supersequence problem in a microarray
production setting. Bioinformatics, 19(Suppl. 2):ii156–ii161, 2003.

36. S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2003.

37. J. S. Sim and K. Park. The consensus string problem for a metric is NP-
complete. Journal of Discrete Algorithms, 1(1):111–117, 2003.

38. T. Smith and M. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147(1):195–197, 1981.

39. V. G. Timkovsky. Complexity of common subsequence and supersequence prob-
lems and related problems. Cybernetics, 25:565–580, 1990.

114 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

D
ev

ia
tio

n
fr

om
 lo

w
er

 b
ou

nd
 (

in
 %

)

Base string length (h)

 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(a) |Σ| = 2, results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

tio
n

tim
e

(in
 s

ec
)

Base string length (h)

 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(b) |Σ| = 2, computation times

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

D
ev

ia
tio

n
fr

om
 lo

w
er

 b
ou

nd
 (

in
 %

)

Base string length (h)

 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(c) |Σ| = 4, results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

tio
n

tim
e

(in
 s

ec
)

Base string length (h)

 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(d) |Σ| = 4, computation times

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

D
ev

ia
tio

n
fr

om
 lo

w
er

 b
ou

nd
 (

in
 %

)

Base string length (h)

 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(e) |Σ| = 8, results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

tio
n

tim
e

(in
 s

ec
)

Base string length (h)

 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(f) |Σ| = 8, computation times

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

D
ev

ia
tio

n
fr

om
 lo

w
er

 b
ou

nd
 (

in
 %

)

Base string length (h)

 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(g) |Σ| = 24, results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

tio
n

tim
e

(in
 s

ec
)

Base string length (h)

 MS-SC

 MS-PSC
 MS-PBS

 Beam-ACO

(h) |Σ| = 24, computation times

Fig. 3. Results and computation times of algorithms MS-SC, MS-PSC, MS-PBS,
and Beam-ACO

Hybridization With Branch & Bound Derivatives 115

MA−BS MA−BS 2 PBS
−1.55

−1.05

−0.55

−0.05

 0.45

 0.95

 1.45

 1.95

 2.45

 2.95

Algorithm

%
 im

pr
ov

em
en

t t
o

M
M

(a) |Σ| = 2

MA−BS MA−BS 2 PBS
 2.14

 2.64

 3.14

 3.64

 4.14

 4.64

 5.14

 5.64

 6.14

 6.64

Algorithm

%
 im

pr
ov

em
en

t t
o

M
M

(b) |Σ| = 4

MA−BS MA−BS 2 PBS
 9.19

 9.69

10.19

10.69

11.19

11.69

12.19

12.69

13.19

13.69

Algorithm

%
 im

pr
ov

em
en

t t
o

M
M

(c) |Σ| = 8

MA−BS MA−BS 2 PBS
12.59

13.09

13.59

14.09

14.59

15.09

15.59

16.09

16.59

17.09

Algorithm

%
 im

pr
ov

em
en

t t
o

M
M

(d) |Σ| = 16

MA−BS MA−BS 2 PBS
13.92

14.42

14.92

15.42

15.92

16.42

16.92

17.42

17.92

18.42

Algorithm

%
 im

pr
ov

em
en

t t
o

M
M

(e) |Σ| = 24

Fig. 4. Comparison of two versions of MA-BS Hybrid Algorithm and PBS on ran-
dom instances for different alphabet sizes. Figures show relative improvements with
respect to solutions provided by MM. A × sign indicates the mean solution, whereas
a � marks the best solution. Standard deviations of distribution are also depicted.

116 C. Blum, C. Cotta, A. J. Fernández, J. E. Gallardo and M. Mastrolilli

MA−BS PBS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithm

%
 d

is
ta

nc
e

to
 o

pt
im

um

(a) 158-Nucleotide SARS

MA−BS PBS
0

4.5

9

13.5

18

22.5

27

31.5

36

40.5

45

Algorithm

%
 d

is
ta

nc
e

to
 o

pt
im

um

(b) 1269-Nucleotide SARS

MA−BS PBS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithm

%
 d

is
ta

nc
e

to
 o

pt
im

um

(c) 125-Aminoacid OXYTOCIN

MA−BS PBS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithm

%
 d

is
ta

nc
e

to
 o

pt
im

um

(d) 393-Aminoacid P53

MA−BS PBS
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Algorithm

%
 d

is
ta

nc
e

to
 o

pt
im

um

(e) 595-Aminoacid ESTROGEN

MA−BS PBS
0

6.5

13

19.5

26

32.5

39

45.5

52

58.5

65

Algorithm

%
 d

is
ta

nc
e

to
 o

pt
im

um

(f) 1186-Aminoacid MYELIN

Fig. 5. Comparison of MA-BS Hybrid Algorithm and PBS on different real instances
and gap ∈ {10 %, 15 %, 20 %} (from left to right for each algorithm). Figures show
relative distances to optimal solutions. A × sign indicates the mean solution, whereas
a � marks the best solution. Standard deviations of distribution are also depicted.

Very Large-Scale Neighborhood Search:
Overview and Case Studies on Coloring
Problems

Marco Chiarandini1, Irina Dumitrescu2, and Thomas Stützle3

1 Department of Mathematics and Computer Science
University of Southern Denmark, Odense, Denmark
marco@imada.sdu.dk

2 School of Mathematics and Statistics
University of New South Wales, Sydney, Australia
irina.dumitrescu@unsw.edu.au

3 Computer & Decision Engineering (CoDE) Department, IRIDIA
Université Libre de Bruxelles, Brussels, Belgium
stuetzle@ulb.ac.be

Summary. Two key issues in local search algorithms are the definition of a neigh-
borhood and the way to examine it. In this chapter we consider techniques for exam-
ining very large neighborhoods, in particular, ways for exactly searching them. We
first illustrate such techniques using three paradigmatic examples. In the largest part
of the chapter, we focus on the development and experimental study of very large-
scale neighborhood search algorithms for two coloring problems. The first example
concerns the well-known (vertex) graph coloring problem. Despite initial promis-
ing results on the use of very large-scale neighborhoods, our final conclusion was
negative: the usage of the proposed very large-scale neighborhoods did not help to
improve the performance of effective stochastic local search algorithms. The second
example, the graph set T-coloring problem, yielded more positive results. In this
case, a very large-scale neighborhood that was specially tailored for this problem
and that can be efficiently searched, resulted to be an essential component of a new
state-of-the-art algorithm for various instance classes.

1 Introduction

Many efficient algorithms for combinatorial optimization problems rely on
(perturbative) local search techniques [1, 37]. These start from some initial
candidate solution for the problem to be solved and then iteratively replace
the current candidate solution by some neighboring one. The neighborhood
of a solution comprises all those candidate solutions that are reachable in
one logical step of the algorithm. More formally, a neighborhood N can be
defined as a function N : S → 2S that assigns to every candidate solution s

M. Chiarandini et al.: Very Large-Scale Neighborhood Search: Overview and Case Studies on

Coloring Problems, Studies in Computational Intelligence (SCI) 114, 117–150 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

118 M. Chiarandini, I. Dumitrescu, T. Stützle

in the search space S a set of neighbors N(s) ⊆ S. The simplest local search
algorithm only accepts better neighbors and it is therefore called iterative
improvement. It terminates once no improving neighbor is available anymore.
In this case, a local optimum has been reached.

Often, the neighborhood of a solution s is defined by considering all pos-
sible modifications that can be applied to a candidate solution in order to
yield a new, different solution. In this case, the neighborhood of s is the set
of candidate solutions that can be generated this way. Frequently, modifica-
tions introduce rather small changes. A classical example is the two-exchange
neighborhood for the traveling salesman problem (TSP), where N(s) consists
of all those solutions that can be obtained from s by removing a pair of edges
and replacing it by the distinct pair of edges that maintains a tour. Another
example for the graph coloring problem is the one-exchange neighborhood of
a solution s, which consists of all solutions that can be reached by changing
the color of exactly one vertex.

Small modifications have the advantage that their effect is very fast to eval-
uate and, because of the relatively limited number of neighbors, the neighbor-
hood can be searched rather efficiently. However, the algorithms embedding
such neighborhoods have a tendency towards being rather “short-sighted” and
they require a large number of search steps to traverse the search space. There-
fore sometimes solutions need to undergo some larger, structural changes to
improve over the current solution. Such changes are often rather difficult to
be managed or found by local search algorithms using small neighborhoods.

Very large-scale neighborhood search techniques try to avoid some of the
disadvantages incurred by using small neighborhoods. They allow relatively
large modifications of a candidate solution. Therefore, they accept in one
search step solutions that are of better quality than those reached within
small neighborhoods. Due to the size of very large-scale neighborhoods, often
the quality of local minima is much better than that reached in small neighbor-
hoods. Additionally, the ability of making larger modifications to candidate
solutions allows for a traversal of the search space in less steps. However, these
advantages come at a typically higher computational cost for evaluating the
search steps and searching the neighborhood. For many such very large-scale
neighborhoods their size increases exponentially with the number of solution
components that are allowed to be changed by one single search step. Given
this tradeoff between the neighborhood size and the efficiency of searching it,
it is difficult to predict the final impact large neighborhoods will have on the
performance of more complex stochastic local search algorithms.

The design of algorithms that use very large-scale neighborhoods is based
on one of the two main ways of searching improving solutions: exact or heuris-
tic. The exact search is similar to a best-improvement algorithm, i.e. an it-
erative algorithm that, at each step, tries to move to the best neighboring
solution possible. In this case, all neighboring solutions need to be evaluated,
at least implicitly. The large size neighborhood can also be examined by some
approximate algorithm that does not necessarily identify the best possible

Very Large-Scale Neighborhood Search 119

neighbor. An important ingredient for such techniques are heuristic ways of
restricting a complete enumeration of the neighborhood. In this latter case,
improving moves may be missed.

The next section gives a short review of techniques used to define and
search very large-scale neighborhoods (VLSN). We will give concise examples
for various such techniques. The largest part of this chapter focuses on the
experimental analysis of two examples for the usage of very large-scale neigh-
borhoods. The first example studies algorithms for the (vertex) graph coloring
problem (GCP); see Sect. 3. Initial experimental results show the desirabil-
ity of an exact search of the neighborhood with respect to solution quality.
However, due to its high computational cost we also study various heuristic
schemes for examining the proposed neighborhoods. Finally, we show that de-
spite our efforts, once the very large-scale neighborhood search is integrated
into an effective stochastic local search (SLS) algorithm [37] for the GCP, no
performance improvements could be observed. The situation is different for
the second example, (described in Sect. 4), a very large-scale neighborhood
scheme used for tackling the graph set T -coloring problem (GSTCP). The
GSTCP is an extension of the GCP where sets of colors need to be assigned
to each vertex under certain types of color separation constraints. In this
case, an exact re-assignment neighborhood, which considers for each vertex a
complete color reassignment, was shown to contribute for various GSTCP in-
stance classes towards a new state-of-the-art algorithm. The chapter ends with
some concluding remarks and avenues for future research on very large-scale
neighborhood search techniques.

2 Searching Large Neighborhoods

Using large size neighborhoods is certainly very appealing. However, these
neighborhoods may not be very useful if their complete search requires a very
high computational effort. Hence, for making the use of large neighborhoods
practical, the neighborhood search problem (NSP), i.e. the problem of finding
the best solution in a defined neighborhood set, needs to be efficiently solved.
From an abstract perspective, one may distinguish exact algorithms for the
NSP and heuristic approaches towards solving the NSP.

As previously mentioned, solving the NSP exactly is akin to best-improve-
ment algorithms. The exact solution of the NSP requires to define neighbor-
hoods that, although exponential in size, admit either efficient, that is, poly-
nomial time algorithms for their exploration, or the exploitation of problem-
specific knowledge to speed up the exact search as much as possible. One
example of polynomial search is given by dynamic programming approaches
like in the dynasearch algorithm [18, 19, 49]; we will describe the example ap-
plication of dynasearch to the TSP in Sect. 2.1. Other examples are network
flow based improvement algorithms where the examination of the neighbor-
hood is carried out by solving shortest path or matching problems [30, 34, 56].

120 M. Chiarandini, I. Dumitrescu, T. Stützle

Many neighborhood definitions result in NSPs that are themselves NP-
hard; this is the case for the cyclic exchange neighborhoods [4, 53, 54] that we
discuss in Sect. 2.2. Other examples are local branching for 0–1 integer pro-
gramming problems where a k-flip neighborhood is defined and searched ex-
actly by solving smaller and more constrained integer programming problems
[24], or destruction-reconstruction neighborhoods where the reconstruction is
carried out by means of constrained-based tree search [51]. In these cases, the
search algorithms might have a significant computational cost, which make
it advisable to apply pruning techniques or heuristics to truncate somehow
the exact search. This results in a heuristic neighborhood exploration, which
does not necessarily identify the best neighboring solution. Hence, there is a
trade-off between the scrutiny of the neighborhood search and the solution
quality reached.

An important class of very large-scale neighborhood search algorithms are
variable depth search (VDS) methods. These work on exponentially sized
neighborhoods that are obtained by considering concatenations of simple
moves. The number of simple moves that are concatenated to obtain one large
move is determined while exploring the neighborhood. VDS methods search
the neighborhood in a heuristic way without aiming for the exploration of
the full neighborhood. In fact, some of the first very large-scale neighbor-
hood search algorithms were VDS methods. The most famous of these are
certainly the Kernighan-Lin heuristic for the graph partitioning problem [41]
and the Lin-Kernighan heuristic for the TSP [45]. However, additional VDS
algorithms have been proposed rather recently and it should be mentioned
that the ejection-chain methods for defining very large-scale neighborhoods
[31] share many similarities to VDS. In Sect. 2.3 we will give an overview of
the main features of the Lin-Kernighan heuristic for the TSP.

The examples we include below can only give a rough impression of the
type of techniques that are available for exploring very large-scale neighbor-
hoods. For a more extensive review of the available techniques, we refer to the
overview papers by Ahuja et al. [2, 3].

2.1 Dynasearch

This first example illustrates how an exact algorithm, in this case a dynamic
programming algorithm, can be used to search efficiently an appropriately de-
fined, exponentially large neighborhood. In fact, dynamic programming can
be used to search neighborhoods of a number of different problems and the
resulting class of local search algorithms received the name dynasearch. Dy-
nasearch searches neighborhoods that consist of all possible combinations of
mutually independent simple search moves. Independence in the context of
dynasearch means that the individual simple search moves do not interfere
with each other with respect to the objective function and to the constraints
of the problem. In particular, the gain incurred by a dynasearch move must
be decomposable into the sum of the gains of the simple search moves.

Very Large-Scale Neighborhood Search 121

So far, dynasearch has only been applied to problems where solutions can
be represented as permutations. Independence between simple search moves is
given if the last element involved in one move occurs before the first element of
the next move. If π = (π(1), . . . , π(n)) is the current permutation, two moves
involving elements from π(i) to π(j) and from π(k) to π(l), with 1 ≤ i < j ≤ n
and 1 ≤ k < l ≤ n are independent, if either j < k or l < i. If, in addition
the contributions of the two moves to the solution cost can be computed
independently of each other, the best combination of independent moves can
be found by a dynamic programming algorithm. (Without loss of generality,
we focus here in this chapter on minimization problems.)

Let ∆(j) be the maximum total cost reduction incurred by independent
moves involving only elements from position 1 to j of the current permutation
and δ(i, j) be the cost reduction resulting from a move involving positions
between i and j, including i and j. The maximum total cost reduction is
obtained either by appending π(j) to the current partial permutation or by
appending element π(j) and applying a move involving element π(j) and an
element π(i) (and possibly elements from π(i) onwards).

We assume that the current solution is given by π and set ∆(0) = 0 and
∆(1) = 0. Then, ∆(j + 1), j = 1, . . . , n− 1 can, in general, be computed in a
forward evaluation using the recursive formula

∆(j + 1) = max
{

max
1≤i≤j

{∆(i− 1) + δ(i, j + 1)},∆(j)
}

. (1)

The largest reduction in solution cost is then given by ∆(n) and the single
moves to be performed can be found by tracing back the computation steps.
In order to apply dynasearch using the forward evaluation, the value of ∆(j)
should not depend on positions k > j. If the evaluation of moves depends only
on elements k > j, a backward version of the dynamic programming algorithm
can be applied. This version that starts with π(n) and then generates the
sequence of ∆(j), j = n, n− 1, . . . , 1.

When applying the algorithm, the particularities of the moves have to be
taken into account when using Eq. (1). Consider, for example, the application
of dynasearch to the TSP using two-exchange moves as the underlying simple
moves. Here we assume that a tour is represented as π = (π(1), . . . , π(n+1)),
where we define π(n + 1) = π(1). If 1 < i + 1 < j ≤ n and π(j + 1) �=
π(i), a two-exchange move is obtained by removing edges (π(i), π(i + 1)) and
(π(j), π(j +1)) from the current tour π and introducing edges (π(i), π(j)) and
(π(i + 1), π(j + 1)). The move is accepted if the new tour is shorter, that is,
if and only if

d(π(i), π(i + 1)) + d(π(j), π(j + 1)) > d(π(i), π(j)) + d(π(i + 1), π(j + 1)),

where d(·, ·) is the cost function defined on the set of edges.
The dynasearch two-exchange algorithm presented by Congram [18] tries

to improve a Hamiltonian path between two fixed end points π(1) and π(n+1).

122 M. Chiarandini, I. Dumitrescu, T. Stützle

(k+1)

π

π

π

ππ (l)

π (k)

(j)π(j+1)

(i+1)

(i)

(l+1)

π π

π (l) π (l+1)

π (k)

π (j)π(j+1)

π

π (i+1)

(i)(k+1)

Fig. 1. Example of a dynasearch move that is composed of two independent two-
exchange moves

In this case, two two-exchange moves that delete edges (π(i), π(i + 1)) and
(π(j), π(j +1)), where 1 < i+1 < j ≤ n, π(j +1) �= π(i), and (π(k), π(k +1))
and (π(l), π(l+1)), where 1 < k+1 < l ≤ n, π(l+1) �= π(k), are independent
if we have j < k or l < i, because in this case the segments that are rearranged
by the two moves do not have any edges in common. An example of such an
independent dynasearch move is given in Fig. 1.

In this case, ∆(j) is the largest reduction of the length of the tour obtained
by independent two-exchange moves involving only elements between 1 and
j (both included) of the incumbent tour π. The initialization of the dynamic
program is ∆(1) = ∆(2) = ∆(3) = 0, because we need at least four vertices
to apply a two-exchange move. The recursion formula then becomes

∆(j + 1) = max
{

max
1≤i≤j−2

{∆(i− 1) + δ(i, j + 1)},∆(j)
}

and ∆(n+1) gives the maximal improvement. Dynasearch then repeats these
neighborhood searches until no improvement can be found anymore, that is,
until a local optimum is reached.

Current applications of dynasearch comprise the traveling salesman prob-
lem [18], the single machine total weighted tardiness problem [18, 19], and the
linear ordering problem [18]. A general observation from these applications
is that dynasearch, on average, is faster than a standard best-improvement
descent algorithm and returns slightly better quality solutions. Particularly
good performance is reported, if dynasearch is used as a local search routine
inside an iterated local search [46]. Currently, iterated dynasearch is the best
performing metaheuristic for the single machine total weighted tardiness prob-
lem [33] and very good results were also obtained for the traveling salesman
problem and the linear ordering problem [18].

Very Large-Scale Neighborhood Search 123

Fig. 2. Example of a cyclic exchange for a partitioning problem

2.2 Cyclic and Path Exchange Neighborhoods

Cyclic and path exchange neighborhoods have been considered as very large-
scale neighborhoods for tackling problems where solutions may be represented
in some form of a partitioning [4, 5]. Examples of such problems include vehi-
cle routing, capacitated minimum spanning tree, parallel machine scheduling,
clustering, and various others.

In a set partitioning problem is given a set W of n elements and a set
of subsets T of W , T = {T1, . . . , TK} such that W = T1 ∪ · · · ∪ TK and
Tk ∩Tk′ = ∅, k, k′ = 1, . . . ,K. A cost c(Tk) is associated with any set Tk. The
partitioning problem seeks the partition of W that minimizes the sum of the
costs of the subsets in the partition. Formally, the partitioning problem can
be defined as:

min c(T) =
K∑

k=1

c(Tk)

s.t. T is a partition of W.

The characteristics of the cost function are not important for the time being;
its sole property that needs to be taken into consideration is its separability
over subsets.

Frequently, partitioning problems are solved using local search algorithms
that are in most cases based on the one- and two-exchange neighborhood.
Cyclic exchange neighborhoods are a generalization of the two exchange neigh-
borhood [4, 53, 54] in which instead of swapping only two elements from two
subsets, several elements, each belonging to a different subset, are moved (see
Fig. 2).

Formally, a cyclic exchange between k subsets (without loss of generality
we can assume them to be T1, . . . , Tk and the elements we look at to be
a1, . . . , ak, with ai ∈ Ti) is represented by a cyclic permutation π of length
k, π �= 1, where π(i) = j means that the element ai from subset Ti moves
into subset Tj . A partition T ′ is said to be a neighbor of the partition T if

124 M. Chiarandini, I. Dumitrescu, T. Stützle

it is obtained from T by performing a cyclic exchange and it is feasible with
respect to some problem specific constraints. The set of all neighbors of T
defines the cyclic exchange neighborhood of T . The cyclic exchange modifies
the sets of the partition and therefore their cost. The cost difference for each
subset will be the difference between the cost of the subset before performing
the cyclic exchange and the cost of the subset after the exchange. The cost
of the cyclic exchange is the sum of all the cost differences over all subsets in
the partition.

In order to find the next move, Ahuja et al. define the improvement (di-
rected) graph. The construction of the improvement graph depends on the
current feasible partition of the partitioning problem considered. The set of
vertices V of the improvement graph is defined as the collection of integers
1, . . . , n, each corresponding to an element of the set W . The improvement
graph contains the arc (i, j) if the elements corresponding to i and j do not
belong to the same subset in T and the subset to which the element cor-
responding to j belongs remains feasible after the removal of the element
corresponding to j and the addition of the element corresponding to i. We
define the partition U of V to be the collection of subsets U1, . . . , UK corre-
sponding to the subsets in T , that is, the elements of Tk are in one-to-one
correspondence with the elements of Uk for each k = 1, . . . ,K. Therefore a
subset disjoint cycle in the improvement graph, with respect to U , will corre-
spond to a cyclic exchange in T . The arc (i, j) will have an associated cost,
equal to the difference between the cost of the set after the removal of the
element corresponding to j and the addition of the element corresponding to
i, and the cost of the original set that contains the element corresponding to
j. Thompson and Orlin [53] showed that there is a one-to-one correspondence
between the cyclic exchanges with respect to T and the subset-disjoint cycles
in the improvement graph (with respect to U) and that both have the same
cost.

The problem of finding the best neighbor within the cyclic exchange neigh-
borhood can be modeled as a new problem, the subset disjoint minimum cost
cycle problem (SDMCCP), or in some cases the subset disjoint negative cost
cycle problem (SDNCCP). The SDMCCP is the problem of finding the min-
imum cost subset disjoint cycle (a cycle that uses at most one vertex from
every subset of the partition of the set of vertices) in the improvement graph.
The SDNCCP is the problem of finding a minimum subset disjoint cycle with
the additional constraint that its cost is negative. The only real difference
between SDMCCP and SDNCCP is that the feasible set of the latter is a
subset of the feasible set of the former. Also note that if the network contains
negative cycles, then the set of optimal solutions of both problems is the same.

If the SDNCCP has a solution, then this solution corresponds to an im-
provement in the solution quality of the partitioning problem considered.
Hence, the SDNCCP is the problem to be solved when using VLSN in an
iterative improvement algorithm. The SDMCCP is important if the VLSN
search technique is embedded, for example, into a tabu search procedure;

Very Large-Scale Neighborhood Search 125

then finding the best neighbor may be important regardless of whether or not
this neighbor is better than the current solution. Ahuja et al. [4] solve the
SDNCCP by a heuristic that takes advantage of the fact that only negative
cycles are needed. However they make no attempt to solve the SDNCCP ex-
actly. Several exact methods for both SDMCCP and SDNCCP are proposed
by Dumitrescu [23]. They can be viewed as generalizations of dynamic pro-
gramming algorithms commonly used for shortest path problems. The search
is accelerated in the case of the SDMCCP by taking advantage of symme-
try properties, and in the case of SDNCCP by an elegant lemma by Lin and
Kernighan [45], which, as noted also by Ahuja et al. [5], is used to restrict
drastically the number of extending paths under consideration. Although the
SDNCCP and SDMCCP are NP-hard, the proposed methods are very effi-
cient for the subproblems that arise in practical applications of VLSN search
methods. Dumitrescu also proposes some heuristics that are derived from the
exact methods by limiting or truncating them in some way.

2.3 Lin-Kernighan Heuristic

While in the previous two examples the underling idea is to search the very
large-scale neighborhood exactly, variable-depth search methods are designed
with the idea of searching the neighborhood in some heuristic way. The prob-
ably best known VDS algorithm is the Lin-Kernighan (LK) algorithm for the
TSP. It is an iterative improvement algorithm that constructs and system-
atically tests complex local search moves that are composed of simpler local
search steps. The LK algorithm, in particular, is based on complex steps that
are generated by a sequence of two-exchange steps.

Let us first explain the mechanism that underlies the construction of the
complex search steps. This can be best illustrated by considering the sequence
of Hamiltonian paths, i.e., paths which visit each vertex in the given graph
G exactly once, which are visited in the move generation. (For an illustration
consider Fig. 3.) Initially, a Hamiltonian path between vertices u and v is
generated from a tour by removing the edge (u, v). One of the two endpoints,
say u, is then kept fixed, while the other will vary. This is the situation depicted
in Fig. 3a. In a next step, an edge (v, w) is added, which introduces a cycle into
the Hamiltonian path (see Fig. 3b). This resulting structure is also called a
δ-path. In the third step, the cycle in the δ-path is broken by removing the only
possible edge (w, v′) incident to w such that the result is a new Hamiltonian
path that could be extended to a tour by adding an edge (v′, u) (see Fig. 3c).
Instead of closing the tour, another edge can be added that leads to a new
δ-path, which is indicated in Fig. 3d. The move construction continues in this
way by creating a sequence of δ-paths and tentative intermediate tours.

The heuristic examination of the so generated neighborhood is directed
in the LK algorithm by considering the weights of the edges in determining
which steps are tentatively tested. The LK algorithms starts from some initial
tour s, deletes an edge and determines a δ-path p of minimal weight. If the

126 M. Chiarandini, I. Dumitrescu, T. Stützle

(d)

u

u

u

u v

v

v

v

w

w

ww’

v’

v’

(a)

(b)

(c)

Fig. 3. Schematic view of a Lin-Kernighan exchange step. (a) The original Hamil-
tonian path; (b) shows a possible δ-path, (c) shows that next Hamiltonian path and
(d) shows that a tentative next δ-path

Hamiltonian cycle s′ obtained from p in the intermediate steps (as in Fig. 3c)
has a weight lower than s, then s′ becomes the new incumbent solution. These
steps are continued from p and iterated until no δ-path can be obtained with
weight smaller than that of the best Hamiltonian cycle found so far in the
construction of the complex move. If the best Hamiltonian cycle found in this
process improves over the initial solution, it replaces this solution.

In addition to the criterion that stops the construction of complex moves
based on the weight of δ-paths and the incumbent solutions, the LK algorithm
uses additional tabu criteria. In fact, in the construction of the complex moves
any edge that has been added is not removed and no edge that has been
removed is added anymore. This rule has the effect that a candidate sequence
for a complex step is never longer than the number of vertices in the graph.

In addition to these basic steps, the LK algorithm uses various additional
techniques and few exceptions to the above described rule for constructing
complex moves. The most important technique is probably a type of back-
tracking mechanism that allows to consider alternative choices in the edges
to be added for constructing the complex moves. Typically, this mechanism is
limited to the first few decisions that are done and it is necessary to guarantee
that the final tour found by the LK algorithm is locally optimal with respect
to the two- and three-exchange neighborhoods. Other mechanisms concern
specific types of moves that may be generated are exceptions to the basic
construction rules. For a description of these details, we refer to the original

Very Large-Scale Neighborhood Search 127

article [45] or to other, more recent descriptions of various LK implementa-
tions [7, 39, 48].

VDS algorithms have been used with considerable success for solving a
number of problems other than the TSP [41, 47, 57]. Generally, however, the
implementation of high-performance VDS algorithms requires considerable
effort, especially if large instances are to be tackled.

3 Cyclic and Path Exchange Neighborhoods for Graph
Coloring

The graph coloring problem (GCP) is a central problem in graph theory [38]
and it arises in a number of application areas such as register allocation [6],
air traffic flow management [9], frequency assignment [27], light wavelengths
assignment in optical networks [59], and timetabling [21, 43].

In the GCP, one is given an undirected graph G = (V,E), with V being
a set of |V | = n vertices and E being a set of edges. A k-coloring of G is a
mapping ϕ : V → Γ , where Γ = {1, 2, . . . , k} is a set of |Γ | = k integers,
each representing one color. A k-coloring is proper if for all (u, v) ∈ E it holds
that ϕ(u) �= ϕ(v); otherwise it is non-proper. If for some (u, v) ∈ E we have
ϕ(u) = ϕ(v), the vertices u and v are said to be in conflict. (Similarly, we say
that edge (u, v) is in conflict.) The conflict set V c is the set of all vertices that
are in conflict. Alternative to the assignment point of view, a k-coloring can
also be seen as a partitioning C = {C1, . . . , Ck} of the set of vertices V into k
disjoint sets, called color classes.

In the optimization version of the GCP, one is asked for the smallest
number k of colors such that a proper coloring exists. This number is an
intrinsic property of a graph and is called chromatic number. The decision
version of the GCP asks if, for a given k, a proper coloring exists. This version
of the GCP is well known to be NP-complete [40]. It is, hence, not surprising
that exact methods for solving the GCP fail to be effective on a significant
portion of the known benchmark instances, in part due to their large size
[14]. As an alternative, a large number of SLS algorithms have been proposed.
Most of these approaches are actually based on a very straightforward one-
exchange neighborhood, in which one vertex at a time changes its color class.
(See [16] for an overview of local search algorithms for the GCP.) However,
the partitioning representation of the GCP directly suggests the application
of the cyclic and path-exchange neighborhood that was described in Sect. 2.2.
In what follows, we study the performance of SLS algorithms exploiting these
neighborhoods and give some insights into their behavior.

3.1 Neighborhoods for the GCP

When tackling the optimization version of the GCP by local search methods,
the most used approach is to solve a sequence of k-coloring problems. In a first

128 M. Chiarandini, I. Dumitrescu, T. Stützle

step, one guesses an initial value for k, for example, by applying a construction
algorithm based on the DSATUR heuristic [12] or the RLF heuristic [43].
Then, each time a proper k-coloring is found, the value of k is decreased
by one. This can be done by removing one color and recoloring the vertices
without any associated color uniformly at random. If in this iterative process
the SLS algorithm cannot find a proper coloring for some k, it returns k + 1
as an upper bound on the chromatic number.

The evaluation function used by most SLS algorithms counts the number
of conflicting edges: g(C) =

∑k
i=1 |Ei|, where Ei is the set of edges with both

end points in Ci. A candidate solution with an evaluation function value of
zero corresponds to a proper k-coloring.

In local search, a solution to the GCP is represented by a vector of |V | el-
ements containing the color assigned to each vertex. In addition, for speeding
up some of the computations in the local search (for example the neighborhood
examination), it is advantageous to maintain a redundant representation con-
sisting of a collection of k sets of vertices corresponding to the k color classes.

The basic one-exchange neighborhood operator changes the color of one
single vertex. In the partitioning representation, this corresponds to mov-
ing one vertex from one color class to another. Clearly, improvements of the
evaluation function are only possible if exchanges involve vertices that are in
conflict. Hence, in many SLS algorithms the neighborhood is restricted to such
vertices and the size of the one-exchange neighborhood is |V c| · k. We denote
this neighborhood by N1. (Note that the size of N1 changes at run-time of an
SLS algorithm with the size of the conflict set.)

Much less frequently used is the neighborhood structure based on the swap
operator, in which, one vertex in V c exchanges the color with another vertex
in V . Besides being of quadratic size in the worst case (more precisely, of
size |V C | · |V |), this neighborhood leaves the cardinality of the color classes
unchanged and it is therefore less appealing than N1.

The partitioning representation of the GCP lends itself to the definition of
a cyclic and path exchange neighborhood as described in Sect. 2.2. Each par-
tition corresponds to one color class and the cost is the number of conflicting
edges in the class. The property of cyclic exchanges to leave the class cardi-
nality unchanged suggests the desirability of allowing also path exchanges.

In the GCP, a cyclic exchange of length m acts on a sequence of vertices
(u1, . . . , um) belonging to mutually distinct color classes. For simplicity, we
denote the color class of any ui, i = 1, . . . ,m by Ci and adopt the convention
Cm+1 = C1. The cyclic exchange moves then any ui, i = 1, . . . , m from Ci

into Ci+1. The path exchange, instead, moves any ui, i = 1, . . . ,m − 1 from
Ci into Ci+1 but maintains um in Cm. In this latter case, the sequence of
exchanges is not closed and the cardinality of C1 and Cm is modified.

Very Large-Scale Neighborhood Search 129

Fig. 4. An example where one-exchange and swap moves do not yield any improve-
ment, while a cyclic (left side) or a path (right side) exchange can be found to yield
a proper coloring.

3.2 Cyclic and Path Exchanges and the Number of Local Optima

The new cyclic and path exchange neighborhood for the GCP includes the
one-exchange and the swap neighborhood as special cases. Figure 4 gives an
example, which shows that by the adoption of the general cyclic and path
exchange neighborhoods, improvements over these special cases may be ex-
pected. In fact, the one-exchange and swap neighborhoods would fail to yield
any neighboring coloring with a better evaluation function value than the col-
oring depicted in Fig. 4; however, by allowing for cyclic and path exchanges,
moves could be found that result in a proper coloring.

Further evidence for the desirability of using the cyclic and path neigh-
borhood is given by experiments on small graphs. In particular, we generated
for n ∈ {3, . . . , 9} all connected, non-isomorphic graphs.1 In Table 1, we re-
port in the first three columns the number of vertices, the number of such
distinct graphs grouped by different chromatic number and for each graph
the number of all distinct colorings that use a number of colors between two
and the chromatic number.2 We then applied, starting from these colorings,
iterative best improvement algorithms that make use of different neighbor-
hoods (or neighborhood combinations) and for each of these algorithms we
counted the number of local optima that do not correspond to proper color-
ings. For n ∈ {3, . . . , 7} these experiments were done exhaustively, that is,
starting once from each different initial coloring, while for n ∈ {8, 9} we used
a random sample of size equal to the number of initial colorings used for the
case n = 7. The results show clearly that the number of local optima decreases
considerably by using a larger neighborhood.

1 These graphs where generated with the program geng of nauty by B. McKay,
available from http://cs.anu.edu.au/~bdm/nauty/ (1984-2007, downloaded De-
cember 2003).

2 Given a graph of size n, the number of all colorings that use k colors is given
by the Stirling number of second kind Sn,k and corresponds to the number of
all partitions of n labeled objects (the vertices) into k unlabeled sets (the colors
classes). A procedure to generate all these partitions can be found, for example,
in [42].

130 M. Chiarandini, I. Dumitrescu, T. Stützle

Table 1. Number of distinct local optima that do not correspond to proper color-
ings for iterative improvement algorithms that differ in the examined neighborhoods.
Results pertain all connected, non-isomorphic graphs of different size. Iterative im-
provement algorithms are run on each graph starting once from each possible distinct
coloring that use between two and the chromatic number of colors. For n in {8, 9}
we considered an overall sample of 421 555 distinct initial colorings.

distinct # distinct One-ex One-ex One-ex swap cyclic
|V | graphs colorings + swap + cyclic + path + path

3 2 7 0 0 0 0 0
4 6 61 4 1 1 0 0
5 21 756 25 14 9 0 0
6 112 14113 468 231 148 24 14
7 853 421555 9129 4768 2419 495 265
8 11117 22965511 81944 49416 24879 8006 4913
9 261080 2461096985 133535 85169 42077 18964 11890

Fig. 5. A graph and a coloring for it (left) and the corresponding improvement
graph (right).

3.3 Neighborhood Examination

A crucial element in the examination of the neighborhood is the computation
of only local changes in the evaluation of a move. In the one-exchange neigh-
borhood, the evaluation function value of a neighbor C′ of the current coloring
C can be obtained by the value of C: g(C′) = g(C)−|ACi

(v)|+ |ACj
(v)|, where

ACi
(v) is the set of edges connecting v to other vertices in the class Ci and

we assume to move v from Ci to Cj . The value |ACi
(v)| can be obtained in

constant time if we record it in an auxiliary matrix ∆ of |V |×k elements. The
initialization of the matrix is done once at the beginning in O(|V |2); its update
after a one-exchange move is, however, much faster since we need to consider
only the entries corresponding to the vertex that moved into a different color
class and the vertices adjacent to it. Hence, the worst case complexity for
updating ∆ is O(|V |), although in practice it is much lower.

In the examination of the cyclic and path exchange neighborhood, we can
use the improvement graph model and the SDNCCP algorithm devised by
Dumitrescu [23]. The improvement graph is the directed graph G′ = (V ′,D′),
obtained from the graph G = (V,E) and the current color partition C =

Very Large-Scale Neighborhood Search 131

{C1, . . . , Ck}. The set of vertices of G′ is V ′ = {1, . . . , n}, each vertex in V ′

corresponding to exactly one vertex vi ∈ V . The set of arcs D′ consists of arcs
(i, j) if vertices vi and vj belong to two different color classes in C. The set of
vertices V ′ is split into a partition U of k subsets U1, . . . , Uk, induced by C,
and the elements of Uh are in one-to-one correspondence with the elements
of Ch, ∀h = 1, . . . , k (see Fig. 5). Hence, cyclic and path exchanges in C will
correspond to subset disjoint cycles, respectively paths, with respect to U . The
cost associated to an arc (i, j) with i ∈ Ui and j ∈ Uj is the cost of inserting
vertex i into Cj and removing vertex j from Cj . This cost can be easily
computed using the matrix ∆ defined above: ci,j = |ACj

(vi)|− |ACj
(vj)|. The

update of ∆ after each cyclic or path exchange is done by considering the
exchanges as a composition of one-exchanges and requires O(m|V |)), where
m ≤ k is the length of the cyclic or path exchange.

In order to solve the SDNCCP and to find the best cyclic exchange we
base the algorithm on the one presented in [23] and another similar one [4].
The algorithm works in a dynamic programming fashion by extending subset
disjoint paths, that is, paths that visit every subset Ui of the improvement
graph G′(V ′,D′) at most once. It is clear that the path can be closed to form
a subset disjoint cycle by an arc that connects the last and the first vertex of
such a path. This arc always exists given the way the improvement graph is
constructed.

We denote a path in the improvement graph by p = (i1, . . . , il), where i1
is the start vertex of p, denoted by s(p) and il is the end vertex of p, denoted
by e(p). We associate a binary vector w(p) ∈ {0, 1}k with the path p, where
wj(p) = 1, if and only if p visits the subset Uj . The cost of p, denoted by c(p),
is the total cost of the arcs in the path, that is, c(p) =

∑l−1
j=1 cij ,ij+1 .

We say that the path p1 dominates the path p2 if s(p1) = s(p2), e(p1) =
e(p2), c(p1) ≤ c(p2), w(p1) ≤ w(p2), and the paths do not coincide. This
definition will help us to discard paths that are not promising. We define a
treatment of a path as the extension of that path along all outgoing arcs. After
a treatment, a path is marked as treated. At any time, only paths that have
not previously been treated are selected for treatment. The overall SDNCC
algorithm is given in Alg. 16. In the algorithm, q∗ contains the ordered
sequence of vertices for the most negative cyclic exchange in C and c∗ is its
cost.

The algorithm uses a well known lemma from [45] which establishes that
if a sequence of edge costs has negative sum, there is a cyclic permutation
of these edges such that every partial sum is negative. This allows to restrict
the dynamic programming recursion by (i) creating a label of length one only
for negative edges (line 2) and (ii) extending a label of length larger than one
with a new edge only if the partial sum of the costs associated with the edges
remains negative (line 15). The application of this rule does not cause the
omission of any promising subset disjoint negative cost cycle. If, on line 11, all
the paths in P are transferred for examination into P̂ without any restriction,
the algorithm is exact and its complexity is O(|V ′|22k|D′|).

132 M. Chiarandini, I. Dumitrescu, T. Stützle

Algorithm 16 to solve the SDNCCP
1: input: a graph G′(V ′,D′)
2: Let P all negative cost paths of length 1, i.e., P = {(i, j) : (i, j) ∈

D′, c(i, j) < 0}
3: Mark all paths in P as untreated
4: Initialize the best cycle q∗ = () and c∗ = 0
5: for each p ∈ P do
6: if (e(p), s(p)) ∈ D′ and c(p) + c(e(p), s(p)) < c∗ then
7: q∗ = the cycle obtained by closing p and c∗ = c(q∗)
8: end if
9: end for

10: while P �= ∅ do
11: Let P̂ = P be the set of untreated paths
12: P = ∅
13: while ∃ p ∈ P̂ untreated do
14: Select some untreated path p ∈ P̂ and mark it as treated
15: for each (e(p), j) ∈ D′ s.t. wϕ(vj)(p) = 0 and c(p)+ c(e(p), j) < 0 do
16: Add the extended path (s(p), . . . , e(p), j) to P as untreated
17: if (j, s(p)) ∈ D′ and c(p) + c(e(p), j) + c(j, s(p)) < c∗ then
18: q∗ = the cycle obtained by closing the path (s(p), . . . , e(p), j)
19: c∗ = c(q∗)
20: end if
21: end for
22: end while
23: for each p′ ∈ P subject to w(p′) = w(p), s(p′) = s(p), e(p′) = e(p) do
24: Remove from P the path of higher cost between p and p′

25: end for
26: end while
27: return: a minimal negative cost cycle q∗ of cost c∗

Unfortunately the algorithm SDNCC cannot be modified efficiently to
search exactly also path exchanges in C. This is due to the way we con-
structed the improvement graph. Indeed, the cost of a subset disjoint path in
the improvement graph does not correspond to the cost of a path exchange in
the real graph and an adjustment is required. Given the subset disjoint path
p = (i1, . . . , il) in G′, which corresponds to p̃ = (vi1 , . . . , vil

) in G, the evalua-
tion function of a neighbor C′ obtained from C after a path exchange given by
p̃ is: g(C′) = g(C) + c(p)− |ACi1

(vi1)|+ |AC′
il
(vil

)|, where C ′
il

= Cil
∪ {vil−1}.

In order to find the best (most improving) cyclic or path exchange in C we
must then modify algorithm SDNCC such that it checks also the cost of paths
whenever it checks the cost of cycles, on lines 6 and 17. Moreover, in an exact
search we must also avoid to use the lemma of Lin and Kernighan [45], as it
would not be anymore valid given that the cost of subset disjoint paths in U

Very Large-Scale Neighborhood Search 133

does not correspond to the cost of path exchanges in C. In the final output
of the algorithm thus modified, q∗ becomes the most negative cyclic or path
exchange in C and c∗ its cost.

The algorithm in Alg. 16 returns the most improving neighboring solution
for the considered neighborhoods. However, the computational cost of the ex-
act neighborhood exploration may be prohibitively high and therefore various
heuristics to prune the search have been implemented. The first is to limit
the number of paths that are explored to a maximum of LAB LIM paths. This
can be achieved by modifying line 11 of Alg. 16 to let P̂ ⊆ P be the set of
the LAB LIM cheapest untreated paths. In this way the final solution is not
optimal (although it remains very close [23]) but the time complexity drops
to O(|V ′|2). In addition, it is clear that the Lin and Kernighan lemma might
be very helpful to further reduce the computational cost of the algorithm. We
therefore investigated the usage of the following further rules to prune the
search.

Rule 1a. Only subset disjoint negative paths of length one are treated on
line 2 and only subset disjoint paths of negative or null cost are treated
on line 15.

Rule 1b. Only subset disjoint negative cost paths are treated on both lines
2 and 15 as from lemma of [45].

Rule 2. We introduce the restriction to maintain no more than LAB LIM <∞
paths on line 11.

Rule 3. When considering an iterative improvement procedure, we search for
cyclic and path exchanges and hence run the algorithm SDNCC only if the
best one-exchange is a non-improving move.

Using the same experimental setting as described Table 1 we compared the
number of local optima determined with an exhaustive search of the cyclic and
path neighborhood (hence the numbers in the last column of Table 1) against
those determined by a search pruned by the combined application of the rules
1a+2+3 and 1b+2+3. In both these two latter cases we could not detect any
deterioration of performance, that is, the number of local optima remained
the same.

Small graphs, however, are not very helpful to detect the impact of the
parameter LAB LIM. Preliminary computational analysis on common bench-
mark graphs with at least 125 vertices indicated, as expected, that the number
of local optima decreases by augmenting LAB LIM. As LAB LIM increases, also
the number of iterations to reach local optima decreases; nevertheless, the
overall computation time increases strongly. Furthermore, the decrease of the
number of local optima becomes less strong as LAB LIM increases. We decided,
therefore, to fix LAB LIM to a value of 50 which yields a reasonable trade off
between solution quality and running time [14].

In Table 2, we study the impact in computation time for the different
neighborhood restrictions in iterative improvement algorithms. The experi-
ments were conducted on uniform random graphs of 125 vertices with three

134 M. Chiarandini, I. Dumitrescu, T. Stützle

Table 2. Results on the instances DSJC125 with edge densities δ ∈ {0.1, 0.5, 0.9}.
The table reports for each instance, the performance of iterative best improvement
in solving the decision problem associated with different values for k. The indicators
for the performance are: the percentage (%) success rate of finding a proper coloring;
the median number of conflicting edges g̃; and the median CPU time expressed in
hundredth of seconds to complete a single run (the machine used for the experiment
is a 2 GHz AMD Athlon MP Processor with 256 KB cache and 1 GB RAM).

One-ex One-ex + swap cyclic + path cyclic + path cyclic + path
ρ k Exhaustive 1a + 2 + 3 1b + 2 + 3

% g̃ hsec. % g̃ hsec. % g̃ hsec. % g̃ hsec. % g̃ hsec.

0.1 9 74 1 0 93 1 0 100 – 107 100 – 26 100 – 1
8 29 1 0 64 1 0 100 1 119 100 1 29 100 1 3
7 2 4 0 12 2 0 88 1 134 91 1 37 87 1 5
6 0 10 0 0 6 0 12 2 152 14 2 48 12 2 12
5 0 23 0 0 18 0 0 13 165 0 13 61 0 13 15

0.5 25 1 4 1 7 3 1 100 1 166 82 1 46 96 1 4
23 0 8 1 0 6 1 96 1 180 53 1 49 81 1 8
21 0 14 1 0 11 1 56 1 204 16 2 53 33 1 12
19 0 23 1 0 19 1 0 6 220 0 6 58 0 6 17
17 0 36 1 0 31 1 0 17 232 0 17 61 0 17 19

0.9 50 0 15 1 0 9 1 63 1 172 3 3 102 22 2 19
48 0 19 1 0 12 1 35 2 184 1 5 101 10 2 21
45 0 23 1 0 18 1 0 5 249 0 8 100 0 5 24
42 0 29 1 0 24 1 0 11 218 0 12 95 0 11 23
39 0 37 1 0 31 1 0 18 225 0 19 96 0 18 26
36 0 49 1 0 41 1 0 28 233 0 28 93 0 28 27
33 0 62 1 0 54 1 0 40 238 0 40 86 0 40 27
30 0 77 1 0 70 1 0 55 242 0 55 8 0 55 28

different edge densities, namely 0.1, 0.5, 0.9. Results are presented in terms of
the ability to solve the various decision problems encountered when decreasing
k to the lowest value of k for which a proper coloring is known to exist. At
each k, all iterative improvement algorithms are started from the same 1000
initial solutions. The data reported are the success rates for solving the deci-
sion problem for each value of k, the median number of conflicting edges in the
cases where no proper coloring was found, and the computation time to reach
a local optimum. We observe that the contribution of the new neighborhoods
remains important also in the large graphs and that it remains pronounced
even with a pruned neighborhood examination. Looking at the effect of the
two rules 1a and 1b, we observe a considerable difference in computation time
and also, rather unexpectedly, higher capacity to solve the problem for the
rule 1b, which is therefore to be preferred.

In Table 3 we try to gain deeper insight into which kind of moves are
the most important in the new neighborhood. The experimental setting is
the same as for Table 1. This time we distinguish two versions for exhaustive

Very Large-Scale Neighborhood Search 135

Table 3. Number of moves chosen from each neighborhood. The experimental set-
ting is the same as for Table 1 except for the overall sample of distinct initial coloring
that has here size 14 113. In parenthesis is given the maximal length registered for
cyclic and path exchanges. Note that a cyclic exchange of length 3 corresponds to
{v1, v2, v3} and entails that 3 vertices change colors; a path exchange of length 3
corresponds to {v1, v2, v3, v4} and also entails that 3 vertices change colors, as v4

serves only to determine the arrival color for v3.

n cycle, path path, cycle cycle, path
exhaustive exhaustive truncated

one-ex 6 24981 24981 24981
7 29483 29484 29483
8 34200 34202 34200
9 38944 38928 38944

swap 6 794 794 794
7 1138 1138 1138
8 1489 1491 1489
9 1859 1861 1859

cyclic 6 370 (3) 65 (3) 370 (3)
7 743 (4) 103 (3) 743 (4)
8 1082 (4) 164 (4) 1082 (4)
9 1449 (5) 218 (4) 1449 (5)

path 6 684 (3) 989 (3) 684 (3)
7 775 (3) 1415 (3) 775 (3)
8 936 (3) 1857 (3) 936 (3)
9 1034 (3) 2276 (4) 1034 (3)

search, depending on whether ties are broken in favor of cyclic or path ex-
changes (preference is given to the first listed of the two). For cyclic and path
exchanges we report also the maximal length of the exchange registered.

By comparing the third and fourth columns in the table, we observe that
if paths are taken when they have equal gain as the cyclic exchanges, then
the number of cyclic exchanges drops considerably. This indicates that the
use of path exchanges alone would miss less gains than the use of cyclic ex-
changes alone. Hence, the contribution of path exchanges seems higher than
the contribution of cyclic exchanges.

The maximal length of cyclic and path exchanges registered indicates that
for small graphs of size 9 and number of color classes less or equal to 9, up to
5 vertices may have to change color at the same time in a cyclic exchange and
up to 4 in path exchanges. We take this as a further evidence that searching
beyond the one-exchange neighborhood might be profitable, as an improving
exchange can be found only by moving several vertices. As mentioned, no
impact was detected by truncation rules on these small graphs.

136 M. Chiarandini, I. Dumitrescu, T. Stützle

3.4 Integrating Cycle and Path Exchanges into SLS Algorithms

The results in Table 2 indicate that the simple iterative improvement al-
gorithms perform rather poorly compared with the results achieved by SLS
algorithms. In fact, many SLS algorithms find proper coloring for the smallest
values of k indicated in the table within a few seconds on an office PC as of
2005 [14]. It is therefore important to test the use of the new neighborhood
within SLS algorithms.

For the GCP, rather simple tabu search algorithms have shown very good
and robust performance over a wide range of different graphs. A first tabu
search algorithm based on the one-exchange neighborhood was proposed by
Hertz and de Werra [36] and it was later improved leading to the best perform-
ing tabu search variant [22, 26], which we denote by TS1-ex. TS1-ex chooses at
each iteration a best non-tabu or tabu but aspired neighboring candidate so-
lution from the restricted one-exchange neighborhood. If a one-exchange move
puts vertex v from color class Ci into Cj , it is forbidden to re-assign vertex v
to Ci in the next tt steps; the tabu status of a neighboring solution is over-
ruled if it improves over the best candidate solution found so far (aspiration
criterion). If more than one move produces the same effect on the evaluation
function, one of those moves is selected uniformly at random. The tabu list
length in TS1-ex is set to tt = random(10) + δ · |V C |, where random(10) is an
integer uniformly chosen from {0, . . . , 10} and δ is a parameter typically set
to 0.5. Since tt depends on |V C |, the tabu list length varies dynamically with
the evaluation function value.

To test the usefulness of the cyclic and path exchange neighborhoods, we
integrated them into a tabu search algorithm, which we denote as TSVLSN.
TSVLSN is closely related to TS1-ex. It first selects the best non-tabu move in
the one-exchange neighborhood. If this move has the same evaluation func-
tion value as the current one, the cyclic and path exchange neighborhood is
searched. In all other cases, that is, if the best non-tabu one-exchange leads
to an improvement or a deterioration of the evaluation function, the one-
exchange move is applied and the tabu list is updated.

The algorithm SDNCC is modified by including in the initial set P of line
2 only paths of length one consisting of at least one vertex from V c. The tabu
mechanism is applied to the search for cyclic and path exchanges by discard-
ing any neighboring candidate solution that involves the reassignment of a
vertex to some color class that is currently tabu. The tabu list is updated by
considering the path or the cyclic exchange as a composition of one-exchanges
and the value of tt for a specific vertex–color class pair (v, i) is chosen using
the rule of TS1-ex. Yet, contrarily to TS1-ex, TSVLSN does not use an aspiration
criterion. This allows to discard vertices that are tabu very soon in the search
for subset disjoint paths.

The comparison of SLS algorithms is generally performed on the set
of benchmark instances available at http://mat.tepper.cmu.edu/COLOR04.
This repository includes quite heterogeneous graphs and a full account of the

Very Large-Scale Neighborhood Search 137

results is given in [14]. Here, we focus on two types of random graphs: geomet-
ric (G) graphs and uniform (U) graphs. The geometric graphs are generated
from points in a two dimensional grid with random, integer coordinates in
[0, 1). There is a one-to-one correspondence between points and vertices in
the graph. Edges are assigned between pairs of vertices if the Euclidean dis-
tance between the corresponding points is less or equal to a value d. The
uniform graphs are generated by including each of the

(|V |
2

)
possible edges

independently with probability p. For both types of graphs, we fixed the pa-
rameter d and p such that three different edge densities are considered: 0.1,
0.5 and 0.9. A number of graphs (see strip text in the plots of Fig. 6) with
1000 vertices are generated and the algorithms are run once on each instance
with a fixed time limit, equal for all algorithms. The time limit of 150, 700,
and 1500 seconds3 for graphs of density 0.1, 0.5, 0.9, respectively, was chosen
so as to allow TS1-ex to accomplish about 10000× |V | iterations. Further im-
provements after such long runs become unlikely for TS1-ex. As reference, we
add in the analysis two algorithms that have shown the best results for the
classes of instances studied. These are the hybrid evolutionary algorithm [26]
and a guided local search [14].

In Fig. 6, we report the results of a rank-based analysis. In particular, we
rank within each instance the results in terms of the lowest k for which a proper
coloring is found by each algorithm. In this way, the problem of different in-
stance scales is removed. We then aggregate the ranks over the instances by
computing the average rank for each algorithm. A lower average rank means
that the algorithm performs better. Moreover, we use simultaneous confidence
intervals extended around the average values to provide an indication of the
statistical significance of the differences. These intervals are determined by
an all-pairwise comparison procedure carried out through the Friedman sta-
tistical test at a 5 % protected level of significance [15],[20, p. 371]. In the
figure, two algorithms are significantly different if the confidence intervals of
the corresponding average ranks do not overlap.

These results indicate that the usage of the cyclic and path exchange
neighborhoods does not result into improved performance of the tabu search
algorithm. On the contrary, for the uniform graphs the performance of TSVLSN

is significantly worse than that of TS1-ex. The same is true for the geometric
graphs of density 0.5. Only on the geometric graphs with densities 0.1 and 0.9,
TSVLSN yields statistically similar performance to TS1-ex. Hence, we obtain the
opposite result to what we may have expected from the previous analysis.

A possible explanation for this result is given in Fig. 7, where we depict the
behavior of TS1-ex and TSVLSN from two different perspectives: over time and
over iteration number. It can be observed that TSVLSN remains competitive
comparing results based on an iteration number, but it is not competitive
when comparing the development of the solution quality based on computation

3 Times refer to a computer with 2 GHz AMD Athlon MP 2400+ Processor with
256 KB cache and 1 GB of RAM memory.

138 M. Chiarandini, I. Dumitrescu, T. Stützle

Average Rank

TS_1Ex

HEA

GLS

TS_VLNS

1 2 3 4

U−0.1 (10 Instances) U−0.5 (10 Instances)

1 2 3 4

U−0.9 (10 Instances)

TS_1Ex

HEA

GLS

TS_VLNS

G−0.1 (10 Instances)

1 2 3 4

G−0.5 (10 Instances) G−0.9 (10 Instances)

Fig. 6. The 95 % confidence intervals for the all pairwise comparisons of SLS algo-
rithms on aggregated geometric (indicated by G) and uniform (U) random graphs
in the GCP. The x-axis indicates the average rank while the confidence intervals are
derived from the Friedman test. The more the interval is shifted towards the left the
better is the algorithm performance.

90

95

100

105

N
um

be
r

of
 C

ol
or

us

*
*

*
*

*
*

*
*
*

*
*

**

Time

DSJC1000.5

10 102 103

90

95

100

105

*
*

*
*
*

*
*
*

*
*

**

Iterations

1 102 104 106

DSJC1000.5

TSN1
TSN3

Fig. 7. The development of the solution quality of TS1-ex and TSVLSN over time (left)
and number of iterations (right). Given is the development of the median number
of colors across 10 runs per algorithm.

time. This is due to the high added computational cost of searching the cyclic
and path exchange neighborhoods. Ideally, this increased computation cost of
the neighborhood exploration should be payed off by a faster improvement
in solution quality. Although this seems to be the case in the right figure,
where the curve of solution cost for TSVLSN is slightly lower than the one for
TS1-ex, this minor improvement is probably not enough to yield any concrete
advantage inside TS1-ex for the GCP.

Very Large-Scale Neighborhood Search 139

A cause for the weak performances of TSVLSN might be the inefficient use of
the SDNCC algorithm in the search for path exchanges in C. In a late discovery
we found a way to improve on this issue. In detail, the construction of the
improvement graph can be modified by adding k vertices, vn+1, . . . , vn+k one
for each of the Ui partitions. These are “dummy” vertices in the sense that
they do not correspond to any vertex in V but are useful to represent the
cases in which a vertex enters in a class Ci and no vertex leaves it. The cost of
the arcs connecting the new vertices with other vertices of G′ not in the same
class is defined by: ci,n+l = |ACl

(vi)| for l = 1, . . . , k; cn+l,j = −|ACj
(vj)| for

l = n + 1, . . . , n + k; and cn+h,n+l = 0 for l, h = 1, . . . , k. In this way it is
possible to model in the improvement graph the costs of path exchanges and
the lemma by Lin Kernighan in the SDNCC algorithm turns valid again. Note
that the inclusion of edges (n + h, n + l) for l, h = 1, . . . , k with cost zero is
not necessary but it permits to find, eventually, more than one independent
exchanges in a single run of the SDNCC algorithm (in a dynasearch fashion).
However, in spite of all these favorable premises, preliminary experiments
resulted in the same conclusions, that is, TSVLSN does not improve over TS1-ex.

3.5 Other Studies in the Literature

Beside the work presented here, there are few other studies in the literature
on very large-scale neighborhood structures for the GCP.

Glass and Prügel-Bennet [29] observed that permuting the colors within
a subgraph does not affect the contribution to the evaluation function of the
subgraph itself. They devised a permutation neighborhood that first deter-
mines a subgraph that defines a partition of the graph and a cut of the edges
joining vertices in the subgraph to vertices outside the subgraph. Then, the
permutation of colors within the subgraph that minimizes the number of con-
flicting edges in the cut is found by solving a matching problem in a suitably
defined bipartite graph. Tests on this neighborhood structure used together
with the one-exchange and enhanced by a perturbation mechanism in an it-
erated local search fashion failed to show this approach to be competitive.

Gonzalez-Velarde and Laguna [32] proposed an ejection-chain neighbor-
hood which implements cyclic exchanges of vertices but they limit the chains
to maximum length 3. Avanthay, Hertz and Zufferey [8] propose several dis-
tinct neighborhoods some of which are of exponential size. Nevertheless they
do not provide any insight on how to search them efficiently. In none of these
cases results are competitive.

Trick and Yildiz [55] devise α-β-swaps and α-expansions. The former con-
sist of exchanging the color of a subset of vertices that belong to two different
color classes defined by α and β. The latter consists of changing the color
of any set of vertices to α. It is shown that finding the best neighbor in
both these neighborhoods corresponds to solving a MAX-CUT problem in
an opportunely defined graph. In the experiments the authors use a heuristic

140 M. Chiarandini, I. Dumitrescu, T. Stützle

algorithm for solving the MAX-CUT problem. Although promising, the pre-
liminary results remain inferior to the state-of-the-art.

Other neighborhoods, though not of exponential size, have been studied in
Gendron, Hertz, and St-Louis [28]. They build on the fact that the problem
of finding the chromatic number of a graph is equivalent to the problem of
finding a circuit-free orientation of the edges of a graph so that the length
of the shortest path in the resulting digraph is minimum. Hence they study
four neighborhoods in the edge orienting problem and derive graph theoretical
properties that allow a polynomial search of each neighborhood. In the results
presented, the best neighborhood consists of the reversal of a single arc on a
longest path of the current orientation. However, again, the results are not
competitive with the state-of-the-art.

We can therefore say that various types of very large-scale neighborhoods
have been studied for the GCP but none of these studies could clearly iden-
tify any positive impact of these very large-scale neighborhoods for improving
state-of-the-art algorithms for the GCP. Hence, our study adds further evi-
dence that the improvement in the solution quality per local search step given
by the usage of very large-scale neighborhoods does not pay off the additional
computation time required for searching the neighborhoods for the GCP.

4 Color Reassignment Neighborhood
for Graph Set T-Coloring

The graph set T-coloring problem (GSTCP) generalizes the graph coloring
problem in the sense that it asks for the assignment of sets of integers to the
vertices of a graph. The assignment must satisfy constraints on the separation
of any two numbers assigned to a single vertex or to adjacent vertices. The
GSTCP arises in the modeling of various real-life problems, the most impor-
tant being the assignment of frequencies to radio transmitters when designing
mobile phone networks. In this case, vertices represent transmitters and colors
the frequencies to be assigned to the transmitters subject to certain interfer-
ence constraints, the T -constraints [35]. Other applications stem from traffic
phasing and fleet maintenance [50], or task assignment in which a large task is
partitioned into incompatible subtasks and a set of time periods needs to be
assigned to each subtask so that incompatible subtasks are in different time
periods [52].

More formally, in the GSTCP we are given: (i) an undirected graph G =
(V,E), where V is the set of n = |V | vertices and E is the set of edges, (ii)
a set Γ of nonnegative integer numbers (called colors), (iii) a number r(v) of
required colors at each vertex v ∈ V , and (iv) a collection T (called T-set)
of nonnegative integers including zero, such that there is an integer tuv for
each edge (u, v) ∈ E and an integer tu for each vertex u ∈ V representing
the allowed separation distances of colors between and within vertices. The

Very Large-Scale Neighborhood Search 141

decision version of the GSTCP asks for a mapping ϕ : V → P(Γ) such that
the three groups of constraints

|ϕ(v)| = r(v) ∀ v ∈ V (2)
|x− y| ≥ tu ∀ u ∈ V, ∀ x, y ∈ ϕ(u), x �= y (3)
|x− y| ≥ tuv ∀ uv ∈ E, ∀ x ∈ ϕ(v), ∀ y ∈ ϕ(u) (4)

are satisfied. We call such a multi-valued function ϕ a proper set T-coloring,
if all these constraints are satisfied and improper, otherwise. The three groups
of constraints to be satisfied are called requirement constraints, vertex con-
straints, and edge constraints, respectively.

We consider the optimization version of the GSTCP in which we are asked
for a proper set T-coloring of minimal span, that is, a ϕ of minimal maximal
difference between the colors used, minϕ maxu,v∈V {|x − y| : x ∈ ϕ(u), y ∈
ϕ(v)}. Without loss of generality we fix minu∈V {x : x ∈ ϕ(u)} to 1. Hence,
Γ = {1, 2, . . . , k} and the span is k − 1. Our task is minimizing k.

4.1 Neighborhood Definitions

A possible approach for applying local search to the GSTCP is to solve a
sequence of decision problems, in which a proper set T-coloring is searched
for a fixed number k of available colors. This approach has been shown in
the literature to be preferable to some others [14]. In this case, a solution is
represented by a vector of colors of length

∑
v∈V r(v) and an array of pointers

indicating where the set of colors assigned to each vertex starts. The effective
search space is reduced to only those candidate colorings that satisfy the vertex
constraints [14]. Hence, requirement constraints and vertex constraints are
always satisfied and the evaluation function needs only to count the number
of unsatisfied edge constraints.

The standard one-exchange neighborhood NE is defined by the operator
that changes a single color at a vertex without breaking any vertex constraint.
We also studied a new very large-scale neighborhood for the GSTCP. This
neighborhood is defined by the operator that reassigns all the colors of one
single vertex. In particular, the reassignments are those that satisfy the re-
quirement, vertex and edge constraints acting on the vertex. As such, the
application of this operator can be seen as an exact solution to the subprob-
lem of finding an assignment of k colors to one vertex such that no constraint
acting on this vertex is violated and no other vertex changes its color assign-
ment. Clearly, given a current configuration, it is possible that for a vertex
a reassignment of colors that satisfies all constraints on that vertex does not
exist. In this case, if only vertices involved in at least one conflict are consid-
ered, the neighborhood is empty. We call this neighborhood the vertex color
reassignment neighborhood and we denote it by NR.

142 M. Chiarandini, I. Dumitrescu, T. Stützle

4.2 Neighborhood Examination

Next, we describe the algorithm for the examination of NR. First a vertex,
involved in at least a conflict, is chosen. Then a set F is constructed, which
contains the colors that are feasible with respect to the constraints acting
on the vertex. This can be done in O(|V |k) if standard speed-up techniques
from the GCP are used [25]. Finding r(v) colors in F that satisfy the vertex
constraints, that is finding one neighbor in NR, is easy: order the values in F ,
scan F , and remove all colors that are not distant enough from the previous
ones. This procedure is deterministic and, unfortunately, it yields the same
color reassignment if a vertex is visited twice and its adjacent vertices have
not changed the colors. To avoid this cycling behavior, one may introduce
some randomization in the reassignment and, hence, when visiting a vertex a
second time, a different configuration is obtained, which possibly can be prof-
itably propagated. An implementation of this strategy requires to determine
all subsets of F of size r(v) that satisfy the vertex constraints and to pick
one at random. More formally, this problem can be formulated as finding a
subsequence of length L of H integers with mutual distance not smaller than
D: given an arbitrary sequence of integers s = {s1, . . . , sH}, find a subse-
quence l = {l1 . . . lL} of length L with li ∈ s, ∀ i = 1, . . . , L and such that the
mutual distances are not smaller than D, that is, having |li − lj | ≥ D, ∀i, j.
Hence, finding all such subsets of F is the same problem as enumerating all
subsequences of length L of H integers with mutual distance not smaller than
D.

It is possible to use solve this problem using a dynamic programming style
algorithm, which solves subproblems and stores their solutions in a table. If we
have an ordered sequence of integers in F , a proper coloring can be seen as an
ordered subsequence of integers that is itself composed of other subsequences.
Each of these subsequences, in turn, can be extended, in principle, in a number
of different ways to a sequence of length r(v) by adding elements from F .
The total number of possible extensions for each subsequence can be defined
recursively. Once this is done, it is possible to choose one solution randomly.

More formally, let s be an ordered vector of integers in F , L = |F |, D = tv
and H = r(v). For each position i of s we have next(i) = minj{j : j >
i, s[j] − s[i] ≥ D}. For each subsequence l of s, the number MH [i] of proper
subsequences of s of length h ∈ {1, . . . , H} containing l = {s[1], . . . , s[i]}, can
be computed recursively as

Mh[i] =

⎧
⎨

⎩

L− i + 1, if h = 1
Mh−1[next(i)] + Mh[i + 1], if L− i− 1 > h ≥ 2
0, otherwise

(5)

if i ≥ 1 and Mh[0] = 0 by convention.
The total number of proper subsequences of length r(v) is given by MH [1].

For selecting one at random, one may scan the sequence s and select each ele-
ment with probability Mh−1[next(i)]/Mh[i], that is, the fraction of extensions

Very Large-Scale Neighborhood Search 143

1 2 5 6 7 8 10

next(1)=3 next(3)=7

next(4)=7next(2)=4
0

12345670

000126110

3 1 0 0 0 0 0

2 3 4 5 6 7

1

2

3

10

h

i

Fig. 8. Given is an example for a vertex exact color reassignment where we have
that F = {1, 2, 5, 6, 7, 8, 10}, L = |F | = 7, D = tv = 4 and H = r(v) = 3. On the
left is given the vector s of 7 integers. For each integer in the sequence the pointer
next() is computed; where it is not otherwise indicated, it is set to 0. On the right is
given the table of Mh[i] values. This table is filled starting from the low right corner;
arrows indicate which already stored values are used to determine new table entries.
The grey cells indicate cells that are not used in the computation and, hence, are
assigned values by convention.

that contain the element in question. If an element is chosen, the scan contin-
ues from next(i). Clearly, the sequence of numbers can be generated in linear
time using the information provided by Mh[i]. However, computing the recur-
sion (5) for all h and i takes exponential time. Fortunately, this can be done
more efficiently by iteratively computing the values Mh[i] at the beginning
and recording them in a table. This iterative process is illustrated in Fig. 8,
right: the table is completed going from bottom to top and from right to left
within each row. Each new table entry requires the values of Mh−1[next(i)]
and Mh[i+1], which are already computed and stored. Hence, the next func-
tion and the table can be computed in O(max(D,H, log L) · L).

4.3 Experimental Results with SLS Algorithms

To assess the contribution of the new neighborhood, we consider its use within
more complex SLS algorithms. As for the GCP, we based the new algorithm
on a tabu search algorithm that uses in addition a standard one-exchange
neighborhood (N1). We compare the final algorithms with our reimplementa-
tion of the squeaky wheel algorithm that was shown to be effective for this
problem [44].

With N1 we use a standard Tabu Search procedure that chooses at each
iteration a best non-tabu move or a tabu but “aspired” neighboring solution
from the one-exchange neighborhood. The tabu list forbids to reverse a move
and the tabu tenure is chosen as tt = random(10) + 2δ|V c|, where V c is the
set of vertices which are involved in at least one conflict, δ is a parameter,
and random(10) is an integer random number uniformly distributed in [0, 10];
this choice follows that of a successful tabu search algorithm for the graph
coloring problem [26] and yields an algorithm analogous to that proposed in
[22]. We denote this algorithm TS1-ex.

When applying Tabu Search with NR, a heuristic rule is used to reduce the
effort of neighborhood exploration. At each iteration, first the best non-tabu

144 M. Chiarandini, I. Dumitrescu, T. Stützle

move in N1 is determined. If it improves on the current solution, it is accepted.
If it leaves the evaluation function value unchanged or worsens it, a move is
searched in NR, restricted to vertices involved in at least one conflict. If a
proper reassignment is found, it is applied; otherwise the best non-tabu move
in N1 is applied. In fact, the tabu search mechanism is applied only to moves
in N1 and it is in all equal to TS1-ex. The randomized examination of NR

implements already an anti-cycling mechanism and this is the reason why
preliminary experiments indicated the use of randomization preferable to that
of determinism. We call the overall algorithm TS+R.

We also developed a variant of TS+R that considers a color reassignment
for a randomly chosen vertex from V if no move is found in NR restricted to
conflicting vertices. This is motivated by the fact that a random reassignment
of colors to vertices where no conflict is present may produce a change that
can propagate profitably. We denote this variant TS+R∗.

There are four sets of instances for benchmarks on this problem. We refer
to [17] for a complete list of references and results on all classes of instances.
Here, we restrict ourselves to presenting results on random uniform graphs
of size n = 60. In such graphs, each of the

(
n
2

)
possible edges is present with

a probability p = {0.1, 0.5, 0.9}. Vertex requirements are chosen uniformly
from the set {1, . . . , r} and vertex and edge separation distances are chosen
uniformly from the set {1, . . . , t}.

First we examine whether the reassignment neighborhood impacts the
performance of tabu search. For this, we give in Table 4 the number of im-
provements due to a move in NR in comparison to improvements in N1. We
consider 10 instances for different classes of uniform graphs and report the
median values derived from one run of TS+R on each single instance. The
algorithm was stopped after 10 000 iterations. The first column reports the
number of iterations in which an improving solution was found in N1 while
the second column reports the number of improving solutions that was found
in NR. Note that this latter case occurs only if no possible improvement was
found in N1 while an improvement was still possible in NR. Hence, the second
column indicates a positive contribution in terms of number of improvements
of the new neighborhood. The third column gives an indication of how many
times the neighborhood NR was searched in 10 000 iterations. We count a
search for each attempted reassignment of colors to a single vertex. Finally,
the last two columns report the values of |F | and the span of integers in F in
order to give an indication of the size of problems being solved.

We then compare the five SLS algorithms on several classes of instances.
In [14], it was shown that the primary source of differences in the relative
performance of the algorithms under study is the edge density of the graphs,
while the combinations of values for r and t resulted to be less important (the
study was limited however to values of r and t smaller or equal 10, and further
investigation would be needed for larger values). Here, we fix r = 10 and t = 5
and consider graphs with edge density of {0.1, 0.5, 0.9}. In our experiments, we
impose the same computation time limit for all algorithms. This is necessary

Very Large-Scale Neighborhood Search 145

Table 4. Median statistics from 10 000 iterations of TS+R on 10 instances per class.
The first two columns report the improvements found in N1 and NR, respectively.
The third column reports the number of single-vertex searches in NR. The last two
columns report the number of colors in F , that is, the colors which are feasible
according to the edge-distance constraints of vertices adjacent to v, and the range of
colors in F , that is, fM − fm, with fM = max{c : c ∈ F} and fm = min{c : c ∈ F}.

improv. # improv. single-vertex
class in N1 in NR searches in NR |F | fM−fm

size=60, dens.=0.1, r = 5, t = 5 1179 59 17698 7 25
size=60, dens.=0.1, r = 5, t = 10 839 98 15953 8 50
size=60, dens.=0.1, r = 10, t = 5 6 0 20110 26 73

size=60, dens.=0.5, r = 5, t = 5 776 194 25463 6 43
size=60, dens.=0.5, r = 5, t = 10 926 113 22112 6 133
size=60, dens.=0.5, r = 10, t = 5 851 138 35321 9 69

size=60, dens.=0.9, r = 5, t = 5 651 117 21370 5 53
size=60, dens.=0.9, r = 5, t = 10 223 30 13782 8 159
size=60, dens.=0.9, r = 10, t = 5 640 77 23402 10 209

because the single iterations of TS1-ex and TS+R have different computation
time requirements. The time limit was chosen such that TS1-ex could accom-
plish Imax = 105 ×

∑
v∈V r(v) iterations. More details on the time limit are

reported in [14]. Before running the experiments, each algorithm was fine-
tuned using the F-race algorithm [10, 11], which is a fully automatic tuning
procedure based on sequential testing. In the tabu search algorithms the only
parameter to be determined is δ. For each of the algorithms we used numbers
in {0.5; 1; 10; 20; 30; 40; 50; 60; 70; 100} as candidates; the best value found was
10 for the random uniform instances. In what follows, each algorithm uses this
value for δ.

We carried out the experiments and the analysis in a similar way as dis-
cussed in Sect. 3.4. That is, we run each algorithm once on each instance
and ranked within the instance the result expressed in terms of color span.
In Fig. 9 we report the analysis through simultaneous confidence intervals de-
rived from the Friedman test [15, 20] at a 5 % protected level of significance.
The more the interval is shifted towards the left the better the performance of
the algorithm is. We made a different analysis for each of the three instance
classes determined by edge density.

Results vary among the three classes of instances. On the low density
instances the vertex color reassignment neighborhood does not introduce any
significant improvement and, in fact, it may even worsen the basic TS1-ex
slightly. However, as the edge density increases, using this new neighborhood
becomes worthwhile and TS+R results to be a new state-of-the-art algorithm.
Hence, TS+R is an example of an SLS algorithm where a very large-scale
neighborhood gives a significant contribution towards enhancing performance.

146 M. Chiarandini, I. Dumitrescu, T. Stützle

Average Rank

SW+TS+R
SW+TS_1Ex

TS+R*
TS+R

TS_1Ex

2 4 6 8 10 12 14

Uniform (size = 60; edge den. 0.1; r=[1,10]; t=[1,5]) (10 Instances)
SW+TS+R

SW+TS_1Ex
TS+R*
TS+R

TS_1Ex
Uniform (size = 60; edge den. 0.5; r=[1,10]; t=[1,5]) (10 Instances)

SW+TS+R
SW+TS_1Ex

TS+R*
TS+R

TS_1Ex
Uniform (size = 60; edge den. 0.9; r=[1,10]; t=[1,5]) (10 Instances)

Fig. 9. The 95 % confidence intervals for the all-pairwise comparisons of SLS algo-
rithms on aggregated uniform random instances of the GSTCP. The x-axis indicates
the average rank while the confidence intervals are derived from the Friedman test

5 Conclusions

Very large-scale neighborhood searches have received a significant attention,
especially in the last few years. Many different ways of defining and searching
neighborhoods have been proposed and for various problems, very large-scale
neighborhood searches are a central part of state-of-the-art SLS algorithms.
Probably the best known example is the Lin-Kernighan heuristic for the trav-
eling salesman problem. For several other problems, including generalized as-
signment [58], scheduling problems [33], or capacitated minimum spanning
trees [5] excellent results have been reported. However, the design and im-
plementation of very large-scale neighborhood searches requires significant
insights into the particular problem being tackled, the usage of efficient data
structures, and often substantial implementation time. In addition, despite
significant efforts, for various problems rather negative results have been ob-
tained in the sense that very large-scale neighborhood search algorithms failed
to improve algorithmic performance. One such example is the graph coloring
problem, which we also treated in this chapter, or the specific scheduling
problem reported in [13]. Certainly, the list of negative examples may be
longer – but unfortunately, often such negative results are not published or
made available in some other form to the research community.

Given this overall picture, it seems that no clear prediction can be made
as to when a very large-scale neighborhood search would result into a highly
performing algorithm. This is in part due to missing guidelines as to how

Very Large-Scale Neighborhood Search 147

to use very large-scale neighborhood searches and the development of such
algorithms is much left to the intuition of the researcher. Possibly, by some
preliminary examination of the trade-off between computation time and so-
lution quality improvement incurred by a very large-scale neighborhood some
more directed choice may be done. Hence, the usage of very large-scale neigh-
borhoods appears to be a promising possibility but there are still a large
number of open research questions to be investigated.

Acknowledgments

Thomas Stützle acknowledges support from the Belgian F.R.S.–FNRS of
which he is a research associate.

References

1. E. H. L. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Opti-
mization. John Wiley & Sons, Chichester, UK, 1997.

2. R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-
scale neighborhood search techniques. Discrete Applied Mathematics, 123(1–3):
75–102, 2002.

3. R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. Very large-scale neigh-
borhood search: Theory, algorithms, and applications. In T. F. Gonzalez, editor,
Handbook of Approximation Algorithms and Metaheuristics, pages 20-1–20-15.
Chapman & Hall/CRC, Boca Raton, FL, USA, 2007.

4. R. K. Ahuja, J. B. Orlin, and D. Sharma. Very large-scale neighbourhood search.
International Transactions in Operational Research, 7(4–5):301–317, 2000.

5. R. K. Ahuja, J. B. Orlin, and D. Sharma. Multi-exchange neighborhood search
algorithms for the capacitated minimum spanning tree problem. Mathematical
Programming, 91(1):71–97, 2001. Series A.

6. M. Allen, G. Kumaran, and T. Liu. A combined algorithm for graph-coloring
in register allocation. In D. S. Johnson, A. Mehrotra, and M. Trick, editors,
Proceedings of the Computational Symposium on Graph Coloring and its Gen-
eralizations, pages 100–111, Ithaca, New York, USA, 2002.

7. D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding tours in the TSP.
Technical Report 99885, Forschungsinstitut für Diskrete Mathematik, University
of Bonn, Germany, 1999.

8. C. Avanthay, A. Hertz, and N. Zufferey. A variable neighborhood search for
graph coloring. European Journal of Operational Research, 151(2):379–388,
2003.

9. N. Barnier and P. Brisset. Graph coloring for air traffic flow management.
Annals of Operation Research, 130:163–178, 2004.

10. M. Birattari. The race package for R. Racing methods for the selection of
the best. Technical Report TR/IRIDIA/2003-37, IRIDIA, Université Libre de
Bruxelles, Brussels, Belgium, 2003.

11. M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm
for configuring metaheuristics. In W. B. Langdon et al., editors, Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2002), pages
11–18. Morgan Kaufmann Publishers, San Francisco, CA, USA, 2002.

148 M. Chiarandini, I. Dumitrescu, T. Stützle

12. D. Brélaz. New methods to color the vertices of a graph. Communications of
the ACM, 22(4):251–256, 1979.

13. T. Brueggemann and J. L. Hurink. Two very large-scale neighborhoods for
single machine scheduling. OR Spektrum, 29:513–533, 2007.

14. M. Chiarandini. Stochastic Local Search Methods for Highly Constrained Com-
binatorial Optimisation Problems. PhD thesis, Computer Science Department,
Darmstadt University of Technology, Darmstadt, Germany, August 2005.

15. M. Chiarandini, D. Basso, and T. Stützle. Statistical methods for the compar-
ison of stochastic optimizers. In K. F. Doerner, M. Gendreau, P. Greistorfer,
W. J. Gutjahr, R. F. Hartl, and M. Reimann, editors, MIC2005: The Sixth Meta-
heuristics International Conference, pages 189–196, Vienna, Austria, August
2005.

16. M. Chiarandini, I. Dumitrescu, and T. Stützle. Stochastic local search algo-
rithms for the graph coloring problem. In T. F. Gonzalez, editor, Handbook of
Approximation Algorithms and Metaheuristics, pages 63-1–63-17. Chapman &
Hall/CRC, Boca Raton, FL, USA, 2007.

17. M. Chiarandini, T. Stützle, and K. S. Larsen. Colour reassignment in tabu search
for the graph set t-colouring problem. In F. Almeida, M. Blesa, C. Blum, J. M.
Moreno, M. Pérez, A. Roli, and M. Sampels, editors, Hybrid Metaheuristics,
volume 4030 of Lecture Notes in Computer Science, pages 162–177. Springer-
Verlag, Berlin, Germany, 2006.

18. R. K. Congram. Polynomially Searchable Exponential Neighbourhoods for Se-
quencing Problems in Combinatorial Optimization. PhD thesis, Southampton
University, Faculty of Mathematical Studies, Southampton, UK, 2000.

19. R. K. Congram, C. N. Potts, and S. van de Velde. An iterated dynasearch
algorithm for the single-machine total weighted tardiness scheduling problem.
INFORMS Journal on Computing, 14(1):52–67, 2002.

20. W. J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, New
York, NY, USA, third edition, 1999.

21. D. de Werra. An introduction to timetabling. European Journal of Operational
Research, 19(2):151–162, 1985.

22. R. Dorne and J. K. Hao. Tabu search for graph coloring, T-colorings and set
T-colorings. In S. Voß, S. Martello, I. H. Osman, and C. Roucairol, editors, Meta-
heuristics: Advances and Trends in Local Search Paradigms for Optimization,
pages 77–92. Kluwer Academic Publishers, Boston, MA, USA, 1999.

23. I. Dumitrescu. Constrained path and cycle problems. PhD thesis, The University
of Melbourne, Melbourne, Australia, 2002.

24. M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–
47, 2003.

25. C. Fleurent and J. Ferland. Genetic and hybrid algorithms for graph coloring.
Annals of Operations Research, 63:437–464, 1996.

26. P. Galinier and J. Hao. Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization, 3(4):379–397, 1999.

27. A. Gamst. Some lower bounds for a class of frequency assignment problems.
IEEE Transactions of Vehicular Technology, 35(1):8–14, 1986.

28. B. Gendron, A. Hertz, and P. St-Louis. On edge orienting methods for graph
coloring. Journal of Combinatorial Optimization, 13(2):163–178, 2007.

29. C. A. Glass and Adam Prügel-Bennett. A polynomially searchable exponential
neighbourhood for graph colouring. Journal of the Operational Research Society,
56(3):324–330, 2005.

Very Large-Scale Neighborhood Search 149

30. F. Glover. Ejection chains, reference structures and alternating path methods
for traveling salesman problems. Discrete Applied Mathematics, 65(1–3):223–
253, 1996.

31. F. Glover. Tabu search and adaptive memory programming – advances, appli-
cations and challenges. In R. S. Barr, R. V. Helgason, and J. L. Kennington,
editors, Interfaces in Computer Science and Operations Research: Advances in
Metaheuristics, Optimization, and Stochastic Modeling Technologies, pages 1–
75. Kluwer Academic Publishers, Boston, MA, USA, 1996.

32. J. L. González-Velarde and M. Laguna. Tabu search with simple ejection chains
for coloring graphs. Annals of Operations Research, 117(1-4):165–174, 2002.

33. A. Grosso, F. Della Croce, and R. Tadei. An enhanced dynasearch neighborhood
for the single-machine total weighted tardiness scheduling problem. Operations
Research Letters, 32(1):68–72, 2004.

34. G. Gutin and A. Yeo. Small diameter neighbourhood graphs for the traveling
salesman problem: at most four moves from tour to tour. Computers & OR,
26(4):321–327, 1999.

35. W. K. Hale. Frequency assignment: Theory and applications. Proceedings of
the IEEE, 68(12):1497–1514, 1980.

36. A. Hertz and D. de Werra. Using tabu search techniques for graph coloring.
Computing, 39(4):345–351, 1987.

37. H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applica-
tions. Morgan Kaufmann Publishers, San Francisco, CA, USA, 2004.

38. T. R. Jensen and B. Toft. Graph Coloring Problems. John Wiley & Sons, New
York, NY, USA, 1994.

39. D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A case
study in local optimization. In E. H. L. Aarts and J. K. Lenstra, editors, Lo-
cal Search in Combinatorial Optimization, pages 215–310. John Wiley & Sons,
Chichester, UK, 1997.

40. R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, New York, USA, 1972.

41. B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. Bell Systems Technology Journal, 49:213–219, 1970.

42. D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3 –
Generating All Combinations and Partitions. Addison Wesley, third edition,
2005.

43. F. T. Leighton. A graph coloring algorithm for large scheduling problems. Jour-
nal of Research of the National Bureau of Standards, 84(6):489–506, 1979.

44. A. Lim, Y. Zhu, Q. Lou, and B. Rodrigues. Heuristic methods for graph coloring
problems. In SAC’05: Proceedings of the 2005 ACM Symposium on Applied
Computing, pages 933–939, New York, NY, USA, 2005. ACM Press.

45. S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling
salesman problem. Operations Research, 21(2):498–516, 1973.

46. H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In F. Glover
and G. Kochenberger, editors, Handbook of Metaheuristics, pages 321–353.
Kluwer Academic Publishers, Norwell, MA, USA, 2002.

47. P. Merz and B. Freisleben. Greedy and local search heuristics for the un-
constrained binary quadratic programming problem. Journal of Heuristics,
8(2):197–213, 2002.

150 M. Chiarandini, I. Dumitrescu, T. Stützle

48. D. Neto. Efficient Cluster Compensation for Lin-Kernighan Heuristics. PhD
thesis, University of Toronto, Department of Computer Science, Toronto,
Canada, 1999.

49. C. N. Potts and S. van de Velde. Dynasearch: Iterative local improvement
by dynamic programming; part I, the traveling salesman problem. Technical
Report LPOM–9511, Faculty of Mechanical Engineering, University of Twente,
Enschede, The Netherlands, 1995.

50. F. S. Roberts. T-colorings of graphs: Recent results and open problems. Discrete
Mathematics, 93(2-3):229–245, 1991.

51. P. Shaw. Using constraint programming and local search methods to solve
vehicle routing problems. In M. J. Maher and J.-F. Puget, editors, Proceedings
of Principles and Practice of Constraint Programming, volume 1520 of Lecture
Notes in Computer Science, pages 417–431. Springer-Verlag, Berlin, Germany,
1998.

52. B. A. Tesman. Set T -colorings. Congressus Numerantium, 77:229–242, 1990.
53. P. M. Thompson and J. B. Orlin. The theory of cycle transfers. Working Paper

No. OR 200-89, 1989.
54. P. M. Thompson and H. N. Psaraftis. Cyclic transfer algorithm for multivehicle

routing and scheduling problems. Operations Research, 41:935–946, 1993.
55. M. A. Trick and H. Yildiz. A large neighborhood search heuristic for graph

coloring. In P. Van Hentenryck and L. Wolsey, editors, Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, volume 4510 of Lecture Notes in Computer Science, pages 346–360.
Springer-Verlag, Berlin, Germany, 2007.

56. G. J. Woeginger V. G. Deineko. A study of exponential neighborhoods for the
travelling salesman problem and for the quadratic assignment problem. Math-
ematical Programming, 87(3):519–542, 2000.

57. M. Yagiura and T. Ibaraki. Efficient 2 and 3-flip neighborhood search algorithms
for the MAX SAT: Experimental evaluation. Journal of Heuristics, 7(5):423–
442, 2001.

58. M. Yagiura, T. Ibaraki, and F. Glover. An ejection chain approach for the
generalized assignment problem. INFORMS Journal on Computing, 16(2):133–
151, 2004.

59. A. Zymolka, A. M. C. A. Koster, and R. Wessäly. Transparent optical network
design with sparse wavelength conversion. In Proceedings of the 7th IFIP Work-
ing Conference on Optical Network Design & Modelling, pages 61–80, Budapest,
Hungary, 2003.

Hybrids of Constructive Metaheuristics
and Constraint Programming:
A Case Study with ACO

Bernd Meyer

FIT Centre for Research in Intelligent Systems
Monash University, Clayton, Australia
bernd.meyer@acm.org

Summary. A long-standing problem in combinatorial optimization with meta-
heuristics has been how to handle hard constraints effectively. Integrating meta-
heuristic methods with Constraint Programming (CP), an exact technique for
solving hard constraints, promises a solution to this problem.

This chapter explores how such an integration can be achieved. We discuss pos-
sible types of couplings between the two algorithmic frameworks and define hybrid
algorithms for each type. The central distinction is between tight coupling in which
both components collaborate in an interleaved fashion and loose coupling where
both components run in parallel, exchanging only (partial) solutions and bounds.

1 Introduction

Evolutionary metaheuristics are widely used for combinatorial optimization
and achieve a competitive performance in many practically relevant appli-
cations. However, real-world problems are often subject to hard constraints
and handling these with evolutionary metaheuristics is generally not easy.
Constraint handling in evolutionary methods has thus been the subject of
extensive research.

In this chapter we will discuss a new approach to handling hard constraints
in metaheuristics by hybridizing these with Constraint Programming, an exact
technique for solving hard constraints.

From a conceptual perspective our hybridization is important for two rea-
sons: (1) It introduces declarative problem models into metaheuristics. This
opens a way to fine-tune the function of the metaheuristics for a new problem
domain in a systematic way. Such fine-tuning normally has to be performed
in an ad-hoc fashion by programming problem-specific repair methods, new
neighbourhood functions etc. The hybrid approach allows us to adapt some of
this functionality automatically and systematically by re-defining the declar-
ative problem model. (2) It introduces automatic learning of search strategies
B. Meyer: Hybrids of Constructive Metaheuristics and Constraint Programming: A Case Study

with ACO, Studies in Computational Intelligence (SCI) 114, 151–183 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

152 Bernd Meyer

into CP. To cope with very large feasible spaces, the CP method requires us to
design and implement problem-specific search strategies. In realistic cases, this
task represents a significant development effort and requires considerable CP
programming expertise. This has recently prompted leading CP researchers
to declare ease-of-use as the next big challenge for CP systems [47, 56]. A hy-
bridization of CP with metaheuristics is certainly not the “magic bullet” for
the ease-of-use problem, but it can help to automate the problem of finding
a search strategy to some degree.

1.1 Constraint Handling in Metaheuristics

Traditionally, three types of approaches have been used for constraint handling
in metaheuristics: penalty-based relaxation techniques, multi-phase methods,
and repair techniques [14]. Relaxation techniques allow the search to use in-
feasible solutions and simply modify the objective function by a penalty based
on the amount of constraint violation. Multi-phase methods attempt to split
the search into phases that try to find feasible subspaces and phases that try
to optimize feasible solutions (Section 3.4 will discuss this in more detail).
Repair techniques attempt to explicitly modify infeasible solutions to make
them feasible.

Arguably, penalty-based relaxation is the most widely used way to handle
constraints in Evolutionary Algorithms. For this the objective function f(x)
that is to be minimized is modified into a Lagrangian (an auxiliary objective
function) f̂(x) = f(x) + λ · g(x) where g(x) is a positive function measuring
the amount of constraint violation and the Lagrange multipliers λ are weights
for these violations. For example, in the simplest case of constraints hi(x) = 0
a natural choice for g(·) is g(x) =

∑
i | hi(x) |.

The problem now becomes how to set the multipliers λ so that the optimal
balance in the search between focusing on feasibility and emphasizing opti-
mality is achieved. Many different schemas for static, dynamic, and adaptive
penalties have been explored in the context of evolutionary computation [13],
but unsurprisingly no single technique stands out that is best independently
of the problem.

What makes matters more difficult is that any relaxation method can, in
principle, not guarantee that solutions are fully feasible (as opposed to having
only a minimal amount of constraint violation). Unfortunately, in practice,
constraints are often hard and must be satisfied exactly.

Repair methods and other feasibility-maintaining methods, such as de-
coder representations or specialized cross-over and mutation operators [37],
can be used to handle hard constraints.1 However, their central disadvantage

1 There are countless instances of repair method applications in the literature. As
we will base our case study on ACO, we suggest that the interested reader may
want to have a look at [52, 53] as an instructive example of ACO combined with
a local search repair method for handling hard constraints in timetabling.

Constructive Metaheuristics and CP 153

is that this requires the manual design of problem-specific algorithms for every
new application. Similar considerations apply to multi-phase approaches.

An alternative to these approaches is to hybridize the stochastic meta-
heuristic with a method specialized for solving hard constraints, such as con-
straint propagation [17] or integer programming [41]. Such exact methods have
complementary strengths to stochastic metaheuristic, and recent surveys have
emphasized the importance of research into such hybridizations [7, 6, 26, 46].
The majority of work in this area, however, has focused on integer program-
ming. In this chapter we focus on constraint programming (CP [33]) instead.

The advantage of a stochastic metaheuristic is its capability to automat-
ically learn a promising search strategy for a large solution space. It is thus
aimed at finding high quality solutions among an overwhelming number of
feasible solutions. CP, on the other hand, is aimed at effectively reducing the
search space by eliminating infeasible regions. It is thus at an advantage when
finding any feasible solution is hard. In its generic form, the CP approach is
at a disadvantage if the feasible space is very large. A hybrid approach holds
the hope to combine these complementary advantages.

In this chapter we explore two different types of hybridization of a meta-
heuristic with constraint programming. We use Ant Colony Optimization
(ACO [22]), a particular constructive model-based metaheuristic [7, 58], as
the vehicle for this exploration. We discuss a loose coupling, in which both
methods are used in parallel, and a tight coupling, where constraint propaga-
tion is interleaved with the solution construction phase of the metaheuristic.

We perform experimental evaluations of the two hybrid algorithms. Our
example domain is machine scheduling with sequence-dependent setup times,
a problem that in our experience is difficult to solve with penalty-based and
multi-phase ACO techniques. The experiments show that the hybrid approach
yields an improved performance for some problem types.

In Section 6 we summarize the general ideas of our framework and discuss
some pertinent issues for the generalization of our approach to Estimation of
Distribution Algorithms [39, 30, 32].

1.2 Basic Coupling of ACO and CP

Ant Colony Optimization [22] is a good candidate for our integration, because
it is a constructive metaheuristics [7], i.e. a method that incrementally con-
structs solutions by iteratively adding new components to a partial solution.
As we will see below, this incremental way of constructing solutions naturally
corresponds to the CP approach and provides us with an immediate hook for
an integration.

Ant Colony Optimization

Let us give a quick review of the ACO approach. In ACO a number of agents
(“ants”) independently construct solutions in parallel by iteratively augment-
ing partial solutions.

154 Bernd Meyer

(1) ∀i, j : τi,j = τ0 /* initialize pheromone matrix

(2) ∀i, j : ηi,j = d−1
i,j /* heuristic η=inverse distance

(3) lgb := +∞; T gb := nil /* initialize global best
(4) for t := 1 to max iterations do
(5) for k := 1 to number of ants do

(6) T k:=nil /* intialize tour of ant k as empty
(7) mark all cities as unvisited by ant k
(8) i := random city not yet visited by ant k
(9) for n := 2 to number of cities do
(10) mark city i as visited by ant k
(11) C := set of cities not yet visited by ant k
(12) choose next city j to be visited by ant k with probability

pj :=
τα

i,j ·ηβ
i,j

∑
j∈C τα

i,j ·ηβ
i,j

(13) T k := append(T k, (i, j))
(14) i := j
(15) od

(16) lk := length(T k)
(17) od
(18) ib := argmink(lk) /* best tour index

(19) if lib < lgb then begin T gb := T ib; lgb := lib end
(20) ∀i, j : τi,j := (1 − ρ)τi,j + ∆τi,j /* evaporate and reinforce

where ∆τi,j =
∑number of ants

k=1 ∆τk
i,j and

∆τk
i,j =

{
Q · l−1

k if (i, j) ∈ T k

0 otherwise
(21) od.

Fig. 1. The Original Ant System Algorithm for TSP

Consider a TSP, where a partial solution corresponds to a partial path.
Every construction step extends a partial path to a new city. In ACO the ants
make the choice of the next city to be visited based on a so-called “pheromone
value”, which models the preference for a particular choice and is coopera-
tively learned by the ants during the search. In a TSP the pheromone value
is commonly attached to a pair of cities ci, cj and models the preference to
go from city ci to cj . The pheromone values are learned through a reinforce-
ment strategy in which each agent, after the complete solutions have been
constructed, reinforces the choices it has made during the solution construc-
tion with an amount of reinforcement that depends on the solution quality
obtained. The original and most basic form of ACO is the Ant System (AS)
algorithm. We present the AS algorithm in its common form for the TSP in
Figure 1 before modifying it for machine scheduling in Section 3.2.

Constraint Programming

A very brief introduction to CP may be in place. For a comprehensive intro-
duction the interested reader is referred to [33]. The core idea of CP is to give
a programmer support for maintaining and handling relations (constraints)
between variables. To this end, CP introduces a new kind of variable, called
constraint variable, into the programming model. A constraint solver allows

Constructive Metaheuristics and CP 155

Algorithm CP-basic
setup domains for x1, . . . , xn

post initial constraints
label([x1, . . . , xn])

end.

procedure label(list xs)
if xs=nil then return true
else let x = first(xs) in

if not bind(x) then return false
else begin

if label(rest(xs)) return true
else begin

unbind(x)
return label(xs)

end
end

end
end.

procedure bind(varname x)
let d = domain(x) in

if empty(d) then return false
else begin

v := first(d)
success := post(x = v)
if success return true
else begin

post(x 	= v)
return bind(x)

end
end

end.

procedure unbind(varname x)
let v = current value(x) in

remove (x = v) from
constraint store

post(x 	= v)
end

end.

Fig. 2. Basic CP Search Algorithm

variable values to be assigned or further constraints to be added (“posted”).
There are many different forms of CP and the particular form that we use
here is finite domain constraint programming. This name refers to the fact
that the variable domains (i.e. the set of possible values that the variable can
take) have to be finite. More specifically, we will only use integer variables.

The constraint solver analyses the restrictions on variables automatically
“behind the scenes” and provides at least two services to the program: (1)
It analyses whether a new constraint is compatible with the already existing
ones and signals this as success or failure when it is posted. (2) It automati-
cally reduces the domains of constraint variables according to the explicit and
implicit restrictions. The program can query the solver for the domain of a
variable and obtain the set of values that have not been ruled out for this
variable.

An example will clarify this: Assume that X is an integer variable and that
the constraint 0 ≤ X < 3 has been posted. We have domain(X) = {0, 1, 2}.
Later we post X < Y and Y ≤ 2, which results in domain(X) = {0, 1}. If we
now post the constraint Y = 0, the solver will signal that it is not consistent
with the previous ones as it does not leave any possible value for X. If, instead,
we post Y = 1, the solver will automatically infer that the only remaining
possible value for X is 0 and bind it to this value. It is important to note that
v ∈ domain(X) does not guarantee that there is a value assignment for all
the remaining constraint variables that satisfies all the problem constraints if
X = v. This is because constraint solvers necessarily have to be incomplete
as they are trying to solve NP-hard problems.

To solve a problem with finite domain CP we have to define a mathe-
matical model of the problem that captures its structure using finite domain

156 Bernd Meyer

variables. After setting up the decision variables and their domains and post-
ing any further problem constraints the solver will reduce the domains of all
decision variables as much as possible. The second phase of a constraint pro-
gram is the so-called labelling phase, which is essentially a search through the
remaining space of domain values. In its simplest form, this search proceeds in
individual labelling steps, each of which attempts to assign a particular deci-
sion variable a concrete value from its domain. A crucial question is, of course,
in which order the variables are bound (the variable ordering) and in which
order the corresponding domain values are tried (the value ordering). These
two orderings significantly influence the efficiency of the search, and usually
a substantial proportion of the programming effort has to be invested into
finding more elaborate labelling strategies and into optimizing these. A high-
level description of basic CP with a (trivial) lexicographical variable ordering
is given in Figure 2.

Integrating CP and ACO

We can now analyse how ACO can be integrated with a constraint program-
ming approach. Consider the basic generic constraint programming approach
(Figure 2). In the context of this chapter, we consider the propagation method
as fixed. The motivation for this is that in many constraint languages prop-
agation solvers are treated as black boxes, so that the propagation cannot
easily be manipulated. If we assume the propagation method to be fixed, the
best way to couple the two methods is via the labelling procedure.

One way to tightly integrate ACO into CP is to use ACO as a mechanism
to automatically learn an effective labelling strategy. Assuming as a simpli-
fication that the variable ordering is fixed, we can use ACO to learn a value
ordering that is more likely to produce good solutions. As in the basic AS
algorithm, the pheromone values τi,j can be used to learn the desired prob-
abilities of selecting a given domain value for each decision variable. Instead
of using a fixed value ordering, we make a probabilistic decision based on τi,j

using the same probabilistic choice function as in the AS algorithm. Each ant
independently attempts to construct a complete feasible solution. After all
ants have completed their tours, the pheromone values are modified using the
same evaporation and reinforcement used in ACO. The pseudo-code for the
parts of the algorithm that differ from Figure 2 is given in Figure 3. Obviously,
the same technique could be used to learn a variable ordering.

What we have described could be viewed as a “CP perspective” of the inte-
gration. As an alternative to this CP-centric perspective, we will in Section 4.3
take a “metaheuristic perspective” and consider ACO as the main component
which we extend with constraint propagation. Essentially, we will use con-
straint propagation as a way of strengthening the construction phase of the
metaheuristic with a powerful lookahead mechanism that utilizes a declara-
tive problem model to avoid the construction of infeasible solutions. It will

Constructive Metaheuristics and CP 157

Algorithm CP-with-ACO
for each ant begin

setup domains for x1, . . . , xn

post initial constraints
if label([x1, . . . , xn])
then update global best solution

end
evaporate and reward solutions

end.

procedure bind(varname x)
let d = fd domain list(x) in
if empty(d) then return false
else begin

choose v ∈ d probabilistically
success := post(x = v)
if success return true
else begin

post(x 	= v)
return bind(x)

end
end

end.

Fig. 3. CP Search with ACO labelling

become clear that these two ways of interpreting the coupling problem, while
conceptually different, lead to virtually identical hybrid algorithms.

In the following we will fully define and analyse two types of coupling.
Firstly, we will study an instance of a loose coupling, in which CP and ACO
run in parallel, exchanging only information on bounds and candidate solu-
tions. The second method is a tight coupling of the two approaches, in which
the constraint propagation is integrated into the solution construction of ACO
and guides which solution components are selected in each step. We will es-
tablish a baseline for comparison by testing basic ACO and basic constraint
programming on our example problems (propagation plus backtracking as in
Figure 2) using the model detailed in Section 4.1.

2 Problem Domain: Machine Scheduling
with Sequence-dependent Setup Times

Our test domain is machine scheduling with sequence-dependent setup times.
Machine scheduling is an important application area that arises in a vari-
ety of contexts [31, 1] and has been the subject of a significant amount of
research by both the Operations Research and Artificial Intelligence commu-
nities. However, the results of this research have not always been useful in
practice for a variety of reasons among them the over-simplification of the
scheduling problems to make them tractable by the techniques applied [57].

Formally this problem can be defined as follows. Let J be a set of n jobs
to be scheduled on a single machine. Each job has a job identification i ∈
{1, . . . , n}, a processing time durationi, a release time releasei and a due date
duei. In addition between any pair of jobs i, j ∈ J there is a changeover time
setupi,j . A feasible schedule assigns each job j a start time startj and finish
time endj such that startj ≥ releasej , endj = startj +durationj ≤ duej and
for any pair of jobs (i, j) where j succeeds i in the schedule endi + setupi,j ≤
startj . The objective is to minimize the makespan Cmax = maxj∈J endj .

158 Bernd Meyer

A number of related problems have been discussed in the literature. If
∀ j ∈ J : duej = ∞ ∧ releasej = 0 then the minimum of the makespan is
determined by minimizing the changeover times and hence this case is just
the asymmetric travelling salesman problem (ATSP); see [21, 54] for the ap-
plication of ACO to the ATSP. With release and due dates this problem is
similar to the ATSP with time windows except that the latter only minimizes
the duration of changeovers while the makespan also penalizes idle time that
may need to be inserted in order to satisfy the release times.

Previous work on job scheduling includes pure CP approaches [45] and an
attempt by the same authors to include CP in a tabu-search approach [44].
Improvements of constraint programming approaches have been discussed
in [11, 40], and hybrids of two exact methods, CP and Integer Programming,
in [27]. Alternatively Shin et al [51] consider this problem with relaxed due
date constraints and the objective of minimizing the maximum lateness. Us-
ing the relaxed version of the problem makes it easy for Shin et al to apply
a meta heuristic (in this case tabu search). ACO has been used before for
job-scheduling with sequence-dependent setup times, but to the best of our
knowledge only without hard constraints [18, 4]. A case study illustrating the
practical importance of constraints for this problem is given in [28] where
an ACO approach solves a single machine scheduling problem with sequence-
dependent setup times in an aluminium casting centre. Constraints are han-
dled via relaxation with penalties for violations of due dates and incomplete
draining of the furnaces.

3 Constraint Handling in ACO

Our first goal is to test a loose coupling of CP and ACO. By “loose” we
mean that both algorithms run in parallel and exchange only information
on candidate solutions and bounds. In such a setting both components must
produce feasible solutions, so it is imperative that the ACO component itself
can handle constraints as effectively as possible on its own.

Unfortunately, handling hard constraints in ACO is far from trivial. This is,
after all, one of the drivers for the research on hybrid algorithms. Essentially,
the same basic methods that are used for other Evolutionary Algorithms are
also used to accommodate hard constraints in ACO: penalty techniques, multi-
phase methods, and repair techniques. As an alternative to penalty-based
ACO-methods we have earlier proposed to use stochastic ranking (SR [49])
in combination with ACO [35]. Stochastic Ranking appears to perform highly
competitively [25] in the context of Evolution Strategies [50], and it lends
itself to an integration into ACO. We adopt this method to obtain a suitable
ACO base version for the loose coupling.2

2 Some authors would consider this in itself already as a hybrid metaheuristic.

Constructive Metaheuristics and CP 159

(1) ∀j ∈ {1, . . . , n} : sj := j;
(2) for i :=1 to N do
(3) for j := 1 to N do
(4) u := random();
(5) if (g(xsj

) = g(xsj+1) = 0 or u < pf) then

(6) begin
(7) if (f(xsj

) > f(xsj+1)) then swap(sj , sj+1);

(8) end
(9) else
(10) if (g(xsj

) > g(xsj+1)) then swap(sj , sj+1);

(11) od
(12) od.

Fig. 4. Stochastic Ranking Bubble Sort

3.1 Stochastic Ranking

SR replaces the Lagrangian objective measure f̂(x) = f(x) + λ · g(x) with a
ranking. The position in the ranking is taken as a surrogate solution quality
and serves as a proxy for f̂(x). Switching to a ranking system allows SR to
take into account the objective value f(x) as well as the amount of constraint
violation g(x) without having to explicitly quantify penalty factors λ.

This is best understood based on the concepts of over-penalization and
under-penalization. Consider a ranking based on f̂(x) using an explicit penalty
formulation. If λ is very large, in particular

λ ·minx g(x) > maxx f(x)−minx f(x)

we have an over-penalization. The consequence is that every infeasible solution
(no matter how good its objective value) will always rank lower than any
feasible solution (no matter how bad its objective value). In short, the ranking
is dominated by the feasibility. In the extreme case this can amount to a death
penalty. On the other hand, we have an under-penalization if

λ ·maxx g(x) � maxx f(x)−minx f(x)

In this case, the ranking is clearly dominated by the objective function and
in the extreme case λ ·maxx g(x) < minx,y (f(x) − f(y)) we are ignoring
feasibility.

Penalty adjustment is intended to balance this situation. SR dispenses
with the penalty factors and instead explicitly adjusts the probability of an
infeasible solution to be ranked more highly.

To compute such a ranking SR uses a stochastic bubble-sort procedure
(Figure 4).3 For every pairwise comparison of solutions a probabilistic decision
3 Note that the stochastic ranking procedure given here is slightly modified from the

original version in [49] which stops after the first sweep in which no swap occurred.
This modification does not appear to influence the performance significantly and
is made to simplify the analysis.

160 Bernd Meyer

is made whether to use an over-penalization or an under-penalization. Clearly,
two feasible solutions will always be compared according to objective value.

If pf = 0, a comparison between between a feasible and an infeasible so-
lution will always be won by the feasible solution as this has g(x) = 0. Two
infeasible solutions will always be compared based on their amount of con-
straint violation. This is clearly an over-penalization scenario. On the other
hand, if pf=1, we have under-penalization: All solutions will always be com-
pared based on the objective value only, ignoring any constraint violation.

Setting pf to intermediate values allows us to balance these two scenarios
explicitly. When used in Evolution Strategies, SR thus gives us an explicit
way to adjust the survival probability of infeasible solutions without having
to have any a priori knowledge about the numerical range of objective and
constraint violations.

Similarly, we can use SR in ACO to determine the amount of reward given
to a solution. Let us look at the fundamental conceptual similarities between
Evolution Strategies and ACO. In an Evolution Strategy the (potentially pe-
nalized) objective value of a solution determines its probability of survival
into the next generation. Thus the ratio of fitness of two solutions implic-
itly determines their ratio in the next generation’s population. Similarly, in
ACO the quality of a solution determines the reward it receives. In the next
iteration new solutions are generated by sampling the (implicit) probability
distribution given by the pheromone values [τi,j]. Thus, components of better
solutions are more likely to re-appear in later samples, and the set of solutions
generated in a later iteration (the equivalent of a later generation) will contain
a higher proportion of fitter solutions. Both algorithm frameworks are on a
fundamental level based on the idea of importance sampling. In fact, in [23]
it was shown that a particular form of ACO is equivalent to an importance
sampling-based optimization method (cross-entropy [48, 16]).

With this in mind, we transfer the idea of SR into ACO. As the base
algorithm for integrating SR, we use Ant Colony System (ACS [19, 20, 21]),
one of most successful and most commonly used refinements of the simple AS
schema given in the introduction.

3.2 ACS

ACS introduces three modifications to the basic AS idea: (1) The selection of
the next solution component is semi-greedy. With probability p the so-called
pseudo-random-proportional selection in ACS chooses the next component
exactly as in AS. However, with probability (1 − p) the next component is
chosen greedily as the one with the highest pheromone value. (2) ACS intro-
duces an elitist concept: In each iteration only a single solution is considered
for reinforcement. This is the globally best path found so far. (3) The normal
global evaporation ∀i, j : τi,j := (1 − ρ)τi,j , which takes place after all ants
have completed a tour construction, is complemented by local evaporation:

Constructive Metaheuristics and CP 161

(1) ∀i, j : τi,j := τ0 /* initialize pheromone matrix
(2) ∀i, j : ηi,j := setup time(i, j)−1 /* initialize heuristic function
(3) job0 := 0
(4) ∀j : τ0,j := τ0 ∧ η0,j := 1 /* virtual start job 0

(5) lgb := +∞; T gb := nil /* initialize global best
(6) for t := 1 to max iterations do
(7) for k := 1 to number of ants do

(8) T k:=nil /* intialize tour of ant k as empty
(9) mark all jobs as unscheduled by ant k
(10) for n := 1 to number of jobs do
(11) C := set of jobs not yet scheduled by ant k
(12) i := jobn−1
(13) if random() ≤ p then choose next job j ∈ C to be scheduled

by ant k with probability pj :=
τα

i,j ·ηβ
i,j

∑
j∈C τα

i,j ·ηβ
i,j

(14) else choose j = argmaxj∈C(τα
i,j · ηβ

i,j)

(15) T k := append(T k, (i, j))
(16) τi,j := (1 − ρ) · τi,j + ρ · τ0 /* local evaporation
(17) mark job j as scheduled by ant k
(18) jobn = j
(19) startj := max(releasej , endi + setup time(i, j))
(20) od

(21) if feasible(T k) then lk := makespan(T k)

(22) else begin lk := ∞; T k := nil end
(23) od
(24) ib := argmink(lk) /* best tour index

(25) if lib < lgb then begin T gb := T ib; lgb := lib end
(26) /* evaporate and reward

(27) ∀(i, j) ∈ T gb : τi,j := (1 − ρ)τi,j + Q · l−1
gb

(28) od.

Fig. 5. Basic Ant Colony System (ACS) for Machine Scheduling

Each ant slightly reduces the amount of pheromone associated with each de-
cision as soon as it makes this decision. In consequence the same decision
is less likely to be repeated by subsequent ants and thus solution diversity
is increased. Local evaporation is restricted to an interpolation between the
current pheromone value and an initialization value τ0, so that each choice
always has a non-negligible probability of being selected:

τi,j := (1− ρ) · τi,j + ρ · t0

A detailed description of ACS adapted to machine scheduling is given in
Figure 5.

3.3 ACSsr – ACS with Stochastic Ranking

ACS, as an elitist method, can be interpreted as applying a ranking based on
the objective value and rewarding only the first ranked solution. We can easily
modify the algorithm to reinforce the first solution in the ranking generated
by SR instead of using an objective-based ranking. We will call this algorithm
ACSsr.

162 Bernd Meyer

(1) ∀i, j : τi,j := τ0 /* initialize pheromone matrix
(2) ∀i, j : ηi,j := setup time(i, j)−1 /* initialize heuristic function
(3) job0 := 0
(4) ∀j : τ0,j := τ0 ∧ η0,j := 1 /* virtual start job 0

(5) T fb := nil; T ifb := nil /* init feasible, infeasible best
(6) for t := 1 to max iterations do
(7) for k := 1 to number of ants do

(8) T k:=nil /* intialize tour of ant k as empty
(9) mark all jobs as unscheduled by ant k
(10) for n := 1 to number of jobs do
(11) C := set of jobs not yet scheduled by ant k
(12) i := jobn−1
(13) if random() > p then choose next job j ∈ C to be scheduled

by ant k with probability pj :=
τα

i,j ·ηβ
i,j

∑
j∈C τα

i,j ·ηβ
i,j

(14) else choose j = argmaxj∈C(τα
i,j · ηβ

i,j)

(15) T k := append(T k, (i, j))
(16) τi,j := (1 − ρ) · τi,j + ρ · τ0 /* local evaporation
(17) mark job j as scheduled by ant k
(18) jobn = j
(19) startj := max(releasej , endi + setup time(i, j))
(20) od

(21) if feasible(T k) then begin

(22) if makespan(T k) < makespan(T fb) then T fb := T k

(23) end else

(24) if random() < pf and makespan(T k) < makespan(T ifb)

or tardiness(T k) < tardiness(T ifb) then

(25) T ifb := T k

(26) od

(27) if T fb 	= nil then begin x1 := T fb; x2 := T ifb; i = 2 end

(28) else begin x1 := T ifb; i = 1 end

(29) ∀j ∈ {1, . . . , number of ants} : xi+j := T j

(30) sr-rank(); /* using f(·) = makespan(·) and g(·) = tardiness(·)
(31) T sgb := xs1 /* stochastically best ranked tour
(32) /* evaporate and reward

(33) ∀(i, j) ∈ T sgb : τi,j := (1 − ρ)τi,j + Q · makespan(T sgb)−1

(34) od.

Fig. 6. ACSsr – Stochastic Ranking in ACO

More precisely, ACSsr keeps a memory of the best feasible solution as well
as the best infeasible solution found so-far throughout the search. In each iter-
ation the solutions found by all ants in this iteration are ranked together with
the so-far best feasible and the so-far best infeasible according to the stochas-
tic ranking algorithm. Only the highest ranking solution is rewarded. This
integration, which emerged as promising from pilot studies, is fundamentally
based on the same ideas that underpin stochastic ranking. The full algorithm
for ACSsr is given in Figure 6.

As ACSsr only rewards the best solution, the full ranking is not required.
Instead we only need to find the top ranking solution. This could be done
more simply using a probabilistic comparison of each infeasible solution to the
best feasible solution according to makespan. Let pb(k, s) be the probability
of an infeasible solution with the best makespan “bubbling” in s sweeps to

Constructive Metaheuristics and CP 163

the top of the ranking through k solutions that are better according to the
over-penalized ranking:

pb(k, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if k > s = 0
1 if k = s = 0
p
(k+1)
f · pb(0, s− 1)+
∑k+1

i=1

(
pk+1−i

f · (1− pf) · pb(i, s− 1)
)

otherwise

To bubble up k positions the solution needs to “survive” (k + 1) comparisons
(one “from below” to stay in place and a further k to climb). Note that the
otherwise case accounts for all possibilities including the case where an element
looses the first comparison, sinks down one position, and subsequently has to
climb k + 1 positions.

We could obtain an approximation of the original SR behavior by compar-
ing each infeasible solution with probability

∑n+m
i=1 pb(i

n+m

(
n + m

2 �
)
, s)

n + m

to the feasible solution with the best makespan, where n is the number of
feasible solutions and m the number of infeasible solutions in the pool.

Pilot studies [29] have shown, however, that such an approximation truly
differs form the original SR schema and does not achieve the same performance
when used in ACSsr. While the behaviour of SR is not yet fully understood,
it appears that this difference is mainly due to situations where all solutions
generated are infeasible.

3.4 ACSsr Benchmarking

We perform benchmarks of ACSsr for various problem sizes and within those
groups for problems of varying tightness (Table 1). The test data sets were
drawn from two different sources.4 In all cases the initial letters indicate the
problem type. This is followed by the number of jobs and further letters or
numbers identifying the particular data set. The first source of data sets is
based on an application in wine bottling in the Australian wine industry. Setup
times are taken from actual change-over times at a bottling plant. There are
no release times as the wine is always available in the tanks. Due dates are
selected randomly from one of seven possible spreads over the planning period
(representing, for example, the end of each day over a week). Processing times
are generated in a slightly more complicated manner to create problems with
various degrees of tightness. Let µ be the average processing time available per
job (calculated by removing n times the average setup time from the last due
date). The duration for each job is chosen randomly in the interval [1

2β µ, 3
2β µ]

4 All test data are available from the author by request.

164 Bernd Meyer

Table 1. Constraint ACS Benchmarks

Problem ACSsr, pf =0.7 Multiphase ACS
Best Avg StdDev Failed p Best Avg StdDev Failed

W8.1 8321 8321 0 0 % n/a 8321 8321 0 0 %
W8.2 5818 5818 0 0 % n/a 5818 5818 0 0 %
W8.3 4245 4245 0 0 % n/a 4245 4245 0 0 %
W20.1 8504 8526 23.23 0 % 7.8e-4 8564 8611 55.74 0 %
W20.2 5062 5110 26.16 0 % 0.017 5102 5136 18.92 0 %
W20.3 4332 4369 24.39 0 % 0.001 4372 4408 22.95 0 %
W30.1 8067 8536 418.77 0 % n/a 8232 8310 54.85 60 %
W30.2 4612 4703 83.36 0 % 1.3e-4 4787 4865 60.15 0 %
W30.3 4148 4304 86.37 0 % 0.289 4283 4341 60.42 0 %
RBG10.a 3840 3840 0 0 % n/a 3840 3840 0 10 %
RBG16.a 2596 2596 0 0 % n/a 2596 2596 0 40 %
RBG16.b 2094 2094 0 0 % 0.107 2094 2115 28.76 30 %
RBG21.9 4522 4550 19.00 0 % 0.110 4546 4565 21.84 0 %
RBG27.a.3 1725 1738 9.48 0 % 0.302 1715 1733 11.48 0 %
RBG27.a.15 1479 1495 12.15 0 % n/a 1507 n/a n/a 90 %
RBG27.a.27 n/a n/a n/a 100 % n/a n/a n/a n/a 100 %
BR17.a.3 1525 1553 23.99 0 % 0.709 1527 1549 23.25 0 %
BR17.a.10 1383 1420 20.75 0 % 0.237 1400 1431 16.33 30 %
BR17.a.17 1057 1057 0 0 % n/a 1057 1057 0 70 %

for β = 1.2, 2 or 3 for problem class 1, 2 or 3. Hence problem W8.1 is the
tightest problem involving eight jobs, while W8.3 is the loosest problem.

The remaining data sets are taken from the ATSP-TW literature [2] based
on an application involving scheduling a stacker crane in a warehouse. In these
data sets only some of the jobs have time window constraints (both release
and due dates). The number of jobs with non-trivial time windows is indicated
by the last set of digits in the problem name. Thus in RBG27.a.27 each of the
27 jobs has a time window, while RBG27.a.3 is identical except that the time
window constraints for all but three of the jobs have been removed.

Our comparator is a multi-phase ACS that emerged as the best basic ACS
from pilot experiments and outperformed all static penalty versions tried [36].
Basic penalty ACS failed to find feasible solutions for most of the medium to
highly constrained problems for sizes n ≥ 16 when reinforcement was purely
based on the objective measure (makespan) and shortest setup time (SST)
was used to define the heuristics ηi,j . SST is effective for minimizing the
makespan, but is not a good guide for finding feasible solutions. Here, earliest
due date (EDD) is much more effective. Therefore, the ACS version used here
works in two phases. EDD (ηi,j = due−1

j) is used and in the first phase the
reward is inverse proportional to the degree of constraint violation (tardiness:
Σimax(0, endi− duei)). This forces the search to first construct feasible solu-
tions regardless of their quality. Once feasible solutions are found, we switch
to the second phase which only reinforces feasible solutions with an amount
of reinforcement proportional to the inverse of the makespan.

Table 1 shows averages and best over 10 runs, (ACS/ACSsr with 10 ants,
5000 iterations, Q,α, β = 1, ρ = 0.05, p = 0.5, τ0 = Q/(20 ·N ·ρ · l̂), where N is
the number of jobs and l̂ is an estimate on the average makespan, i.e. the sum

Constructive Metaheuristics and CP 165

Table 2. Bootstrap Test (100 runs, 95 % Confidence Intervals)

Problem ACSsr ACS
Avg Failed Avg Failed p

W20.1 [8524, 8527] 0 % [8611, 8617] 0 % [7e-4, 1e-3]
W20.2 [5108, 5111] 0 % [5136, 5138] 0 % [0.02, 0.05]
W20.3 [4367, 4369] 0 % [4405, 4408] 0 % [0.005-0.02]
W30.1 [8497, 8550] 0 % [8309, 8318] 60 % n/a
W30.2 [4699, 4709] 0 % [4861, 4868] 0 % [2e-4, 1e-3]
RBG10.a [3840, 3840] 0 % [3840, 3840] 10 % n/a
RBG16.a [2596, 2596] 0 % [2596, 2596] 40 % n/a
RBG16.b [2094, 2094] 0 % [2113, 2117] 30 % n/a
RBG27.a.15 [1494, 1495] 0 % [1507, 1507] 90 % n/a
BR17.a.10 [1418, 1421] 0 % [1430, 1432] 30 % n/a
BR17.a.17 [1057, 1057] 0 % [1057, 1057] 70 % n/a

of processing times plus (N − 1) times the average setup time). A parametric
search for optimal values of ρ, p, τ0 shows that the algorithm is robust against
parameter changes within reasonable limits, so that these standard values
from the literature can be used for comparison. “Failed” gives the percentage
of runs for ACS and ACSsr that did not produce any feasible solutions. We
also give the p-values of a two-sided t-test (unequal variance) for the null-
hypothesis that the ACSsr results and the ACS results have the same mean,
i.e. our confidence that the results for ACSsr and ACS are truly different with
statistical significance. p-values are not given where the ACS failure rate is
too high for them to be meaningful.

We can ask whether the number of runs used in these experiments is
sufficient to firmly establish significance. Simply increasing the number of runs
would, of course, still leave us in the dark about the reliability of our tests. To
obtain an answer to this question, we selectively perform a 100 run bootstrap
test for each case in which Table 1 indicates a significant difference. The
nonparametric bootstrap allows us to establish confidence intervals for our test
statistics without making any assumption about the underlying distribution
of the data [24]. The results are summarized in Table 2. They reconfirm the
observations made in Table 1.

Best results are marked in bold face in Table 1 and in Table 2. Three
different groups of problems emerge from the test data sets. The first group
consists of small problems (W8.1-W8.3), which both algorithms easily solve
to optimality. The second group consists of larger problems (W20.1-W30.2).
In these cases ACSsr exhibits a substantially improved performance, generally
finding better solutions than ACS. Arguably the most interesting class is made
up of the more highly constrained real world problems (RBG10.a–BR17.a.17).
In most of these cases the multiphase ACS is not able to reliably generate
solutions, exhibiting failure rates of up to 90 %. ACSsr significantly improves
on this performance, reducing the failure rates to 0% in all cases with the
exception of the most highly constrained problem, which is also of significant
size (RBG27.a.27). This clearly demonstrates the superior constraint solving

166 Bernd Meyer

ability of ACSsr over ACS. We will thus only use ACSsr for further comparison
and for integration with CP in the loose coupling.

The performance of ACSsr is weakly sensitive to the setting of pf . This
is not surprising and has also been observed in studies of the original SR
approach [25]. In ACSsr the sensitivity is limited and ACSsr generally out-
performs the two-phase ACS for all pf > 0.5. The optimum setting for pf
was found by conducting all experiments for pf values from 0 to 1 in steps
of 0.1 and from 0.65 to 0.75 in steps of 0.01. As expected the performance
for pf = 0 is the same as for the basic ACS. The best overall performance
(measured as the greatest average performance gain across all test problems)
was found at pf = 0.7. These are the results reported above. The optimal pf
value found deserves a second look. At a first glance pf = 0.7 appears very
high, particularly considering that in the original SR technique very low pf
values are used. The reason why ACSsr requires higher pf values is that we
use an elitist reward: Unless a solution “bubbles” to the top of the ranking,
the stochastic change in the ranking will not effect any difference. Thus, for a
solution to be rewarded it needs to win a larger number of comparisons than
in the original SR approach. In fact, values of 0.7 ≤ pf ≤ 0.90 perform almost
on par for most test problems.

Finally, we note that both ACO versions might perform better with other
pheromone models [8]. We would, however, expect their relative performance
to remain approximately stable as such a change should impact on both al-
gorithms in similar ways.

4 Loose Coupling Versus Tight Coupling

To compare the ACSsr results obtained in the previous section with the basic
CP solution, it remains to fully define the constraint model.

4.1 Constraint Model

Our problem specification contains the following data: n tasks, labelled 1 . . . n
have to be sequenced in n sequence positions. Each task is identified by a task
number i ∈ {1 . . . n}, has a release time releasei and a due time duei as well
as a fixed duration durationi. We also have sequence-dependent setup times
setupi,j specified for all pairs of tasks.

The most direct way to build a constraint model for a scheduling problem
is to exploit the high-level scheduling constraints that modern constraint pro-
gramming languages provide. This gives access to efficient global propagation
methods specialized for scheduling. We use Sicstus Prolog CLP(FD) [10] for
our reference implementation, which like most other CP languages provides
a global constraint serialized which implements scheduling directly. It models
the problem via decision variables for start time and end time of each task and
is initialized with a complete problem specification containing release dates,

Constructive Metaheuristics and CP 167

due dates, durations and setup times. We use s̃tarti and ẽndi to represent the
start and end times of the task with id i. From our perspective, the global
constraint serialized has to be treated as a black-box with s̃tarti and ẽndi as
its interface.

While this provides a very basic functioning CP model, it is clearly unsuit-
able for an ACO-like approach, which must construct candidate solutions by
sequentially extending partial solutions. As our primary goal is to integrate
the CP solution with the ACO approach, we must define a model that is also
suitable for ACO. The basic choice is whether to assign jobs to sequence posi-
tions (in sequential order) or whether to assign sequence positions to jobs (in
some order of jobs). This corresponds to either associating decision variables
with sequence positions (such that the i-th variable indicates the task num-
ber to be executed in the i-th sequence position), or to associating decision
variables with task numbers (such that the i-th variable indicates the position
of task i in the sequence). The alternative of using successor variables is not
explored here but used in e.g. [45].

In-line with the pure ACO method introduced above we use the first ap-
proach. This is a sensible choice because we are essentially optimizing for
sequence-dependent set-up times. We use variables jobn where jobn = i if the
task with id number i is executed as the n-th job in sequence. We constrain:

∀i : jobi ∈ {1, . . . , n} and all different(jobi)

Three further constraint variables per task model the temporal aspects: startn
is the scheduled start time, endn the end time, and setupn the setup time for
the n-th task in the sequence.

We now have introduced two different complementary models, which ob-
viously introduces redundancy and increases the problem size. However, it is
necessary to do so to make the model suitable for an ACO-like approach and
to use the global propagation mechanism accessible through the serialized
constraint at the same time. The gain in propagation effectiveness through
the global constraint makes up for increased model size. Of course, the two
models have to be coupled for cross-propagation:

∀n, j : jobn = j ⇒ startn = s̃tartj ∧ endn = ẽndj

∀n, j : s̃tartj < startn ∨ s̃tartj > startn ⇒ jobn �= j

For technical reasons we also use a set of auxiliary variables: durationn,
releasen, duen, setupn to capture the respective times for the n-th task in
the sequence (Note that this is different from durationj etc. which give the
respective times for the task with id j). These are coupled to the data and
each other via:

168 Bernd Meyer

∀n : endn = startn + durationn

∀n : startn ≥ releasen ∧ endn ≤ duen

∀n > 1 : startn ≥ endn−1 + setupn

∀n > 1 : setupn ∈ {setupi,j | i, j ∈ {1 . . . n}}
∀n : durationn ∈ {durationj | j = 1 . . . n}
∀n : releasen ∈ {releasej | j = 1 . . . n}
∀n : duen ∈ {duej | j = 1 . . . n}

We use reified constraints [33] to bind the auxiliary variables to the data as
soon as the id of the n-th job in sequence is known. Note that these can only
propagate once the pre-condition is fulfilled:

∀i > 1, l,m : jobi−1 = l ∧ jobi = m⇒ setupi = setupl,m.

∀n, j : jobn = j ⇒ durationn = durationj ∧ releasen = releasej∧
duen = duej ∧ startn = min(releasej , endn−1 + setupn).

∀i, j : endi > duej ⇒ jobi �= j.

As we always assign the earliest possible start time to a scheduled task, it is
clear that a valuation of jobn together with the data completely determines
all other variables. Evidently this CP model corresponds to a typical ACO
approach if we label jobn in the order of increasing n.

Table 3 shows the results for CP with this model limited to 1,000,000
labelling steps and repeats the ACSsr results from above for comparison.5

The column “Steps” indicates the number of labelling steps until the best
solution was found. Column “Finished” gives the number of labelling steps
after which the complete CP search has exhausted the search space (if less
than 1,000,000).

As can be seen from Table 3 the performance of the basic CP model is
(unsurprisingly) not impressive. We can clearly distinguish three groups of
results: (1) Small problems (W8.1–W8.3, RBG10.a) are solved to optimality
by both approaches. (2) Some of the larger problems (RBG27.a.27, BR17.a.10)
are sufficiently highly constrained for CP to solve them to optimality, while
ACSsr does not solve them to optimality (or, in the instance of RBG 27.a.27,
does not find any feasible solutions). This is a clear indication of the influence
of search space pruning through propagation. Finally, (3) ACSsr yields the
better solutions for all of the more loosely constrained problems of larger size
(W20.1–W30.3, RBG27.a.3, RBG27.a.15). This is a clear indication of the
influence of the search heuristics that ACSsr learns during the search.

4.2 Loose Coupling

The possibility to combine the strengths of both methods in a unified ap-
proach is obvious. The simplest possible combination is a very loose coupling
5 This setting results in a comparable number of labelling steps in CP and ACSsr.

Constructive Metaheuristics and CP 169

Table 3. Loose Coupling Benchmarks

Problem CP ACSsr, pf =0.7 CP&ACSsr
Best Step Finished Best Avg Failed Best Avg Step Finished

W8.1 8321 870 13,555 8321 8321 0 % 8321 8321 344 5,229
W8.2 5818 6,667 15,707 5818 5818 0 % 5818 5818 2,598 5,616
W8.3 4245 36,237 66,975 4245 4245 0 % 4245 4245 13,358 25,227
W20.1 8779 15,239 n/a 8504 8526 0 % 8504 8530 n/a n/a
W20.2 5747 16,110 n/a 5062 5110 0 % 5102 5120 n/a n/a
W20.3 4842 433,794 n/a 4332 4369 0 % 4342 4367 n/a n/a
W30.1 8817 201,693 n/a 8067 8536 0 % 8052 8469 n/a n/a
W30.2 5457 999,877 n/a 4612 4703 0 % 4582 4680 n/a n/a
W30.3 5129 547,046 n/a 4148 4304 0 % 4268 4334 n/a n/a
RBG10.a 3840 10 9,191 3840 3840 0 % 3840 3840 n/a 3
RBG16.a 2596 16 52 2596 2596 0 % 2596 2596 16 52
RBG16.b 2120 8,807 n/a 2094 2094 0 % 2094 2094 n/a n/a
RBG21.9 6524 346,879 n/a 4522 4550 0 % 4511 4543 n/a n/a
RBG27.a.3 1984 147,616 n/a 1725 1738 0 % 1695 1725 n/a n/a
RBG27.a.15 1569 16,878 n/a 1479 1495 0 % 1459 1496 n/a n/a
RBG27.a.27 1076 27 113 n/a n/a 100 % 1076 1076 27 113
BR17.a.3 1663 552,611 n/a 1525 1553 0 % 1529 1548 n/a n/a
BR17.a.10 1031 650,120 n/a 1383 1420 0 % 1031 1031 28,427 138,707
BR17.a.17 1057 17 95 1057 1057 0 % 1057 1057 17 95

that works in the following way: Both algorithms run in parallel exchanging
information on candidate solutions and objective bounds in both directions.
The rationale of this coupling is clear: CP solutions can be used by ACSsr to
better focus the search on promising regions and if a better solution is found
by ACSsr in these regions, CP pruning can be improved by a tighter objective
bound. In addition to being handled by CP in the usual way, every feasible
solution that CP generates is sent to a queue that connects CP with ACSsr.
When ACSsr finishes one iteration for all ants, the solutions in the queue are
read, the queue is cleared and the solutions are treated by ACSsr like normal
ant-generated solutions. They are ranked together with all ant generated solu-
tions and have the same chance of being reinforced. In the opposite direction,
every feasible solution generated by ACSsr that improves on the best solution
found so-far is sent to CP and is used within CP as an objective bound in the
same way as CP-generated solutions:

∀n : endn < lgb ∧ ẽndn < lgb

where lgb is the makespan of the new solution.
The experimental results for the loose coupling are given in Table 3 in the

column “CP&ACSsr”. The column “Step” for “CP&ACSsr” gives the number
of labelling steps in the CP component needed for generating the best solution,
in the cases where the best solution is generated by the CP component. As
expected, the combined method exhibits the best overall performance. This
is unsurprising, as it basically runs the previous two algorithms in parallel.
Somewhat disappointingly, the combined method does not seem to leverage
much from the coupling. In the cases where CP previously gave the superior so-
lutions, it is also the dominant component in CP&ACSsr and the latter shows

170 Bernd Meyer

the same solution quality as CP. Conversely, for problems where previously
ACSsr was superior, this is the dominant component in CP&ACSsr and both
exhibit the same performance. It is important to note that a two-sided t-test
(unequal variance) clearly indicates that there is no statistically significant
difference in the result distributions obtained from ACSsr and CP&ACSsr in
the cases where ACSsr is the dominant component.

However, the table also shows that there is some (marginal) advantage to
the coupling in the form of a minor speed-up in cases where ACSsr is able
to provide a reasonably good objective bound early on in the search. This
is visible in the case of the smaller problems (W8.1-W8.3, RBG10.a) and
for BR17.a.10 where the coupling achieves a substantial speed-up, making it
possible to finish an exhaustive search in fewer steps than needed by CP alone
to find the best solution and thus ascertaining optimality of this solution. In all
of these cases the runs exhibit the same characteristics: The first few solutions
of reasonably good quality are found by ACSsr and the bounds supplied in
this way drive the CP component. It is rare for ACSsr to improve on CP-
generated solutions, which suggests that ACSsr does not sufficiently re-focus
the search region when receiving an improved solution from CP.

4.3 Tight Coupling

The results of the loose coupling indicate that simply rewarding candidate
solutions supplied by CP is not sufficient to improve the overall performance
of the ACO approach. A tighter integration in which the CP component di-
rectly interacts with the solution construction phase of ACO may provide a
better approach to the problem. The basic idea is simple. Consider the struc-
ture of the pure ACO approach, which constructs the solution step by step,
in our case by selecting the next job to be executed. This is exactly what the
labelling phase in the basic CP solution does. The advantage of CP over the
basic ACO approach is that candidate jobs that cannot lead to an improved
solution are ruled out by the propagation component and are not considered
in the solution construction. In contrast, the standard ACO construction may
select an inferior component and only discover that this does not lead to a
good solution after the construction of the whole solution has been finished.
The CP approach can thus supply additional information to the construction
phase, which could be interpreted as a “look-ahead”. On the other hand, the
CP approach does not learn during the search (except via objective bounds),
while ACO attempts to learn about good regions in the search space via rein-
forcement. Both approaches can be combined by using constraint propagation
during the candidate selection.

The tight ACO-CP integration that we introduce is, in a sense, most closely
related to a combination of a partial repair technique with death penalty:
The CP component assists ACO in the construction of feasible solutions. The
consequence is that a significantly larger number of feasible solutions will
be generated (the repair aspect). However, CP does not guarantee that a

Constructive Metaheuristics and CP 171

feasible solution is generated as the propagation is necessarily incomplete: A
construction attempt may stop in a dead end when the current partial solution
cannot be completed into a feasible solution. In this case it will simply not be
rewarded (the death-penalty aspect).

We use the basic Ant Colony System as the point of departure. Note that
ACSsr, despite its improved performance, would be unsuitable, because it is
based on including infeasible solutions in the search.

Consider ACS for Single Machine Job Scheduling as described in Figure 5.
The most obvious way to integrate CP is during the candidate selection in line
11 where it can prune the candidate list by domain reduction of C. The basic
idea is for C to become a constraint variable so that the list of candidates is
simply domain(C). This requires a separate Ck

i for each decision step i and
each ant k. When a candidate j is chosen, Ck

i = j is posted to the solver,
which can then propagate to reduce the domains of the remaining Ck

i s. This
effectively results in lookahead as to which candidate selections will not be
able to be completed into a feasible solution.

Of course, the remaining parts of the constraint model also need to be
copied, so that each ant can maintain a separate version of the current state
of solution construction. This amounts to the following full model in which
the superscript k indexes the decision variables for the k-th ant:

• Basic Constraint

∀k, i : jobk
i ∈ {1, . . . , n} and ∀k : all different(jobk

i)

• Auxiliary Variables

∀k, n : endk
n = startkn + durationk

n

∀k, n : startkn ≥ releasek
n ∧ endk

n ≤ duek
n

∀n > 1, k : startkn ≥ endk
n−1 + setupk

n

∀n > 1, k : setupk
n ∈ {setupi,j | i, j ∈ {1 . . . n}}

∀k, n : durationk
n ∈ {durationj | j = 1 . . . n}

∀k, n : releasek
n ∈ {releasej | j = 1 . . . n}

∀k, n : duek
n ∈ {duej | j = 1 . . . n}

• Data Bindings

∀i > 1, k, l,m : jobk
i−1 = l ∧ jobk

i = m ⇒ setupk
i = setupl,m.

∀k, n, j : jobk
n = j ⇒ durationk

n = durationj ∧ releasek
n = releasej∧

duek
n = duej ∧ startkn = min(releasej , endk

n−1 + setupk
n).

∀i, j, k : endk
i > duej ⇒ jobk

i �= j.

• Cross-propagation

172 Bernd Meyer

∀k, n, j : jobk
n = j ⇒ startkn = ˜startkj ∧ endk

n = ˜endk
j

∀k, n, j : ˜startkj < startkn ∨ ˜startkj > startkn ⇒ jobk
n �= j

• Objective Bound

∀k, n : endk
n < lgb ∧ ẽnd

k

n < lgb

A more complex way to integrate CP would be to re-order the preferences
for the candidate selection through the heuristic bias factor ηi,j . Additional
information from the constraint solver, such as a bound on the objective, can
be used to dynamically adjust ηi,j . Here, we will focus on the first approach
and modify the candidate list only.

4.4 CPACS

Depending on the model and the solver this propagation may not be strong
enough. With the model and the propagation algorithms detailed above, the
fact that a particular assignment Ck

i = j cannot lead to a feasible solution
is sometimes only discovered once Ck

i = j is posted. Consider a problem
consisting of J1 with duration 20 and time window [0, 100], J2 with duration 10
and time window [0, 25], and some further jobs. Even though a human observer
can immediately see that J2 has to be scheduled before J1, the propagation
solver may discover this only after Ck

i = J1 is posted (the domain of J2’s start
time is now empty). The same effect could obviously occur through a much
longer chain of dependencies. Using the ACO-CP coupling outlined above
the fact that the tour cannot be completed would be discovered as soon as
the constraint Ck

i = J1 is posted. However, the simple coupling would not
exploit this, as the ant would just be terminated. Effectively, nothing would
be learned from this failed attempt, and no information would be retained for
subsequent tour construction attempts.

To better exploit the propagation, we modify the coupling by using single
level backtracking for the selection of the next candidate. The ant makes the
usual probabilistic selection which job j to assign to Ck

i based on the reduced
domain of Ck

i and posts the constraint Ck
i = j. If the solver signals failure

the ant backtracks one step and posts Ck
i �= j instead. This removes j from

the domain of Ck
i and potentially triggers other propagation steps. The ant

then tries to bind Ck
i to another value from its further reduced domain. This

process continues until either one of the assignments is accepted by the propa-
gation solver or until domain(Ck

i) = ∅. In the first case the tour construction
proceeds, while it fails in the second case. The complete algorithm for this
coupling, which we term CPACS, is given in Figure 7.

Of course, the generate-and-test step emulated by single level backtracking
simply strengthens the constraint propagation. If we would not consider the

Constructive Metaheuristics and CP 173

(0) initialize solver; post initial constraints; s0 := solver state();
(1) ∀i, j : τi,j := τ0 /* initialize pheromone matrix

(2) ∀i, j : ηi,j := setup time(i, j)−1 /* initialize heuristic function
(3) job0 := 0
(4) ∀j : τ0,j := τ0 ∧ η0,j := 1 /* virtual start job 0

(5) lgb := +∞; T gb := nil; /* initialize global best
(6) for t := 1 to max iterations do
(7) restore initial solver state s0
(8) for k := 1 to number of ants do

(9) T k:=nil /* intialize tour of ant k as empty
(10) mark all jobs as unscheduled by ant k
(11) n := 0; feasible := true;
(12) while n < number of jobs and feasible do begin
(13) n := n + 1

(14) i := jobk
n−1

(15) do

(16) C := domain(jobk
n)

(17) if random() > p then choose next job j ∈ C to be sched. by ant k with

probability pj :=
τα

i,j ·ηβ
i,j

∑
j∈C τα

i,j ·ηβ
i,j

(18) else choose j = argmaxj∈C(τα
i,j · ηβ

i,j)

(19) feasible := post(jobk
n = j)∧

(20) post((startj := max(releasej , endi + setup time(i, j)))

(21) if not(feasible) then post(jobk
n 	= j)

(22) until feasible ∨ C = ∅
(23) if feasible then begin

(24) T k := append(T k, (i, j))
(25) τi,j := (1 − ρ) · τi,j + ρ · τ0 /* local evaporation
(26) mark job j as scheduled by ant k
(27) end
(28) end

(29) if feasible(T k) then lk := length(T k)

(30) else begin lk := ∞; T k := nil end
(31) end
(32) ib := argmink(lk) /* best tour index

(33) if lib < lgb then begin T gb := T ib; lgb := lib end

(34) ∀(i, j) ∈ T gb : τi,j := (1 − ρ)τi,j + Q · l−1
gb /* evaporate and reward

(35) end.

Fig. 7. Hybrid Constraint Propagation + Ant Colony System (CPACS)

propagation method as fixed, it could (and probably should) to the same effect
be directly embedded into the constraint solver instead of into CPACS.

We compare the performance of CPACS with the loosely coupled version
in Table 4. To provide context we also repeat the results of ACSsr. Recall that
the performance differences between ACSsr and CP&ACSsr are not statisti-
cally significant except for in the tightly constrained cases where the results
are obtained by the CP component (RBG27.a.27, BR17.a.10). The same three
groups of results emerge: For small problems (W8.1-W8.3) all algorithms ex-
hibit the same performance. For some larger problems that are only loosely
constrained (W20.1, W20.3) CP&ACSsr exhibits a marginally better overall
performance.

The most interesting group of problems are the more tightly constrained
problems of intermediate to larger sizes where CPACS shows a significantly
improved performance over the other algorithms (RBG21.9 to RBG27.a.15,

174 Bernd Meyer

Table 4. Tight Coupling Benchmarks

Problem ACSsr, pf =0.7 CP&ACSsr CPACS
Best Avg StdDev Failed Best Avg StdDev Failed Best Avg StdDev Failed

W8.1 8321 8321 0 0 % 8321 8321 0 0 % 8321 8322 2.10 0 %
W8.2 5818 5818 0 0 % 5818 5818 0 0 % 5818 5819 2.41 0 %
W8.3 4245 4245 0 0 % 4245 4245 0 0 % 4245 4246 1.58 0 %
W20.1 8504 8526 23.23 0 % 8504 8530 22.95 0 % 8564 8604 38.72 0 %
W20.2 5062 5110 26.17 0 % 5102 5120 17.49 0 % 5062 5117 26.03 0 %
W20.3 4332 4369 24.39 0 % 4342 4367 15.37 0 % 4352 4385 21.99 0 %
W30.1 8067 8536 418.77 0 % 8052 8469 297.46 0 % 8142 8182 28.28 80 %
W30.2 4612 4703 83.36 0 % 4582 4680 82.60 0 % 4695 4743 40.74 0 %
W30.3 4148 4304 86.37 0 % 4268 4334 55.37 0 % 4288 4337 41.99 0 %
RBG10.a 3840 3840 0 0 % 3840 3840 0 0 % 3840 3840 0 0 %
RBG16.a 2596 2596 0 0 % 2596 2596 0 0 % 2596 2596 0 0 %
RBG16.b 2094 2094 0 0 % 2094 2094 0 0 % 2094 2094 0 0 %
RBG21.9 4522 4550 19.00 0 % 4511 4543 19.40 0 % 4481 4489 7.84 0 %
RBG27.a.3 1725 1738 9.48 0 % 1695 1725 17.16 0 % 927 940 12.79 0 %
RBG27.a.15 1479 1495 12.15 0 % 1459 1496 16.98 0 % 1068 1068 0 0 %
RBG27.a.27 n/a n/a n/a 100 % 1076 1076 0 0 % 1076 1076 0 0 %
BR17.a.3 1525 1553 23.99 0 % 1529 1548 16.08 0 % 1003 1003 0 0 %
BR17.a.10 1383 1420 20.75 0 % 1031 1031 0 0 % 1031 1031 0 0 %
BR17.a.17 1057 1057 0 0 % 1057 1057 0 0 % 1057 1057 0 0 %

BR17.a.3). This is a clear indication of having learned a successful labelling
strategy.

Table 5. Bootstrap Test (100 runs, 95 % Confidence Intervals)

Problem CP&ACSsr CPACS
Avg Failed Avg Failed p

W20.1 [8528, 8532] 0 % [8600, 8605] 0 % [1e-4, 3e-4]
W20.2 [5116, 5118] 0 % [5114, 5117] 0 % [0.37, 0.48]
W20.3 [4364, 4365] 0 % [4384, 4387] 0 % [0.039, 0.074]
W30.1 [8402, 8436] 0 % [8161, 8164] 80 % n/a
W30.2 [4674, 4684] 0 % [4742, 4747] 0 % [0.07, 0.12]
W30.3 [4331, 4337] 0 % [4336, 4341] 0 % [0.46, 0.57]
RBG21.9 [4540, 4542] 0 % [4488, 4489] 0 % [1e-5, 2e-5]
RBG27.a.3 [1725, 1727] 0 % [937, 938] 0 % [8e-19, 4e-18]
RBG27.a.15 [1494, 1496] 0 % [1068, 1068] 0 % [8e-14, 2e-13]
RBG27.a.27 [1076, 1076] 0 % [1076, 1076] 0 % [1.0, 1.0]
BR17.a.3 [1550, 1551] 0 % [1003, 1003] 0 % [2e-17, 3e-17]

As before we back up the test cases that we have isolated as interesting in
Table 4 with a 100 run bootstrap test. Recall that no significant performance
differences were found between CP&ACSsr and ACSsr/CP, respectively, so
we restrict the comparison to CP&ACSsr. The results, which are summarized
in Table 5, confirm our observations.

Constructive Metaheuristics and CP 175

5 Discussion

Our expectation for the hybrid approach to show its strength mainly for prob-
lems of intermediate tightness is confirmed by our experiments.

The loose coupling shows only minor performance improvements over the
two pure algorithms. In the few cases where the loosely coupled hybrid out-
performs both basic algorithms, the improvements are in runtime but not
in solution quality: The hybrid algorithm finds the solutions faster, and in
some cases finishes the exhaustive search earlier. These runs have a particular
characteristic in our experiments: ACO finds reasonably good solutions early
in the search, providing the CP component with good objective bounds that
enable it to prune more efficiently.

The tight coupling, in contrast, outperforms the other algorithms for larger
problems that are reasonably tightly constrained, taking advantage of the
more effective solution construction made possible by the CP component.

The empirical observation that CPACS is more effective in some more
tightly constrained cases is in agreement with theoretical considerations. The
introduction of the CP component into the construction phase can be in-
terpreted as a partial look-ahead or as equivalent to an (incomplete) repair
method. As a consequence of this, the proportion of feasible solutions that
is sampled is significantly higher for tightly constrained problems. This, of
course, already speeds up the algorithm simply on the basis of a higher sam-
pling rate. Importantly, it also has a significant influence on the convergence
dynamic of the underlying ACO. From the theoretical analysis of the conver-
gence dynamics of (Hypercube) AS it is known that the expected value of the
solution quality is strictly increasing, if all ants construct a feasible solution
in every attempt (as is the case for unconstrained problems) [5]. This is not
the case when ants can get stuck in infeasible solutions caused by hard con-
straints, such as time windows or incomplete networks for TSPs. In such cases,
the expected value can decrease indicating that the algorithm converges on
inferior solutions [34]. Generating fewer infeasible (rejected) samples makes
this situation less likely to occur and thus gives a higher probability of con-
verging on the optimum. This argument lends additional theoretical support
to the suggestion that CPACS should have a performance superior to ACS.

It is important to keep the limitations of the tight coupling in mind. Firstly,
CPACS is not a complete method any more: It does not perform an exhaustive
search. Thus, if we need to know whether a solution is optimal, the loose
coupling is the only possibility. Secondly, in the case of larger problems that
are only loosely constrained the performance advantage of CPACS vanishes, as
CP cannot contribute significantly to the solution construction any more. In
these cases the loose coupling can be at a runtime advantage. This is because
it can rely on the performance of the ACSsr component, which does not have
to perform any propagation and can thus sample significantly faster.

The main factor that slows CPACS in its basic form is that it does not
utilize trailing [33] for efficient propagation. We expect a significant speed-up

176 Bernd Meyer

from extensions of the algorithm that partly exploit trailing. These are cur-
rently under investigation.

It is important to acknowledge that for any specific and sufficiently narrow
class of problems we could probably fare better with a highly customized
search algorithm (at the expense of having to design and implement this).
Here we are, however, concerned with a generic way of problem solving using
a declarative problem model, and thus with an approach that is easily and
safely applied to new problem domains.

6 Estimation of Distribution Algorithms and CP

We have discussed the coupling of constructive metaheuristics and constraint
programming using ACO as an example. Our integration gives us a way to
fine-tune the function of the metaheuristics in a systematic way based on
a declarative problem model. This generalizes and subsumes the concepts
of repair techniques and feasibility-maintaining solution construction. It is
important to note that this particular hybridization is only one example of a
much broader class of algorithms. Many other metaheuristics can benefit from
the integration with CP in a similar way. The primary criteria that render a
metaheuristic, such as ACO, suitable for our type of integration are that it is
(a) constructive and (b) model-based.

We call a metaheuristic constructive if it builds candidate solutions in-
crementally by adding solution components to a partial solution until the
candidate solution is complete. This obviously corresponds well to how the
labelling phase in CP proceeds. Any other constructive metaheuristic can in
principle be integrated with CP in the same way, such that the propagation
solver provides an extended lookahead to increase the efficiency of the search.

Non-constructive metaheuristics are (typically) based on local search. A
local search algorithm starts from some initial candidate solution and repeat-
edly tries to replace this solution by a better one chosen from an appropriately
defined neighbourhood of the current solution [7]. Simulated Annealing is a
prototypical example of a local search algorithm. Whether or not a local-search
metaheuristic is suitable for our kind of CP integration depends on how ex-
actly the neighbourhood move to a new candidate solution is performed. A
metaheuristic that performs this move by incrementally exchanging compo-
nents of the current candidate solution could almost be regarded as construc-
tive. It may be able to benefit from an integration with CP in the same way
as a purely constructive metaheuristic, by using the propagation solver to re-
strict possible neighbourhood moves. A local search that simply “jumps” from
one complete candidate solution to another complete candidate solution in a
non-constructive fashion is, however, not suitable for our framework, because
it only requires feasibility checking and cannot effectively exploit an extended
lookahead.

Constructive Metaheuristics and CP 177

The second reason to select ACO was its model-based nature or, more
precisely, its model-building characteristics. Model-based refers to the fact
that the selection of solution components in the construction phase is based
on an explicit problem model. In ACO the problem model is captured in the
pheromone matrix. It is a probabilistic model and represents the likelihood
for each solution component to belong to a good solution. Our tight coupling
effectively extends the ACO problem model by placing additional constraints
on its decision variables. Being model-based and being constructive obviously
goes hand in hand.

Model-building refers to the fact that ACO attempts to improve its prob-
lem model during the search by a reinforcement learning mechanism. ACO
achieves this by estimating (the equivalent of) a conditional probability distri-
bution during the search. The model does not just represent an independent
probability for each solution component to belong to a good solution, but also
captures dependencies (linkages) between different parts of a solution (i.e. be-
tween decision variables). In an ACO-style model the dependencies the algo-
rithm can learn are predetermined by the way reinforcement is given, i.e. by
the interpretation of the pheromone matrix. For example, in our implementa-
tion of the JSP, τi,j stands for the preference to execute task j immediately
after task i, and so these are the only dependencies the algorithm can learn.

In ACO the model is not directly expressed in the language of condi-
tional probabilities, and it is thus questionable whether ACO provides the
best framework to understand probabilistic problem models.6

Luckily, a different class of metaheuristics, called Estimation of Distribu-
tion Algorithms (EDAs [39, 30, 32]), provides us with the right tools and is
directly framed in terms of conditional probability models.7

EDAs are a close relative of genetic algorithms.8 Like these, they are based
on a sampling and elimination process. In contrast to these, they dispense
with the explicit population representation and do not manipulate individual
population members directly. Instead, they represent a whole population im-
plicitly via joint probability distributions, making the desirability of solution
components and their linkages explicit.9

ACO is also closely related to some forms of EDAs [15, 58], specifically
to the univariate marginal distribution algorithm (UMDA) [39, 38] and to

6 In fairness to ACO it has to be said that it was not designed for this purpose.
7 Similar frameworks are also known as Iterated Density Estimation Algorithms

(IDEAs [9]) and Probabilistic Model Building Genetic Algorithms (PMB-
GAs [43]).

8 Note that GAs themselves are neither model-based nor constructive and thus
generally not directly suitable for the integration that we have proposed. This,
however, does not limit our approach as EDAs allow us to generalize GAs and
are suitable for the integration.

9 In a sense EDAs are essentially GAs stripped from their biological inspiration and
recast into a probabilistic modelling framework. From the probabilistic modelling
perspective they could, somewhat flippantly, be regarded as “sanitized GAs”.

178 Bernd Meyer

population-based incremental learning (PBIL) [3]. The main difference here
is that the approximation of probabilities by pheromone levels is replaced by
explicit probability distributions.

In this sense, EDAs allow us to generalize both GAs and ACO and to
explicitly recast these metaheuristics in the language of probability theory.
This is exactly what we need to generalize our integration to more complex
problem models. The general EDA procedure is outlined in Figure 8. Any
EDA that performs the sampling step in line 7 in a constructive fashion is
also suitable for the framework that we have presented.

(1) t := 0;
(2) generate initial population P0;
(3) best := best solution in P0;
(4) while (termination condition not reached) {
(5) select subset of “good” solutions St ⊂ Pt;
(6) construct probability model Mt for St;
(7) sample Mt generating population Ot of new solutions;
(8) Pt+1 := merge(Pt, Ot);
(9) t := t + 1;
(10) tmp := best solution in Pt;
(11) if f(tmp) < f(best) then best := tmp;
(12) }

Fig. 8. Generic Estimation of Distribution Algorithm

The structure of the model M , regardless of whether it is framed in terms of
probabilities or pheromones, determines the types of dependencies the algo-
rithm can learn. This is obviously a crucial factor for the performance of any
model-based search algorithm, an effect that has been demonstrated empiri-
cally, for example in [8] for ACO.

In ACO and ACO-like EDAs the structure of the model is predetermined
by the implementation. While we can decide to capture any dependency that
is deemed important a priori, the model structure cannot change during the
search. Ideally, we would like our algorithm to be able not only to learn the
probability distributions in the model, but also to refine the structure of the
model, i.e. to learn new types of dependencies that are only discovered during
the search.

Learning an appropriate model structure is exactly the core idea of the
Bayesian Optimization Algorithm (BOA [42]), a specific form of EDA. BOA
models the population using Bayesian networks and learns both the structure
of an appropriate network as well as its conditional probability tables dur-
ing the search. We thus believe that BOA is a particularly promising second
candidate for the type of hybridization we have suggested.

In our hybrids we maintain two different but coupled problem models: On
the EDA side we are learning a probabilistic model during the search, whereas

Constructive Metaheuristics and CP 179

on the CP side we have a crisp relational model.10 The core question for an
effective EDA-CP hybrid is how these two models are best coupled.

On one hand, dependencies between two variables in the CP model, such
as X ≤ 2Y + 5, can be extracted by a static analysis of the model, and can
be used to initialize an adequate structure for the probability model (here by
introducing a link between X and Y). Further such dependencies can be found
dynamically during the search by the propagation mechanism. On the other
hand, not all constraints should be used like this. The simplest example are
constraints that clearly express functional dependencies, such as X = 2Y +5.
Modelling these in the probability model would only introduce redundancy
and incur additional computational costs.

Information can also flow in the opposite direction. We could term this
“stochastic constraint discovery”. For example, if the probability of p(X = n |
Y = n) is found to be very close to zero in the EDA model, we may consider
to post X �= Y dynamically as a constraint to make this information available
to the propagation solver and thus to further strengthen the lookahead.11

Due to the different nature of the Bayesian model and the constraint
model, it is far from trivial to decide what the best way is to exchange in-
formation between these. We are currently investigating both static aspects
(model analysis and refinement before the search) as well as dynamic aspects
(information exchange during the search) for BOA-CP hybrids.

Another important question concerns the trade-off between model-building
and sampling. Learning a good Bayesian network is computationally expen-
sive12 and only worthwhile if it provides significant guidance to the sampling
process. Directing the search for a good network structure by an analysis
of the constraint network, may help to improve this trade-off in the hybrid
algorithms.

We are confident that the extension of our approach to the richer class
of probabilistic models used in EDAs in general and specifically in BOA will
lend significantly more power to this framework.

7 Conclusions

We have presented and evaluated two ways of hybridizing constructive meta-
heuristics with Constraint Programming, using Ant Colony Optimization as
our example. Our loose coupling is based on exchanging candidate solutions
and objective bounds between ACO and CP. The tight coupling is based on

10 In our basic coupling the CP model appears to be static. However, this is not
necessarily the case if we consider the learning of nogoods etc.

11 It has to be taken into account that this would turn the probabilistic information
on X �= Y into crisp information reducing p(X = n | Y = n) to exactly zero.

12 For most metrics, learning an optimal Bayesian network for a given sample is NP-
hard [12]. However, polynomial-time approximations often work well in practice.

180 Bernd Meyer

interleaving the constraint propagation with the solution construction phase
of the metaheuristic component.

The main rationale for constructing these and other hybrids of exact meth-
ods with stochastic metaheuristics is to combine the complementary advan-
tages of these two frameworks for combinatorial optimization problems. While
CP is aimed at problems that are highly constrained so that the propagation
component can prune the search space very effectively, stochastic metaheuris-
tics, such as ACO, are aimed at problems for which the feasible space is very
large so that the search in feasible regions is the dominant component influ-
encing the performance. The expectation for a hybridization is that it shows
its main performance advantage in the intermediate range between these two
extremes. The empirical evaluation of our case study bears this out.

Our hybridization framework introduces declarative problem models into
metaheuristics and the automatic learning of search strategies into CP. We
consider both as important steps in bringing these two methodologies closer
together, to make them easier to use, and to render them more readily applica-
ble to new problem domains. We hope that such hybridizations will ultimately
provide the basis for the inclusion of metaheuristic toolboxes into high-level
modelling languages, such as OPL [55], in order to equip these with improved
automatic search strategies.

References

1. A. Allahverdi, J. N. D. Gupta, and T. Aldowaisan. A review of scheduling
research involving setup considerations. Omega, 27(2):219–239, 1999.

2. N. Ascheuer, M. Fischetti, and M. Grötschel. Solving the asymmetric travel-
ling salesman problem with time windows by branch-and-cut. Mathematical
Programming, 90(3):475–506, 2001.

3. S. Baluja and R. Caruana. Removing the genetics from the standard genetic
algorithm. In Int. Conf. Machine Learning (ML-95), 1995.

4. A. Bauer, B. Bullnheimer, R. F. Hartl, and C. Strauss. An ant colony optimiza-
tion approach for the single machine total tardiness problem. In Proceedings of
the Congress on Evolutionary Computation, Washington/DC, July 1999.

5. C. Blum, November 2003. Personal Communication.
6. C. Blum. Ant colony optimization: Introduction and recent trends. Physics of

Life Reviews, 2(4):353–373, 2005.
7. C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.
8. C. Blum and M. Sampels. When model bias is stronger than selection pressure.

In Parallel Problem Solving From Nature (PPSN-VII), Granada, September
2002.

9. P. A. Bosman and D. Thierens. Continuous iterated density estimation evolu-
tionary algorithms within the IDEA framework. In Genetic and Evolutionary
Computation Conference - GECCO, pages 197–200, Las Vegas, July 2000.

10. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain con-
straint solver. In Proc. PLILP’97 Programming Languages: Implementations,
Logics, and Programs, Southampton, September 1997.

Constructive Metaheuristics and CP 181

11. Y. Caseau and F. Laburthe. Improved CLP scheduling with task intervals.
In International Conference on Logic Programming, Santa Margherita Ligure,
Italy, June 1994.

12. D. M. Chickering, D. Geiger, and D. Heckerman. Learning bayesian networks
is NP-hard. Technical report, Microsoft Research, Redmont, WA, 1994. MSR-
TR-94-17.

13. C. Coello and A. Carlos. A survey of constraint handling techniques used with
evolutionary algorithms. Technical report, Laboratorio Nacional de Informtica
Avanzada, 1999. Technical Report Lania-RI-9904.

14. C. A. Coello. Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: a survey of the state of the art. Computer Methods
in Applied Mechanics and Engineering, 191(11-12):1245–1287, 2002.

15. O. Cordón, F. Herrera, and T. Stützle. A review on the ant colony optimization
metaheuristic: Basis, models and new trends. Mathware and Soft Computing,
9(2–3):141–175, 2002.

16. P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on
the cross-entropy method. Annals of Operations Research, 134(1):19–67, 2005.

17. R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, San
Francisco, CA, 2003.

18. M. den Besten, T. Stützle, and M. Dorigo. Ant colony optimization for the total
weighted tardiness problem. In Parallel Problem Solving from Nature - PPSN
VI, Paris, France, September 2000.

19. M. Dorigo, G. D. Di Caro, and L. M. Gambardella. Ant algorithms for discrete
optimization. Artificial Life, 5:137–172, 1999.

20. M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative
learning approach to the traveling salesman problem. Technical Report
TR/IRIDIA/1996-5, Universite Libre de Bruxelles, 1996.

21. M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolution-
ary Computation, 1(1):53–66, 1997.

22. M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge,
2004.

23. M. Dorigo, M. Zlocin, N. Meuleau, and M. Birattari. Updating ACO pheromones
using stochastic gradient ascent and cross-entropy methods. In Proceedings of
the Evo Workshops, Kinsale, Ireland, April 2002.

24. B. Efron. The Jackknife, the bootstrap and other resampling plans. SIAM, 1982.
25. R. Farmani and J. A. Wright. Self-adaptive fitness formulation for constrained

optimization. IEEE Transactions on Evolutionary Computation, 7(5):445—455,
2003.

26. F. Focacci, F. Laburthe, and A. Lodi. Local search and constraint programming.
In F. Glover and G. Kochenberger, editors, Handbook of metaheuristics. Kluwer,
Boston/MA, 2003.

27. F. Focacci, A. Lodi, and M. Milano. A hybrid exact algorithm for the TSPTW.
INFORMS Journal on Computing, 14(4):403–417, 2003.

28. M. Gravel, W. L. Price, and C. Gagné. Scheduling continuous casting of alu-
minum using a multiple objective ant colony optimization metaheuristic. Euro-
pean Journal of Operational Research, 143(1):218–229, 2002.

29. M. Held. Analysis and improvement of constraint handling in ant colony algo-
rithms, November 2005. BCS Honours Thesis, Monash University.

182 Bernd Meyer

30. P. Larrañaga and J. A. Lozano (eds.). Estimation of distribution algorithms: a
new tool for evolutionary computation. Kluwer, Boston, 2002.

31. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Se-
quencing and scheduling: algorithms and complexity. In S. C. Graves, A. H. G.
Rinnooy Kan, and P. H. Zipkin, editors, Logistics of Production and Inventory,
pages 445–522. North Holland, Amsterdam, Netherlands, 1993.

32. J. A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea (eds.). Towards a New
Evolutionary Computation. Springer-Verlag, 2006.

33. K. Marriott and P. Stuckey. Programming With Constraints. MIT Press,
Cambridge, MA, 1998.

34. B. Meyer. On the convergence behaviour of ant colony search. In Asia-Pacific
Conference on Complex Systems, Cairns, December 2004.

35. B. Meyer. Constraint handling and stochastic ranking in ACO. In IEEE CEC –
Congress on Evolutionary Computation, Edinburgh, September 2005.

36. B. Meyer and A. Ernst. Integrating ACO and constraint propagation. In
Ant Colony Optimization and Swarm Intelligence (ANTS 2004), Brussels,
September 2004.

37. Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics. Springer-
Verlag, Berlin, 2000.

38. H. Mühlenbein. The equation for response to selection and its use for prediction.
Evolutionary Computation, 5:303–346, 1998.

39. H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of
distributions I. binary parameters. In Parallel Problem Solving from Nature -
PPSN IV, pages 178–187, Berlin, September 1996.

40. W. Nuijten and C. Le Pape. Constraint-based job scheduling with ILOG sched-
uler. Journal of Heuristics, 3:271–286, 1998.

41. C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Dover Pub-
lications Inc., Mineola, NY, 2nd edition, 1998.

42. M. Pelikan. Hierarchial Bayesian Optimization Algorithm. Springer-Verlag,
Berlin, 2005.

43. M. Pelikan, D. E. Goldberg, and F. G. Lobo. A survey of optimization by
building and using probabilistic models. Computational Optimization and Ap-
plications, 21(1):5–20, 2002.

44. G. Pesant and M. Gendreau. A constraint programming framework for local
search methods. Journal of Heuristics, 5(3):255–279, 1999.

45. G. Pesant, M. Gendreau, J.-Y. Potvinand, and J.-M. Rousseau. An exact con-
straint logic programming algorithm for the traveling salesman problem with
time windows. Transportation Science, 32(1):12–29, 1998.

46. J. Puchinger and G. R. Raidl. Combining metaheuristics and exact algorithms
in combinatorial optimization: A survey and classification. In J. Mira and J. R.
Alvarez, editors, Artificial Intelligence and Knowledge Engineering Applications:
A Bioinspired Approach. Springer-Verlag, 2005.

47. J.-F. Puget. Constraint programming next challenge: Simplicity of use. In
Principles and Practice of Constraint Programming—CP’04, Toronto, Septem-
ber 2004.

48. R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Ap-
proach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine
Learning. Springer-Verlag, Berlin, 2004.

Constructive Metaheuristics and CP 183

49. T. P. Runarsson and X. Yao. Stochastic ranking for constrained evolutionary
optimization. IEEE Transactions on Evolutionary Computation, 4(3):284—294,
2000.

50. H.-P. Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.
51. H. J. Shin, C.-O. Kim, and S. S. Kim. A tabu search algorithm for single machine

scheduling with release times, due dates, and sequence-dependent set-up times.
International Journal of Advanced Manufacturing Technology, 19(11):859–866,
2002.

52. K. Socha, J. Knowels, and M. Sampels. A MAX-MIN ant system for the univer-
sity course timetabling problem. In International Workshop on Ant Algorithms
(ANTS 2002), Brussels, September 2002.

53. K. Socha, M. Sampels, and M. Manfrin. Ant algorithms for the university course
timetabling problem with regard to the state-of-the-art. In European Workshop
on Evolutionary Computation in Combinatorial Optimization (EvoCOP 2003),
April 2003.

54. T. Stützle and H. H. Hoos. MAX-MIN ant system. Future Generation Computer
Systems, 16(8):889–914, 2000.

55. P. Van Hentenryck. The OPL Optimization Programming Language. MIT Press,
Cambridge, MA, 1999.

56. P. Van Hentenryck and L. Michel. Synthesis of constraint-based local search
algorithms from high-level models. In AAAI-07, Vancouver, July 2007.

57. V. C. S. Wiers. A review of the applicability of OR and AI scheduling techniques
in practice. Omega, 25(2), 1997.

58. M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search for
combinatorial optimization: A critical survey. Annals of Operations Research,
131:373–395, 2004.

Hybrid Metaheuristics for Packing Problems

Toshihide Ibaraki1, Shinji Imahori2 and Mutsunori Yagiura3

1 School of Science and Technology
Kwansei Gakuin University, Sanda, Japan
ibaraki@kwansei.ac.jp

2 Graduate School of Information Science and Technology
University of Tokyo, Tokyo, Japan
imahori@mist.i.u-tokyo.ac.jp

3 Graduate School of Information Science
Nagoya University, Nagoya, Japan
yagiura@nagoya-u.jp

Summary. Three variants of the two dimensional packing problem are considered,
where the items to be packed are (a) rectangles with fixed widths and heights, (b)
rectangles with adjustable widths and heights, or (c) irregular shapes. All problems
are solved by hybrid metaheuristics that combine local search and mathematical
programming techniques of linear, nonlinear and/or dynamic programming. Basic
ideas of these algorithms are explained on a unified basis, together with some com-
putational results. It appears to indicate that mathematical programming is a vital
tool for enhancing metaheuristic algorithms.

1 Introduction

We consider in this chapter the two-dimensional packing problem that asks
to pack a given set of items into a given container without mutual overlap.
There are many variants of this problem depending upon whether the items
are rectangles or have irregular shapes, and how minimization of the container
is defined.

Most of these variants are NP-hard, since they contain as a special case
the bin packing problem, which is already known to be NP-hard. Local search
and metaheuristic algorithms have been playing major roles in obtaining good
approximate solutions for practical uses. We observe that many of such algo-
rithms contain subproblems that ask to pack given items in an optimal manner
under certain constraints, and such subproblems are solvable by techniques
known as dynamic, linear and nonlinear programming. Thanks to the recent
progress of mathematical programming, efficient softwares are available for
the cases of linear and nonlinear programming. The resulting algorithms are
hybrid metaheuristics in the sense that they are combinations of metaheuris-
tics and mathematical programming.
T. Ibaraki et al.: Hybrid Metaheuristics for Packing Problems, Studies in Computational Intel-

ligence (SCI) 114, 185–219 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

186 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

In this chapter, we deal with the following types of the packing problem:

(a) Items are rectangles, where the size (i.e., width and height) of each
rectangle is fixed in advance.

(b) Items are soft rectangles, whose sizes can be adjusted.
(c) Items have irregular shapes, which may be neither rectangular

nor convex.

In all these problems, the container is assumed to be a rectangle with width W
and height H, and its size is minimized in the sense of WH (area), 2(W +H)
(perimeter) or H (height) while fixing its width to W = W ∗ (a given constant).
The last type is called the problem of strip packing.

We describe a method that enables us to effectively use dynamic program-
ming for solving (a), and nonlinear and linear programming techniques for
solving (b) and (c). We also touch upon the problem of packing rectangles
with weights under the constraints on the location of the center of gravity and
their moment. Nonlinear programming is also useful for such a variant.

The organization of this chapter is as follows. Sect. 2 gives basic defini-
tions and presents metaheuristic frameworks for the above packing problems.
It then specifically discusses problem (a), in which dynamic programming
techniques are employed. Sect. 3 considers problem (b), in which linear pro-
gramming and nonlinear programming are used. Sect. 4 briefly mentions that
a similar method can be used to pack rectangles with weights. Finally, Sect. 5
deals with problem (c), where linear programming and nonlinear programming
are again used. All sections are concluded with some computational results.

2 Rectangle Packing Problem

Packing a number of rectangles, each having a fixed size, is perhaps most
popular among packing problems. It is encountered in many industrial appli-
cations, such as wood, glass and steel manufactures, LSI and VLSI design,
and newspaper paging. As the problem is NP-hard, various approximation al-
gorithms have been proposed [18, 37]. Metaheuristics have also been utilized
[7, 15, 29, 32, 43].

We mainly treat the strip packing problem in this section. It may have
additional constraints concerning orientation of rectangles and guillotine cut
restriction [21, 59]. As for the orientation of rectangles, the following three
situations have been considered in the literature: (1) each rectangle can be
rotated by any angle, (2) each rectangle can be rotated by 90 degrees, and
(3) each rectangle has a fixed orientation. Rotation of rectangles is not al-
lowed in newspaper paging or when the rectangles to be cut are decorated
or corrugated, whereas rotation is allowed in the case of plain materials. The
guillotine cut constraint signifies that the rectangles must be obtained through
a sequence of edge-to-edge cuts parallel to the edges of the container, which is

Hybrid Metaheuristics for Packing Problems 187

usually imposed by technical limitations of the automated cutting machines.
In this section, we focus on case (3) without the guillotine cut constraint.

After presenting in Sect. 2.1 a mathematical programming formulation of
the strip packing problem of rectangles, Sect. 2.2 describes standard coding
schemes and decoding algorithms. Then the framework of local search is pre-
sented in Sect. 2.3 together with its basic components such as neighborhoods
and evaluation functions. A brief explanation of metaheuristics is also given
at the end of this subsection. A hybrid metaheuristic algorithm for the strip
packing problem is then presented in Sect. 2.4, putting emphasis on neigh-
borhood reductions and fast decoding algorithms by dynamic programming.
Sect. 2.5 concludes this section by reporting some computational results.

2.1 Problem Formulation

We are given n items I = {I1, I2, . . . , In} of rectangular shape, where each
rectangle Ii ∈ I has fixed width wi and height hi. We are asked to pack all
items orthogonally into the strip (container) of a fixed width W = W ∗ (a
given constant) and a variable height H so as to minimize H. “Orthogonally”
means that an edge of each item is parallel to an edge of the strip.

We describe the location of an item Ii by the coordinate (xi, yi) of its
bottom-left corner. The problem is formally described as follows.

minimize H

subject to 0 ≤ xi ≤ W ∗ − wi, 1 ≤ i ≤ n (1)
0 ≤ yi ≤ H − hi, 1 ≤ i ≤ n (2)
At least one of the next four inequalities
holds for every pair Ii and Ij of rectangles:
xi + wi ≤ xj , xj + wj ≤ xi,

yi + hi ≤ yj , yj + hj ≤ yi. (3)

The constraints (1) and (2) tell that every rectangle must be placed into the
strip. The constraint (3) means that no two rectangles overlap; that is, each
inequality describes one of the four relative locations required to avoid mutual
overlap: right-of, left-of, above and below.

We call a solution of the above problem (i.e., locations of all rectangles)
as a placement. Fig. 1 shows a placement obtained by the algorithm of this
section, for the benchmark known as rp100.1

2.2 Coding Schemes and Decoding Algorithms

In order to design algorithms for the rectangle packing problem, coding
schemes and decoding algorithms should be discussed first.
1 Available from http://www.simplex.t.u-tokyo.ac.jp/~ imahori/packing/ins

tance.html

188 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

Fig. 1. An example of strip packing (rp100 with W ∗ = 450)

In the rectangle packing problem, if we consider the x and y coordinates
of each rectangle explicitly, an effective search will be difficult because the
number of solutions is uncountably many and elimination of mutual overlap
is not easy. To overcome this difficulty, most algorithms utilize some coding
schemes. A coding scheme consists of a set of coded solutions and a mapping
from coded solutions to placements, and a decoding algorithm computes for a
given coded solution the corresponding placement. Desirable properties of a
coding scheme and a decoding algorithm are summarized as follows.

1. There is a coded solution that represents an optimal placement.
2. The number of all possible coded solutions is finite, where a smaller num-

ber is preferable provided that property 1 holds.
3. Every coded solution represents a feasible placement.
4. A fast algorithm (running in polynomial time) for decoding is available.

Some of the coding schemes in the literature satisfy all of the above four
properties, but others do not.

A standard coding scheme is a permutation of n rectangles, which specifies
an order of placing rectangles one by one according to a certain decoding rule.
The number of all permutations is n!, and every permutation corresponds to
a placement without mutual overlap. In order to find a good permutation
among them, heuristics and metaheuristics are often used. A typical heuris-
tics is just sorting the rectangles by some criteria; e.g., decreasing width,
decreasing height, decreasing perimeter and decreasing area. In other cases,
good permutations are searched by local search or metaheuristics. The corre-
sponding placements are then computed by decoding algorithms, which are
also called placement rules; e.g., first fit [18], bottom left [6], and best fit [15]

Hybrid Metaheuristics for Packing Problems 189

 : 1 2 3 4 5 6

 : 4 5 1 3 6 2

1
2

3

4 5
6

σ+

σ−

Fig. 2. A sequence pair σ = (σ+, σ−) and its placement

algorithms. We should note that, for a given permutation, different decoding
algorithms may give different placements. It is therefore very important to
choose a good decoding algorithm.

There are other types of coding schemes. All the schemes we explain here-
after specify relative positions between each pair of rectangles Ii and Ij (i.e.,
one of the four inequalities of (3)). The placement for a coded solution is
defined as the best one among those satisfying the constraints posed by the
coded solution.

Sequence Pair Most well-known in this category is perhaps the sequence
pair coding scheme [45]. A sequence pair is a pair of permutations σ = (σ+, σ−)
of {1, 2, . . . , n}, where σ+(l) = i (equivalently σ−1

+ (i) = l) means that rectan-
gle Ii is in the lth position of permutation σ+. Permutation σ− is similarly
defined. A sequence pair σ = (σ+, σ−) specifies which of the four conditions
in (3) holds for each pair of Ii and Ij , based on the partial orders �x

σ and �y
σ

defined by

i �x
σ j ⇐⇒ σ−1

+ (i) ≤ σ−1
+ (j) and σ−1

− (i) ≤ σ−1
− (j),

i �y
σ j ⇐⇒ σ−1

+ (i) ≥ σ−1
+ (j) and σ−1

− (i) ≤ σ−1
− (j).

This says that, if i appears before j in both σ+ and σ−, then i �x
σ j, i.e., Ii

is placed to the left of Ij , while if i appears after j in σ+, but before j in σ−,
then i �y

σ j, i.e., Ii is placed under Ij . For example, in Fig. 2, “1 is placed
before 2 in both permutations, and hence 1 is placed to the left of 2,” “2 is
placed before 5 in σ+ and after 5 in σ−, and hence 2 is placed above 5” and
so on. Exactly one of i �x

σ j, j �x
σ i, i �y

σ j, j �y
σ i always holds for any pair

of Ii and Ij , and the constraints in (3) are specified as follows:

xi + wi ≤ xj if i �x
σ j, xj + wj ≤ xi if j �x

σ i,

yi + hi ≤ yj if i �y
σ j, yj + hj ≤ yi if j �y

σ i. (4)

Decoding Algorithms Once we are given a sequence pair, we can compute
a best placement satisfying the constraints (1), (2) and (4) in polynomial
time; e.g., Murata et al. [45] proposed an O(n2) time decoding algorithm,
Takahashi [56] improved it to O(n log n), Tang et al. [57] further improved
it to O(n log log n). Here, we briefly explain basic ideas in these algorithms.
From the definition, we can obtain a feasible placement even if we compute

190 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

the x and y coordinates separately; thus, we discuss only the x direction. Let
us define a set Ji for each rectangle Ii as follows:

Ji = {j | σ−1
+ (j) < σ−1

+ (i) and σ−1
− (j) < σ−1

− (i)}.

Then, the horizontal coordinates of each rectangle Ii can be computed by

xi =
{
0, if Ji = ∅
maxj∈Ji

{xj + wj}, otherwise. (5)

If we compute (5) naively for all i, it takes O(n2) time. But it can be reduced
to O(n log n) by using a binary search tree as data structure.

Other Coding Schemes There are other coding schemes. One traditional
coding scheme is to represent a solution by a binary tree with n leaves [53],
which correspond to rectangles. Each internal node has a label ‘h’ or ‘v’, where
h stands for horizontal and v stands for vertical. In this scheme, one of the
four relative locations in (3) is retrieved for each pair of rectangles as follows:
Let u be the least common ancestor of Ii and Ij . If u has label ‘h’ and Ii is
a left descendant of u (equivalently Ij is a right descendant of u), then Ii is
placed to the left of Ij . If the label of u is ‘v’, then Ii is placed below Ij . For a
given binary tree, naive decoding algorithms can compute the best placement
satisfying the above constraints in O(n) time. Note however that this coding
scheme can represent only slicing structures; i.e., each placement obtained by
this representation always satisfies the guillotine cut constraint.

Guo et al. [27] and Chang et al. [16] also proposed coding schemes based on
tree structures called O-tree and B*-tree, respectively. Their coding schemes
can represent both of slicing and non-slicing structures, and compute the
corresponding placement in O(n) time.

Nakatake et al. [48] proposed another coding scheme called bounded slice-
line grid (BSG in short). BSG has a grid structure and each pair of rooms in
the grid represents one of the four relative positions. All the rectangles are as-
signed to rooms, where at most one rectangle can be assigned to each room. It
is argued that O(n) number of rooms are sufficient in practice. Thus, given a
coded solution (i.e., an assignment of rectangles to rooms), the corresponding
placement can be obtained in O(n) time. A hybrid metaheuristic algorithm
using BSG coding scheme was proposed by Imahori et al. [33].

2.3 Local Search and Simple Metaheuristics

In this section, we explain the general idea of local search (LS in short). LS
starts from an initial solution and repeats the replacement of the current
solution with a better solution in its neighborhood until no better solution
is found in the neighborhood. Here we focus on the LS for the strip packing
problem of rectangles, which is based on sequence pairs, though it can be
easily generalized to other settings.

Hybrid Metaheuristics for Packing Problems 191

Algorithm LS
Input: Widths wi and heights hi, i = 1, 2, . . . , n, of rectangles

and the width W ∗ of the container.
Output: A placement of all rectangles.

Step 1 (initialization): Construct an initial sequence pair σ = (σ+, σ−).
Compute the placement v(σ) and its objective value z(σ) corre-
sponding to σ, and let v := v(σ) and z := z(σ), where v and z
denote the incumbent solution and its value, respectively.

Step 2 (local search): Select a new σ′ ∈ N(σ), where N(σ) denotes
the neighborhood of σ, and compute v(σ′) and z(σ′). If z(σ′) < z
holds, then let v := v(σ′), z := z(σ′), σ := σ′ and return to
Step 2. If there is no new sequence pair left in N(σ), go to Step 3;
otherwise return to Step 2.

Step 3 (termination): Output v, and halt.

The solution output in Step 3 is locally optimal in neighborhood N(σ).
The search space of the above LS is the set of sequence pairs, whose size

is (n!)2. An initial sequence pair is often generated randomly, but it is also
possible to generate it by some heuristic algorithm. The quality of the solutions
generated during the search is evaluated by a given evaluation function z(σ).
It may be equal to the objective function or may be modified from it to make
the search more effective.

Standard Neighborhoods The performance of LS critically depends on
how the neighborhood is designed. N(σ) is commonly defined as the set of
sequence pairs obtained from σ by applying certain local operations. Typical
operations are shift, swap and swap* [31, 32, 45], defined as follows.

1. Shift: This operation moves an element i in σ+ (or σ−) to the first
position or to the next position of an element j. The shift neighborhood is
defined by applying this to all pairs of i and j. If only one of σ+ or σ− is
considered, it is the single-shift neighborhood, while if each shift operation is
applied to both σ+ and σ−, then it is the double-shift neighborhood. The size
of single-shift neighborhood is O(n2) since all pairs of i and j are considered.
The size of double-shift neighborhood is O(n3) if the element j is selected in
σ+ and σ− independently. On the other hand, if the same element j is always
selected in both σ+ and σ−, then the size becomes O(n2). In this case, the
element i is inserted before and after j, respectively, thereby examining four
positions for each j. This is called the limited double-shift neighborhood.

2. Swap: This operation exchanges the positions of i and j in σ+ (or
in σ−). The single-swap neighborhood and double-swap neighborhood are de-
fined similarly to the case of shift neighborhood. The sizes of the resulting
neighborhoods are O(n2).

3. Swap*: Let i and j in σ+ satisfy σ+(α) = i and σ+(β) = j, with
α < β. Then for each γ with α ≤ γ < β, i and j are moved to location γ in

192 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

the manner σ′
+(γ) = j and σ′

+(γ + 1) = i, while keeping the same relative
positions of other elements. This swap* operation can also be defined for σ−.
The swap* operations are usually applied to only one of σ+ and σ−, yielding
the swap* neighborhood. If all combinations of i, j, γ are considered, its size
becomes O(n3).

The effects of these operations may be intuitively explained as follows,
where we assume for simplicity that Ii is constrained to the left of Ij by σ.
A shift operation applied to σ+ changes the relative positions of Ii and Ij to
“Ij above Ii”, causing side effects on relative positions between Ii and other
rectangles. A single-swap operation on σ+ (resp., σ−) changes the relative
position “Ii to the left of Ij” to “Ij above Ii” (resp., “Ii above Ij”). On the
other hand, a double-swap operation exchanges only the locations of Ii and Ij ,
without changing the relative positions of other rectangles. A swap* operation
brings Ii and Ij together to their middle locations specified by γ.

Evaluation Function As an example of defining z(σ), we compute the
placement of all rectangles by a decoding algorithm and use the height of the
container

ymax = max
Ii∈I

{yi + hi},

and the maximum x coordinate,

xmax = max
Ii∈I

{xi + wi}.

For some sequence pair, it may happen that xmax > W ∗ holds, that is, there
exists a rectangle that protrudes from the strip width. Penalizing such infea-
sibility, the following evaluation function is defined.

z(σ) = ymax + M ×max{0, xmax −W ∗}, (6)

where M is a large constant.
As we may frequently encounter z(σ′) = z in Step 2 of LS, some mecha-

nisms to break such ties are usually incorporated.

Metaheuristics In general, if LS is applied only once, many solutions
of better quality may remain unvisited in the search space. To improve the
situation, many variants of LS have been developed, and their frameworks are
called metaheuristics. The iterated local search (ILS) [36] is one of the simplest
metaheuristic approaches, in which many initial solutions are generated by
slightly perturbing a good solution obtained during the search so far. In order
to improve the performance of ILS, it is important to generate initial solutions
which retain some features of good solutions. It may also be necessary to
introduce a mechanism that avoids a cycling of solutions.

2.4 Hybrid Metaheuristics for Rectangle Packing

We now describe a hybrid metaheuristic algorithm proposed by [32] for the
rectangle packing problem, which is based on the sequence pair coding scheme.

Hybrid Metaheuristics for Packing Problems 193

We first explain some ideas to decrease the neighborhood size, and then show
efficient evaluation algorithms of dynamic programming.

Critical Paths and Neighborhood Reductions As noted in Sect. 2.3,
the size of the shift neighborhood is O(n2) or O(n3). In order to reduce this
size without sacrificing its effectiveness, we restrict (1) the choice of element i
that will be shifted in σ, and (2) the positions of j to where the i is inserted.

For this purpose, critical paths are utilized. Critical paths are defined for
both of the x (horizontal) and y (vertical) directions. We first consider the
y direction. Given a placement, a directed graph G = (V,E) and subsets
S, T ⊆ V are defined as follows:

V = {1, 2, . . . , n},
(i, j) ∈ E ⇐⇒ i �y

σ j and yi + hi = yj ,

S = {i | yi = 0}, T = {i | yi + hi = ymax}.

Then, a critical path is defined as a directed path in G, whose initial vertex s is
in S and final vertex t is in T . For any placement obtained from a sequence pair
σ, S and T are nonempty and there is at least one critical path. It is possible
to find all rectangles in critical paths in O(n) time. The definition for the x
direction is similar except for the following situation: If xmax ≤ W ∗, we need
not to reduce xmax, and hence critical paths of x direction are not considered.
To reduce the size of shift neighborhood, we shift only those rectangles Ii

in critical paths. It is easy to show that a solution is locally optimal in the
original shift neighborhood if no improved solution is found in the reduced
neighborhood.

In order to reduce neighborhood sizes further, the following neighborhoods
with some restrictions are considered.

(1) The single-shift neighborhood, whose size is O(n2).
(2) The limited double-shift neighborhood, whose size is O(n2).
(3) As another reduced double-shift neighborhood, an element i is

inserted only to the positions close to the current position of i
in σ+ and σ−, respectively. To control its size, the distance from
the original position to the new positions is restricted within a

√
n,

where a is a parameter. The size of this neighborhood is O(a2n)
for each i. This is called the proximal double-shift neighborhood.

Fast Decoding by Dynamic Programming Dynamic programming can
be effectively used to compute xmax’s for all solutions in the neighborhoods
as discussed above.

We first consider the double-shift neighborhood. Assume that a rectan-
gle Ii will be shifted. Here, a shift operation is regarded as consecutive two
operations: Deleting i from σ (the resulting sequence pair is denoted by σ̃),
and inserting i into other positions in σ̃+ and σ̃− of σ̃. For the sequence pair σ̃,
the corresponding placement is computed in O(n log n) time by a decoding

194 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

algorithm noted in Sect. 2.2. Let x̃j be the x coordinate of rectangle Ij and
x̃max = maxIj∈I\{Ii}{x̃j + wj}.

Now the element i is inserted to the αth position in σ+ and to the βth
position in σ−, respectively, and denote the resulting length of the critical
path by x̃max(α, β). It is important to know whether Ii is in the horizontal
critical path or not. If it is not in the critical path, then x̃max(α, β) is equal
to x̃max. Otherwise the length of the critical path that includes rectangle Ii

can be computed by dynamic programming. Let us define J̃ f
α,β , J̃b

α,β , f̃(α, β)
and b̃(α, β) for each pair of α and β such that 1 ≤ α, β ≤ n as follows:

J̃ f
α,β = {j | σ̃−1

+ (j) < α, σ̃−1
− (j) < β},

J̃b
α,β = {j | σ̃−1

+ (j) ≥ α, σ̃−1
− (j) ≥ β},

f̃(α, β): length of the critical path for the set {Ij | j ∈ J̃ f
α,β},

b̃(α, β): length of the critical path for the set {Ij | j ∈ J̃b
α,β}.

Based on the idea of dynamic programming, f̃(α, β) (respectively, b̃(α, β)) can
be computed by

f̃(α, β) =

⎧
⎨

⎩

0, if α = 1 or β = 1
max{f̃(α− 1, β), f̃(α, β − 1)}, if σ̃+(α− 1) �= σ̃−(β − 1)
f̃(α− 1, β − 1) + wj , if σ̃+(α− 1) = σ̃−(β − 1) = j,

(7)

b̃(α, β) =

⎧
⎨

⎩

0, if α = n or β = n

max{b̃(α + 1, β), b̃(α, β + 1)}, if σ̃+(α) �= σ̃−(β)
b̃(α + 1, β + 1) + wj , if σ̃+(α) = σ̃−(β) = j,

(8)

for all pairs of α = 1, 2, . . . , n and β = 1, 2, . . . , n (resp., for all pairs of
α = n, n − 1, . . . , 1 and β = n, n − 1, . . . , 1). See Fig. 3 as an example of
showing the computation order of f̃(α, β) and b̃(α, β). Each box in this figure
corresponds to f̃(α, β) (resp., b̃(α, β)) for each pair of α and β, and arrows
show how to compute each value. For the example of σ̃+ and σ̃− given in the
figure, the value of each shaded box is computed by the third formula of (7)
since σ̃+(α − 1) = σ̃−(β − 1) holds (resp., (8) since σ̃+(α) = σ̃−(β)) holds).
For the new placement after inserting Ii into the αth position of σ̃+ and the
βth position of σ̃−, the critical path length that includes rectangle Ii can be
computed by f̃(α, β) + wi + b̃(α, β). Thus,

x̃max(α, β) = max{x̃max, f̃(α, β) + wi + b̃(α, β)}. (9)

This algorithm takes O(n log n) time for the original decoding algorithm
applied to Ĩ and σ̃. The time to compute f̃(α, β) and b̃(α, β) for all pairs of α
and β by (7) and (8) is O(n2). The time to compute x̃max(α, β) by (9) is O(1)
for each pair of α and β, and it becomes O(n2) for all pairs of α and β. In
summary, the total computation time of this algorithm, i.e., time to evaluate
all solutions when rectangle Ii is shifted in the double-shift neighborhood is

Hybrid Metaheuristics for Packing Problems 195

0 0 0 0 0 0 0

0

0

0

0

000000

0

0

0

0

0

1 2 3 4 65 1 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

6

α α

β β

(a) computation of f̃(α, β) (b) computation of b̃(α, β)

(σ̃+ : 1, 2, 3, 4, 5, σ̃− : 3, 1, 5, 4, 2.)

Fig. 3. An example of computing f̃(α, β) and b̃(α, β)

O(n2). This implies that it takes O(1) amortized time to evaluate one coded
solution in the double-shift neighborhood. The space complexity of this DP
algorithm is O(n2).

We then consider the limited double-shift neighborhood. As in the above
algorithm, an element i is deleted from σ and the placement for σ̃ is computed.
In this case, the f̃(α, β) and b̃(α, β) only for necessary pairs of α and β should
be computed. That is, when the element i is inserted before or after j =
σ̃+(α− 1) = σ̃−(β − 1) in σ̃+ and σ̃−, respectively, we only need to compute
f̃(α − 1, β − 1), f̃(α − 1, β), f̃(α, β − 1) or f̃(α, β). However, these can be
immediately given by f̃(α − 1, β − 1) = f̃(α − 1, β) = f̃(α, β − 1) = x̃j and
f̃(α, β) = x̃j + wj . Thus the computation time for each solution is O(1). The
case of b̃(α, β) is similar.

To evaluate solutions obtainable in the single-shift neighborhood, where i
is shifted in σ+, we compute f̃(α, β) for all 1 ≤ α ≤ n and β = σ−1

− (i) by

f̃(α, β) =

⎧
⎨

⎩

max{f̃(α− 1, β), x̃j′ + wj′}, if σ̃−1
− (j′) ≤ β − 2

x̃j′ + wj′ , if σ̃−1
− (j′) = β − 1

f̃(α− 1, β), otherwise,
(10)

where j′ = σ̃+(α− 1). Similar formula can be derived if i is shifted in σ−. In
both cases, the time to compute f̃(α, β) for all necessary α and β is O(n).

To evaluate solutions in the proximal double shift neighborhood, we com-
pute f̃(α, β) for all αl ≤ α ≤ αu and βl ≤ β ≤ βu, where αu − αl ≤ 2a

√
n

and βu − βl ≤ 2a
√

n hold. We first compute f̃(α, βl) for 1 ≤ α ≤ αu by (10)
and f̃(αl, β) for 1 ≤ β ≤ βu by the σ− version of (10). Then, (7) is used in
computing f̃(α, β) for all αl + 1 ≤ α ≤ αu and βl + 1 ≤ β ≤ βu. Therefore,
f̃(α, β) for all necessary α and β can be computed in O(a2n) time.

196 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

Table 1. Comparison of three algorithms for the rectangle packing problem

BLFDW SA-BLF HM-SP
category n ratio time ratio time ratio time

C1 17 89 < 0.1 96 42 97.56 10
C2 25 84 < 0.1 94 144 93.75 15
C3 29 88 < 0.1 95 240 96.67 20
C4 49 95 < 0.1 97 1980 96.88 150
C5 73 95 < 0.1 97 6900 97.02 500
C6 97 95 < 0.1 97 22920 96.85 1000
C7 197 95 0.64 96 250860 96.55 3600

CPU PentiumPro PentiumPro Pentium3
clock freq. 200 MHz 200 MHz 1.0 GHz

In summary, all solutions in the limited and proximal double-shift neigh-
borhoods can be evaluated in O(n log n)+O(a2n) time for each shifted i. Thus
the amortized computation time for one coded solution becomes O(log n).

2.5 Computational Results

We give some computational results of heuristic, metaheuristic, and hybrid
metaheuristic algorithms on test instances given by Hopper and Turton [29],
which is a well known benchmark used in the literature (e.g., [15, 29, 32]).
There are seven different categories called C1, C2, . . . , C7 with the number
of rectangles ranging from 17 to 197, where each category has three instances.
We compare the following three algorithms: (1) A heuristic algorithm BLF-
DW (bottom left fill with decreasing width) proposed by Baker et al. [6] and
implemented by Hopper and Turton [29] (denoted BLFDW), (2) a simulated
annealing algorithm with BLF algorithm by Hopper and Turton [29] (denoted
SA-BLF) and (3) a hybrid metaheuristic algorithm based on ILS and dynamic
programming by Imahori et al. [32] (denoted HM-SP). Results are shown in
Table 1. Column “ratio” shows the average of the following ratio,

100× (total area of rectangles)
(output value of H)×W ∗ ,

(i.e., the larger the better). Column “time” shows the computation time in
seconds for one instance, where the CPUs used for the computation are given
in the row “CPU”. Based on the benchmark results of SPECint from SPEC
web page (http://www.specbench.org/), the Pentium3 1.0 GHz is about six
times faster than the PentiumPro 200 MHz.

From the table, we observe that BLFDW (i.e., a heuristic algorithm) is
much faster than others, but the quality of output solutions is slightly worse.
By using (hybrid) metaheuristics, it is possible to attain better quality of

Hybrid Metaheuristics for Packing Problems 197

solutions. We also observe that HM-SP is faster than SA-BLF to attain similar
quality.

3 Packing Soft Rectangles

In this section we assume that all rectangles are soft. Namely, the width wi

and the height hi of rectangle Ii can be adjusted within given constraints. For
example, the constraints may specify their lower and upper bounds:

wL
i ≤ wi ≤ wU

i ,

hL
i ≤ hi ≤ hU

i . (11)

We may also add the constraint that the aspect ratio hi/wi is bounded between
its lower bound rL

i and upper bound rU
i :

rL
i wi ≤ hi ≤ rU

i wi. (12)

Another type of constraint common in applications is that each rectangle Ii

must have either a given perimeter Li or a given area Ai (or both):

2(wi + hi) ≥ Li, (13)
wihi ≥ Ai. (14)

In addition, we may consider that the locations (xi, yi) of rectangles Ii are
predetermined in some intervals:

xL
i ≤ xi ≤ xU

i ,

yL
i ≤ yi ≤ yU

i . (15)

To our knowledge, there is not much literature on the problem using soft
rectangles, except such papers as [17, 35, 46, 60] containing algorithms and
[47] containing a theoretical analysis, even though the problem has wide ap-
plications.

Applications can be found, for example, in VLSI floorplan design [17, 35,
45, 46, 60] and in resource constrained scheduling. In the VLSI design, each
rectangle represents a block of logic circuits consisting of a certain number of
transistors, which occupy certain area, and must have at least some perimeter
length to accommodate connection lines to other blocks. The shape of each
rectangle is adjustable, but is required to satisfy the constraints as stated
above. In a scheduling application, each rectangle may represent a job, to
be assigned to an appropriate position on the time axis (horizontal), where
its width gives the processing time of the job and its height represents the
amount of resource (per unit time) invested to process the job. In this case,
the area of the rectangle represents the total amount of resource consumed
by the job, which is again required to satisfy the above constraints.

198 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

In the following, we focus on the local search algorithm proposed by [30],
which is based on the sequence pair (defined in Sect. 2.2). It is described in
Sect. 3.1 that, given a sequence pair, the problem of computing the sizes and
placement of rectangles is formulated as a linear programming problem or
nonlinear programming problem (more exactly, convex programming prob-
lem) depending on the constraints and objective functions. Although these
mathematical programming algorithms are quite efficient, it still consumes
some amount of time, and it is carefully considered in Sect. 3.2 how to reduce
the neighborhood sizes. Finally, in Sect. 3.3, some computational results are
reported.

3.1 Problem Statement

As the objective function, we may choose to minimize the perimeter of the
container, i.e.,

minimize 2(W + H) (16)

or to minimize its area,
minimize WH, (17)

where W and H are the variables that satisfy

xi + wi ≤ W for all i,

yi + hi ≤ H for all i. (18)

In the strip packing problem, the width of the container is fixed to W = W ∗,
and its height H is minimized:

minimize H, (19)

under the constraints

xi + wi ≤ W ∗ for all i,

yi + hi ≤ H for all i. (20)

Therefore, if a sequence pair σ is specified, we are required to solve the
mathematical programming problem P (σ) to minimize objective function
(16), (17) or (19) under the constraints:

(11), (12), (13) (and/or (14)), (15), (18) (or (20)) for all i,

(4) for all i and j, (21)
xi, yi ≥ 0 for all i.

It is important to note that the feasible region defined by constraints (21)
is convex, as illustrated in Fig. 4. Therefore, if the objective function is convex,
we obtain a convex programming problem, and can solve it by existing efficient
algorithms (e.g., [12, 49]) (to be more precise, we need to resort to semidefinite

Hybrid Metaheuristics for Packing Problems 199

programming to handle constraints of type (14)). This is the case when we
want to minimize (16) or (19). The problem with objective function (17) is not
a convex programming problem, but is a so-called multiplicative programming
problem for which some efficient approaches are also known (e.g., [39]).

Fig. 4. Feasible region for the wi and hi of rectangle Ii

Two Test Problems From the above varieties, two simple problems will
be discussed in the following. The first type minimizes the perimeter of the
container under the perimeter constraints (13) of rectangles.

Pperi(σ) : minimize 2(W + H)
subject to (11), (13), (18) for all i

(4) for all i and j (22)
xi, yi ≥ 0 for all i.

This is a linear programming problem for each given sequence pair σ, and is
called the perimeter minimization problem.

The second type is the strip packing problem under the area constraints
(14) of rectangles, which is formulated as a convex programming problem.

Parea(σ) : minimize H + Ms

subject to (11), (14) for all i

xi + wi ≤ W ∗ + s for all i

yi + hi ≤ H for all i

(4) for all i and j (23)
s ≥ 0
xi, yi ≥ 0 for all i.

200 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

Here the variable s is introduced to keep the problem always feasible, by
adding penalty term Ms to the objective function (19) with a large positive
constant M . This is called the area minimization problem.

3.2 Neighborhood Reductions

Starting from the standard neighborhoods as described in Sect. 2.3, we con-
sider how to reduce their sizes further.

Critical Paths Given a placement v(σ), we consider horizontal and vertical
critical paths as described in Sect. 2.4. It is often attempted (e.g., see Sect. 2.4
and [31]) to restrict Ii to be in a critical path, while Ij can be any. We call the
resulting neighborhoods like single-swap critical neighborhood, swap* critical
neighborhood and so forth.

In handling soft rectangles, a placement v(σ) tends to have many critical
paths, since each rectangle is adjusted so that it directly touches horizon-
tally adjacent rectangles or vertically adjacent rectangles. As a result, the
restriction to critical paths is not very effective in reducing the neighborhood
size. To remedy this to some extent, we define the single-swap lower-bounding
critical neighborhood by restricting Ii to be in a critical path and to satisfy
wi = wL

i if the critical path is horizontal (or hi = hL
i if vertical), since such

a rectangle Ii cannot be shrunk any further. Similar argument applies also
to other types of neighborhoods, resulting in the single-shift lower-bounding
critical neighborhood and others.

Computational Comparison of Neighborhoods To evaluate the power
of the above neighborhoods, preliminary computational experiment was con-
ducted in [30] for the following neighborhoods, abbreviated as

Sg-shift: Single-shift neighborhood,
Db-shift: Double-shift neighborhood,
Sg-swap: Single-swap neighborhood,
Db-swap: Double-swap neighborhood,
SgCr-shift: Single-shift critical neighborhood (similarly for DbCr-shift,

SgCr-swap, DbCr-swap),
swap*: swap* neighborhood,
SgLb-shift: Single-shift lower-bounding critical neighborhood (simi-

larly for SgLb-swap and Lb-swap*),

According to the computational results, SgLb-swap appears to be reason-
ably stable and gives good results in most cases. However, it still requires
rather large computation time. To shorten its time, we further restrict rec-
tangles Ii and Ij to be swapped to those which are lower bounding (i.e.,
wi = wL

i or hi = hL
i holds depending on the direction of the critical path) and

are adjacent in some critical path. The resulting neighborhood is denoted as
follows.

SgAd-swap: Single-swap adjacent lower-bounding critical neighbor-
hood.

Hybrid Metaheuristics for Packing Problems 201

The quality of the solutions obtained by SgAd-swap is not good, but it con-
sumes very little time compared with others.

Further Elaborations To reduce the neighborhood sizes further while
maintaining high searching power, three more modifications were added.

The first idea is to look at a rectangle which belongs to both horizontal
and vertical critical paths. We call such a rectangle as a junction rectangle. It
is expected that removing a junction rectangle will break both the horizontal
and vertical critical paths, and will have a large effect of changing the current
placement. Thus we apply single-shift or double-swap operations to a junction
rectangle Ii with any other rectangles Ij which are not junctions (in the case of
double-swap we further restrict Ij to have a smaller area than Ii). We then ap-
ply these operations to all junction rectangles Ii. If an improvement is attained
in this process, we immediately move to local search with SgLb-swap neigh-
borhood for attaining further improvement. This cycle of “junction removals”
and “local search with SgLb-swap” is repeated until no further improvement
is attained. The resulting algorithms are denoted Jc(Sg-shift)+SgLb-swap
or Jc(Db-swap)+SgLb-swap, respectively, depending on which operation is
used to move the junction rectangle.

To improve the efficiency further, it was tried to replace the SgLb-swap
neighborhood in the above iterations with SgAd-swap, which was defined
at the end of the previous subsection. Using this neighborhood in place of
SgLb-swap, we obtain algorithms Jc(Sg-shift)+SgAd-swap or Jc(Db-swap)
+SgAd-swap.

The experiment (partially reported in [30]) shows that these four attain
similar quality, but the last one Jc(Db-swap)+SgAd-swap consumes much less
computation time than others.

The last idea is to make use of vacant areas existing in a given placement.
To find some of such vacant areas by a simple computation, we use the fol-
lowing property. Let the current sequence pair σ satisfy i �x

σ j and there is no
k such that i �x

σ k �k
σ j (i.e., i is immediately to the left of j). In this case, if

xi +wi < xj holds, there is some vacant area between i and j. We pick up the
largest one among such vacant areas, in the sense of maximizing xj−(xi+wi).
Let i∗ and j∗ be the resulting pair. Then we apply Sg-swap operations on σ+

between those i and j such that i ∈ σ+ is located in distance at most 5 from
i∗ (forward or backward, i.e., |σ−1

+ (i) − σ−1
+ (i∗)| ≤ 5), and j ∈ σ+ is located

in distance at most 5 from j∗ (forward or backward).
This neighborhood is derived by horizontal argument. Analogous argument

can also be applied vertically, and we consider the local search based on the
resulting two types of neighborhoods, denoted SgVc-swap.

We conducted an extensive preliminary experiment to find a best com-
bination of the above ideas. This is a difficult task, and we omit here the
details (some of the computational results are reported in [30]). There was no
clear winner, but we have chosen the following combined neighborhood as a
reasonable candidate.

202 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

Neighborhood A: Neighborhood Jc(Db-swap)+SgAd-swap with the
addition of neighborhood SgVc-swap.

In the experiment of the next section, the two neighborhoods in A are com-
bined in the following manner: First apply local search with Jc(Db-swap)+
SgAd-swap until a locally optimal solution is obtained, and then improve it
by local search with SgVc-swap. The best solution obtained is then output.

3.3 Computational Results

Benchmarks and Experiment The benchmarks2 known as ami49 and
rp100 were used. They involve 49 and 100 hard rectangles, respectively, whose
widths and heights are denoted w0

i and h0
i . These rectangles are then softened

for our experiment. In the case of the perimeter minimization problem, we set
the lower and upper bounds on widths and heights as follows.

wL
i = (1− e)w0

i , wU
i = (1 + e)w0

i

hL
i = (1− e)h0

i , hU
i = (1 + e)h0

i , (24)

where e is a constant like 0.1, 0.2, etc. The perimeter Li in (13) of each rec-
tangle Ii is set to Li = 2(w0

i + h0
i).

For the area minimization problem, we first set the areas Ai in constraint
(14) by Ai = w0

i h0
i for all i, the bounds on hi as in (24), and then the bounds

on wi by
wL

i = Ai/hU
i and wU

i = Ai/hL
i . (25)

The algorithm was coded in C language, and run on a PC using Pentium
4 CPU, whose clock is 2.60 GHz and memory size is 780 MB. The linear and
convex programming problems are solved by a proprietary software package
NUOPT3 of Mathematical Systems Inc., where the linear programming is
based on the simplex method and the convex programming is based on the
line search method.

Perimeter Minimization The first set of instances of the perimeter min-
imization problem (22) are generated from ami49 by setting constants e in
(24) to e = 0.0, 0.1, 0.2, 0.3, respectively. For each e, five runs are conducted
from independent random initial solutions and average data are given in Ta-
ble 2. The meaning of rows is as follows: Candidates: The number of solutions
σ tested, Improvements: The number of improvements attained in LS, Time:
CPU time in seconds, Density: Total area of rectangles over the area of con-
tainer, 2(W + H): Objective values. Note that Density and 2(W + H) are
given both the average and best values in five runs.

From these results we see that the local search could obtain reasonably
good solutions, except for the case of e = 0.0 (i.e., all rectangles are hard).

2 See the footnote in Sect. 2.1
3 http://www.msi.co.jp/english/

Hybrid Metaheuristics for Packing Problems 203

As we reduced the neighborhood size to a great extent, in order to make the
whole computation time acceptable, the resulting size appears not sufficient
for handling hard rectangles.

Table 2. Perimeter minimization problem with different e

Benchmarks e = 0.0 e = 0.1 e = 0.2 e = 0.3
Candidates 413.8 7877.6 12400.0 11472.2

Improvements 34.6 153.0 218.8 236.2
Time (secs) 28.0 641.8 1142.4 897.4

ami49 Density (avg.) 61.3 92.6 97.1 97.6
2(W + H) (avg.) 30536.8 24692.6 23439.8 22803.8
Density (best) 66.3 97.7 98.5 98.7

2(W + H) (best) 29288.0 23807.0 23373.6 23355.8

Table 3. Area minimization problem with fixed widths W ∗

Benchmarks W ∗ = 800 W ∗ = 1000 W ∗ = 1200
Candidates 4156.2 3200.6 2195.0

Improvements 241.2 184.2 140.4
Time (secs) 967.2 743.2 511.6

ami49 Density(avg.) 98.8 95.9 91.9
H (avg.) 8152.5 6744.5 5868.5

Density(best) 99.5 99.5 98.5
H (best) 8097.6 6479.5 5454.4

Area Minimization The area minimization problem (23) was solved for
three different W ∗ and e = 0.2, where five runs from random initial solutions
were again carried out. The results are shown in Table 3, where row H gives the
objective values of this problem. Although, in this case, the convex program-
ming problems Parea(σ) are used instead of the linear programming problems,
the computation time does not increase much, and very dense placements are
obtained in most of the tested instances.

Finally, a large benchmark rp100 with 100 rectangles was tested. Table 4
gives the results of problems (22) and (23) with e = 0.2 and W ∗ = 450 (in
the case of (23)). The obtained result for the area minimization is shown in
Fig. 5. Considering that 2–3 hours were consumed for each run, it appears
difficult to handle larger instances than these with this approach.

204 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

Fig. 5. Area minimization with rp100 (W ∗ = 450)

Table 4. Results with 100 rectangles

Benchmarks Perimeter Area
Candidates 35012 15933

Improvements 536 500
rp100 Time (secs) 7268.5 10101.5

Density(%) 97.6 98.8
Objectives 1777.6 461.4

4 Rectangles with Weights

The packing problem of rectangles with weights is also found in some appli-
cations, where each rectangle has weight di. In this case, the center of each
rectangle is given by (xi + wi/2, yi + hi/2), and constraints involving their
center of gravity

(xc, yc) =

(
1
D

∑

i

di(xi + wi/2),
1
D

∑

i

di(yi + hi/2)

)
,

where D =
∑

i di, may be added. The objective function to minimize may be
their kth moment (e.g., k = 1 or 2) around the center of gravity,

∑

i

di

(√
(xi + wi/2− xc)2 + (yi + hi/2− yc)2

)k

.

This type of problem can also be handled in the local search framework as
described in the previous section, in which the placement corresponding to a
given sequence pair can be computed by nonlinear programming. An attempt
in this direction is being made by [40]. Fig. 6 shows a solution obtained in

Hybrid Metaheuristics for Packing Problems 205

their preliminary experiment, where the center of gravity is constrained to be
the middle and the first moment is minimized. Note that darker rectangles
represent heavier items.

Fig. 6. Minimization of the first moment of rectangles with weights

5 Irregular Packing

In this section, we assume that given items are general polygons or arbi-
trary shapes that are not necessarily rectangular nor convex. Such problems
are called irregular packing or nesting problems (or sometimes called marker
making). Fig. 7 shows an example of packing nonconvex items for the bench-
mark known as “swim” (see Sect. 5.7). There are many practical applications,

Fig. 7. An example of packing nonconvex polygons

206 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

e.g., in the garment, shoe and ship building industries, and many variants
have been considered in the literature. Among them, the irregular strip pack-
ing problem has been extensively studied. Given n polygons and a rectangular
container (i.e., a strip) with constant width W ∗ and variable height H, this
problem asks to find a feasible placement of the given polygons into the strip
so as to minimize the height H of the strip. As in the case of the rectangle
packing problem, a placement is feasible if no polygon overlaps with any other
polygon or protrudes from the strip. It has three variations with respect to
the rotations of polygons: (1) rotations of any angles are allowed, (2) finite
number of angles are allowed, and (3) no rotation is allowed. (Note that case
(3) is a special case of (2) in which the number of given orientations of each
polygon is one.) In this section, we mainly focus on case (3) for simplicity.
In many practical applications such as textile industry, rotations are usually
restricted to 180 degrees because textiles have the grain and may have a draw-
ing pattern, while in such applications as glass, plastic etc., rotations of any
angles are allowed. As mentioned in [28, 44], small rotations of any angles
(e.g., a few degrees) in addition to 180 degrees are sometimes considered even
for textiles in order to make the placement efficient.

A big difference of irregular packing from rectangle packing is that the in-
tersection test between polygons is considerably more complex. Some heuristic
algorithms use approximation of the given shapes, while many of the recent
algorithms use a geometric technique called no-fit polygons, whose details will
be explained in Sect. 5.2.

A standard way of designing heuristics is to put polygons one by one into
the container according to a given sequence of all polygons. Most of the con-
struction heuristics are based on this scheme, e.g., [3, 13, 52], which can be
viewed as the irregular counterpart of the bottom-left heuristics for the rec-
tangular case. A recent heuristic algorithm by Burke et al. [14] is quick and
its solution quality is promising. It is also effective to apply local search (or
metaheuristics) to find good sequences of polygons that lead to good place-
ments when a construction algorithm is applied (i.e., a sequence is a coded
solution and the construction algorithm is a decoding algorithm) [25].

Among many heuristic and metaheuristic algorithms, we focus our atten-
tion on hybrid approaches with mathematical programming. Such approaches
seem to be effective in obtaining solutions of high quality especially when we
have sufficient computation time.

In the following, we first define the irregular strip packing problem in
Sect. 5.1, and then explain the idea of no-fit polygons in Sect. 5.2. In Sect. 5.3
we define some important subproblems, which are useful to solve the origi-
nal packing problem efficiently. Then in Sects. 5.4 and 5.5 we describe how
mathematical programming techniques are utilized for the irregular packing
problems. In Sect. 5.6 we briefly summarize metaheuristic algorithms incor-
porated with mathematical programming techniques, and finally in Sect. 5.7
we give some computational results of recent hybrid metaheuristics.

Hybrid Metaheuristics for Packing Problems 207

5.1 Irregular Strip Packing Problem

We are given a set P = {P1, P2, . . . , Pn} of polygons, and a rectangular con-
tainer (i.e., strip) C = C(W ∗,H) with a width W ∗ ≥ 0 and a height H,
where W ∗ is a constant and H is a nonnegative variable. We describe the
location of a polygon Pi by the coordinate vi = (xi, yi) of its reference point,
where the reference point is any point of the polygon (e.g., a vertex of the
polygon or the center of gravity; in the rectangular case, we set the bottom-
left corner to be the reference point). The vector vi = (xi, yi) is called the
translation vector for Pi. For convenience, we regard each polygon Pi and the
container C as the set of points (including both interior and boundary points),
whose coordinates are determined from the reference point put at the origin
O = (0, 0). Then, we describe the polygon Pi placed at vi by the Minkowski
sum Pi ⊕ vi = {p + vi | p ∈ Pi}. For a polygon S, let int(S) be the interior
of S, ∂S be the boundary of S, S̄ be the complement of S, and cl(S) be the
closure of S (i.e., the smallest closed set containing S). Then the irregular
strip packing problem (ISP) is formally described as follows.

(ISP) minimize H
subject to int(Pi ⊕ vi) ∩ (Pj ⊕ vj) = ∅, 1 ≤ i < j ≤ n

(Pi ⊕ vi) ⊆ C(W ∗,H), 1 ≤ i ≤ n
H ≥ 0,
vi ∈ R2, 1 ≤ i ≤ n.

We represent a solution of problem (ISP) by an n-tuple v = (v1,v2, . . . ,vn),
which is the essential part of the decision variables because the minimum
height H of the container is determined by

Hmin(v) = max{y | (x, y) ∈ Pi ⊕ vi, Pi ∈ P}
−min{y | (x, y) ∈ Pi ⊕ vi, Pi ∈ P}

and (Pi ⊕ vi) ⊆ C(W ∗,Hmin(v)) holds for all Pi ∈ P if and only if

W ∗ ≥ max{x | (x, y) ∈ Pi ⊕ vi, Pi ∈ P}
−min{x | (x, y) ∈ Pi ⊕ vi, Pi ∈ P}.

5.2 Intersection Test and No-Fit Polygon

We consider in this section how to test the intersection between polygons.
One popular idea for speeding up this test is to represent the polygons ap-
proximately. Some heuristic algorithms [5, 51] are based on raster (or bitmap)
representation of the given polygons. Main drawback of this approach is that
an appropriate choice of raster size is not easy. If the raster is rough, the
intersection test is quick, but it will suffer from inaccuracy caused by the ap-
proximation inherent in the raster representation. On the other hand, if the

208 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

raster is minute, the intersection test becomes expensive, and the memory
space to keep the raster representation of polygons becomes huge.

Okano [50] proposed a technique that approximates polygons by a set of
parallel line segments, which is called scanline representation. (His algorithm
was designed for the two-dimensional bin packing problem, but it is applica-
ble to various irregular packing problems including (ISP).) The number of
scanlines is usually much smaller than that of pixels in a raster representation
when the same resolution is required.

One of the most popular geometric techniques used for the intersection
test is no-fit polygon. This concept was introduced by Art [4] in 1960s, who
used the term “shape envelope” to describe the positions where two polygons
can be placed without intersection. This technique is used in many algorithms
for (ISP) [1, 3, 10, 25, 26, 52], where Albano and Sapuppo [3] seems to be the
first who used the term “no-fit polygon.” This concept is also used for other
problems such as robot motion planning and image analysis, and is called
in various names such as Minkowski sums and configuration-space obstacle.
Practical algorithms to calculate the no-fit polygon of two nonconvex polygons
have been proposed, e.g., by Bennell et al. [11] and Ramkumar [54].

The no-fit polygon NFP(Pi, Pj) of an ordered pair of two polygons Pi and
Pj is defined by

NFP(Pi, Pj) = int(Pi)⊕ (−int(Pj)) = {u−w | u ∈ int(Pi), w ∈ int(Pj)}.

When the two polygons are clear from the context, we may simply use NFP
instead of NFP(Pi, Pj). The no-fit polygon has the following important prop-
erties:

• Pj ⊕ vj overlaps with Pi ⊕ vi if and only if vj − vi ∈ NFP(Pi, Pj).
• Pj ⊕ vj touches Pi ⊕ vi if and only if vj − vi ∈ ∂NFP(Pi, Pj).
• Pi⊕vi and Pj ⊕vj are separated if and only if vj −vi �∈ cl(NFP(Pi, Pj)).

Hence the problem of checking whether two polygons overlap or not becomes
an easier problem of checking whether a point is in a polygon or not. Fig. 8
shows an example of NFP(Pi, Pj).

Fig. 8. An example of NFP(Pi, Pj), where O is the origin

Hybrid Metaheuristics for Packing Problems 209

When Pi and Pj are both convex, ∂NFP(Pi, Pj) can be computed by the
following simple procedure: We first place the reference point of Pi at the
origin O = (0, 0), and slide Pj around Pi having it keep touching with Pi.
Then the trace of the reference point of Pj is ∂NFP(Pi, Pj).

We can also check whether a polygon Pi protrudes from the container C
or not similarly by using NFP(C̄, Pi), which is the complement of a rectangle
whose boundary is the trajectory of the reference point of Pi when we slide
Pi inside C having it keep touching with C. (Gomes and Oliveira [25, 26] call
NFP(C̄, Pi) inner-fit rectangle.)

5.3 Overlap Minimization, Compaction and Separation

In this section, we introduce three important subproblems of (ISP), overlap
minimization, translational compaction and separation problems [34, 41]. Al-
gorithms for these problems will be discussed in the next section.

Overlap Minimization Problem For this problem, infeasible placements
that have overlap and/or protrusion are allowed, and the height H of the
container C is a given constant (e.g., temporarily fixed in a heuristic algo-
rithm). For a given placement v = (v1,v2, . . . ,vn), let fij(v) be a function
that measures the amount of overlap of Pi ⊕ vi and Pj ⊕ vj , and gi(v) be a
function that measures the amount of protrusion of Pi⊕vi from the container
C(W ∗,H). Then the objective of this problem is to find a placement v ∈ R2n

that minimizes the total amount of overlap and protrusion

F (v) =
∑

1≤i<j≤n

fij(v) +
∑

1≤i≤n

gi(v).

It is not hard to see that this problem is NP-hard.

Translational Compaction Problem This problem is formulated as a
two-dimensional motion planning problem. We are given a feasible placement
v (i.e., v has no overlap or protrusion). The polygons and the container can
move (translate) simultaneously, and the height H of the container can change.
During a legal motion, the polygons cannot overlap each other nor protrude
from the container. The objective is to minimize the height H of the container.
See an example in Fig. 9.

Li and Milenkovic [41] showed that this problem is PSPACE-hard. They
also considered more general formulation, and mentioned different possibilities
of utilizing this problem; e.g., to make a big hole in the given placement by
moving polygons away from a given point.

Translational Separation Problem We are given an infeasible placement
v (i.e., some polygons overlap and/or protrude from the container). The prob-
lem is to find a set of translations of the polygons that eliminates all overlaps
and protrusion while minimizing the total amount of translation.

Li and Milenkovic [41] showed that simple special cases of this problem
are NP-hard.

210 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

Fig. 9. An example of translational compaction

5.4 Nonlinear Programming Approach to Overlap Minimization

Imamichi et al. [34] considered the overlap minimization problem as an un-
constrained nonlinear program, and incorporated a nonlinear programming
technique in their heuristic algorithm. They defined the amount of overlap
fij(v) and protrusion gi(v) based on the following concept of penetration
depth.

The penetration depth (also known as the intersection depth) is an im-
portant notion used in robotics, computer vision and so on [2, 19, 38]. The
penetration depth δ(Pi ⊕ vi, Pj ⊕ vj) of two overlapping polygons Pi and Pj

placed at vi and vj , respectively, is defined to be the minimum translational
distance to separate them. If two polygons do not overlap, their penetration
depth is zero. The formal definition of the penetration depth is given by

δ(Pi ⊕ vi, Pj ⊕ vj) = min{||u|| | int(Pi ⊕ vi) ∩ (Pj ⊕ vj ⊕ u) = ∅,u ∈ R2},

where || · || denotes the Euclidean norm. In other words, this is the minimum
distance from the point vj − vi to the boundary ∂NFP(Pi, Pj) of the no-fit
polygon. See an example in Fig. 10, where arrow u is the minimum translation
vector that separates the two polygons.

Fig. 10. The computation of penetration depth via no-fit polygon

Then the amounts of overlap and protrusion are defined by

fij(v) = δ(Pi ⊕ vi, Pj ⊕ vj)a, 1 ≤ i < j ≤ n

gi(v) = δ(cl(C̄), Pi ⊕ vi)a, 1 ≤ i ≤ n,

Hybrid Metaheuristics for Packing Problems 211

where a > 0 is a parameter. These functions are continuous, and values fij(v)
and gi(v) as well as ∇fij(v) and ∇gi(v) for any placement v can be computed
efficiently by using no-fit polygons. They set a = 2 for the following two
reasons:

• At the boundary of no-fit polygons (i.e., when two polygons touch each
other), fij(v) and gi(v) are differentiable if and only if a > 1.

• The formulae of ∇fij(v) and ∇gi(v) become the simplest when a = 2.

Then the problem becomes an unconstrained quadratic programming
problem (e.g., [12]), for which many efficient algorithms for finding locally op-
timal solutions exist; e.g., quasi-Newton method, conjugate gradient method,
etc.

5.5 Linear Programming Approach to Translational Compaction
and Separation

Li and Milenkovic [41] proposed linear programming (LP) approaches for
translational compaction and separation problems. Similar ideas are also used
in [10, 26, 55]. We first explain their method for compaction.

The main idea is to restrict the search to a convex subregion of the origi-
nal problem, which is realized by adding artificial linear constraints, in order
to apply linear programming methods. They call the heuristic rules to add
such constraints locality heuristics. The subregion should contain the given
placement, and a larger region is preferable.

Let v(0) be the given placement and ∆v be the translation added to v(0)

(i.e., v(0) is the given constant, ∆v is the decision variable, and v(0) + ∆v
gives the modified placement). Among the constraints of problem (ISP), only
the first one

int(Pi ⊕ (v(0)
i + ∆vi)) ∩ (Pj ⊕ (v(0)

j + ∆vj)) = ∅, 1 ≤ i < j ≤ n,

which is equivalent to

(v(0)
j + ∆vj)− (v(0)

i + ∆vi) �∈ NFP(Pi, Pj), 1 ≤ i < j ≤ n,

is nonconvex, and others are convex linear. The objective of the locality heuris-
tics is to define, for each pair of Pi and Pj , a subset Sij(v(0)) ⊆ NFP(Pi, Pj)
that has the following properties: (1) convex, (2) large, and (3) contains
v

(0)
j − v

(0)
i . Then, for such subsets Sij(v(0)), it is not hard to see that the

following problem is a linear programming problem:

minimize H

subject to (v(0)
j + ∆vj)− (v(0)

i + ∆vi) ∈ Sij(v(0)), 1 ≤ i < j ≤ n

(Pi ⊕ (v(0)
i + ∆vi)) ⊆ C(W ∗,H), 1 ≤ i ≤ n

H ≥ 0,
∆vi ∈ R2, 1 ≤ i ≤ n.

212 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

Note that Li and Milenkovic [41] used a different objective function
∑

Pi∈P divi

in their LP formulation, where di is a desirable direction to move each polygon
Pi, and the above formulation is due to [10, 26].

Fig. 11 illustrates a subregion outside the no-fit polygon. The left figure
shows the given placement v

(0)
i and v

(0)
j of two polygons Pi and Pj , while

the right figure shows the corresponding position of v
(0)
j − v

(0)
i against no-fit

polygon NFP(Pi, Pj), and a convex set Sij(v(0)) ⊆ NFP(Pi, Pj) that satisfies
v

(0)
j − v

(0)
i ∈ Sij(v(0)).

Fig. 11. A convex subregion Sij(v
(0)) outside NFP(Pi, Pj)

The locality heuristic procedure in [41] defines the boundary of Sij(v(0))
as follows. Starting from an edge of NFP(Pi, Pj) close to4 v

(0)
j − v

(0)
i , it

walks along ∂NFP(Pi, Pj) in both clockwise and counterclockwise directions
(viewed from the origin), and the trace of the walk becomes the boundary
∂Sij(v(0)). When walking clockwise, ∂Sij(v(0)) should make only left turns
to keep Sij(v(0)) convex. If the next edge of NFP turns to the left (i.e., a
concave vertex of NFP), the walk follows it; otherwise, the walk extends the
current edge until it intersects with NFP. This procedure continues until it
can extend the current edge infinitely. The walk to the counterclockwise direc-
tion is similar. The resulting Sij(v(0)) can be different if the starting edge is
different. Gomes and Oliveira [26] suggest to choose a convex subregion whose
closest edge from v

(0)
j −v

(0)
i is most distant. Intuitively, this rule has an effect

of making more margin for compaction.
Given an optimal solution ∆v∗ to the above LP problem, we can repeat

the same procedure from the new placement v(1) = v(0) + ∆v∗. Hence we
can generate a sequence of improved placements v(0),v(1),v(2), . . . until the
objective values of v(k) and v(k+1) coincide. It is not hard to observe that any
convex combination of two consecutive placements tv(l) + (1 − t)v(l+1) (0 ≤

4 Li and Milenkovic [41] consider a special type of polygons called star-shaped,
and define the origins of no-fit polygons accordingly. Then the edge of the no-fit
polygon that crosses the line segment from the origin to the point v

(0)
j − v

(0)
i is

chosen as the starting edge. This is not necessarily the closest edge.

Hybrid Metaheuristics for Packing Problems 213

t ≤ 1, l = 0, 1, . . . , k) is feasible. Hence such a sequence of placements gives a
(piecewise linear) legal motion to the translational compaction problem.

Here it should be noted that having the constraints (v(0)
j +∆vj)− (v(0)

i +
∆vi) ∈ Sij(v(0)) for all pairs of polygons is not necessary in practice, and is
time consuming. Hence such constraints are usually imposed only for relatively
close pairs in the current placement [10, 41].

Similar technique is applicable to the translational separation problem. For
a given infeasible placement v(0), we can similarly define a convex subregion
Sij(v(0)) even for overlapping polygons; e.g., by making a walk starting from
an edge close to v

(0)
j − v

(0)
i , where the constraint v

(0)
j − v

(0)
i ∈ Sij(v(0))

cannot hold in this case. Then the objective of the resulting LP problem,
whose constraints are the same as the LP model for compaction, is to find a
feasible placement that is close to v(0).

If the above LP problem is infeasible, then no feasible placement is found.
To deal with such situations, Bennell and Dowsland [10] relax the violated
constraints slightly and solve the modified LP problem again; then repeat a
limited number of such steps. Gomes and Oliveira [26] consider a modified
formulation in which the objective is the sum of the penalties on violating
constraints (v(0)

j + ∆vj)− (v(0)
i + ∆vi) ∈ Sij(v(0)). This can be regarded as

an algorithm for a variant of the overlap minimization problem.

5.6 Hybrid Approaches

In this section, we summarize hybrid metaheuristic approaches for the irreg-
ular strip packing problem.

Imamichi et al. [34] proposed an iterated local search (ILS) algorithm, in
which the nonlinear programming technique in Sect. 5.4 is incorporated. (The
framework of ILS was explained in Sect. 2.3.) The core part of their ILS is
the algorithm for the overlap minimization problem. They fix the height H of
the container temporarily, and solve the overlap minimization problem. If a
feasible placement is found (resp., not found), they reduce (resp., increase) H
slightly, and solve the overlap minimization problem again. Such iterations are
repeated until some stopping criterion is met. They used the quasi-Newton
method for the nonlinear programming formulation of the overlap minimiza-
tion problem, explained in Sect. 5.4. Given an initial solution (to the overlap
minimization problem), the quasi-Newton method is applied, which can be
viewed as local search since it iteratively improves the current solution by ap-
plying slight modifications to it until a locally optimal solution is found. This
local search is iterated from different initial solutions, and the entire algorithm
is regarded as ILS. The perturbation for generating the next initial solution
is realized by a swap of the positions of two polygons, which are found by
a sophisticated algorithm based on no-fit polygons under the condition that
other polygons do not move.

214 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

There are other metaheuristic algorithms based on different formulations
of the overlap minimization problem. Umetani et al. [58] define the penalty
of two overlapping polygons to be the minimum translational distance in a
specified direction (e.g., horizontal or vertical direction) to separate them.
Egeblad et al. [22] define the penalty of two overlapping polygons to be their
overlapping area. In these papers, they devise efficient algorithms to find the
best position of a polygon when it is translated to a specified direction, and use
them to define neighborhood operations. Such efficient neighborhood search
algorithms are then incorporated in the guided local search framework in
both papers. They can be regarded as hybridization of metaheuristics and
algorithmic techniques of computational geometry.

Compaction approaches can modify given feasible placements to more ef-
ficient ones, but cannot perform wider search. This limitation is shown in [8],
which finds that the compaction of randomly generated solutions cannot com-
pete with local search. Thus, it seems meaningful to combine metaheuristics
with compaction/separation algorithms.

Bennell and Dowsland [10] proposed a hybrid approach of separation/com-
paction and tabu thresholding algorithm, whose original version without hy-
bridization was given in [9]. Their algorithm basically deals with the overlap
minimization problem whose objective function is similar to [58]. Their neigh-
borhood operation is to move a polygon to another position in the container.
Tabu thresholding [23] is a variant of tabu search. It consists of two phases
called the improving phase and the mixed phase, and these phases are al-
ternately repeated. The improving phase is a standard local search, while
nonimproving moves are allowed in the mixed phase. In the mixed phase, the
neighborhood is divided into subareas. In each move, one of the subareas is
chosen and the best neighbor in it is chosen even if it is worse than the cur-
rent solution. They apply separation and compaction for the locally optimal
solutions obtained after improving phases, but they limit the application of
separation/compaction only for promising solutions because it is computa-
tionally expensive.

Gomes and Oliveira [26] proposed a hybrid approach of separation/com-
paction with simulated annealing. They limit the search space to feasible
placements, and allow infeasible placements only when trial solutions are gen-
erated by the neighborhood operation, where they adopt the swap neighbor-
hood (i.e., the positions of the two polygons are exchanged). Whenever a trial
solution is generated, separation and compaction algorithms are applied, and
the new placement is evaluated by the height H of the container if it is feasible,
and is discarded if separation fails.

5.7 Computational Results

We briefly report some computational results of algorithms which give high
quality solutions. They are (1) the iterated local search incorporated with
quasi-Newton method (denoted as ILSQN) proposed in [34], (2) the simulated

Hybrid Metaheuristics for Packing Problems 215

annealing incorporated with separation and compaction (denoted as SAHA)
proposed in [26], and (3) the guided local search (denoted as 2DNest) proposed
in [22]. The instances are available from the ESICUP web site.5 For these
instances, rotations of fixed degrees are allowed.

Table 5. Comparison of three algorithms for the irregular strip packing problem

instance NDP TNP ANV ILSQN SAHA 2DNest
EF(%) time(s) EF(%) time(s) EF(%) time(s)

ALBANO 8 24 7.25 *88.16 1200 87.43 2257 87.44 600
DAGLI 10 30 6.30 *87.40 1200 87.15 5110 85.98 600
DIGHE1 16 16 3.87 99.89 600 *100.00 83 99.86 600
DIGHE2 10 10 4.70 99.99 600 *100.00 22 99.95 600
FU 12 12 3.58 90.67 600 90.96 296 *91.84 600
JAKOBS1 25 25 5.60 86.89 600 †78.89 332 *89.07 600
JAKOBS2 25 25 5.36 *82.51 600 77.28 454 80.41 600
MAO 9 20 9.22 83.44 1200 82.54 8245 *85.15 600
MARQUES 8 24 7.37 89.03 1200 88.14 7507 *89.17 600
SHAPES0 4 43 8.75 *68.44 1200 66.50 3914 67.09 600
SHAPES1 4 43 8.75 *73.84 1200 71.25 10314 *73.84 600
SHAPES2 7 28 6.29 *84.25 1200 83.60 2136 81.21 600
SHIRTS 8 99 6.63 *88.78 1200 86.79 10391 86.33 600
SWIM 10 48 21.90 *75.29 1200 74.37 6937 71.53 600
TROUSERS 17 64 5.06 89.79 1200 *89.96 8588 89.84 600
CPU Xeon Pentium4 Pentium4
clock freq. 2.8 GHz 2.4 GHz 3.0 GHz
#runs 10 20 20

Table 5 shows their efficiency in % and computation time in seconds, where
the efficiency of a solution is measured by the ratio

∑
Pi∈P(area of Pi)/W ∗H,

which is shown in column “EF.” The results were taken from their original
papers unless otherwise stated. (The results of ILSQN are those reported in
the technical report version of [34].) Note that the stopping criteria of these
algorithms are different; column “time” shows the time limit of each run
for ILSQN and 2DNest, while it shows the average computation time of all
runs for SAHA. Column NDP, TNP and ANV show the number of different
polygons, the total number of polygons, and the average number of vertices of
different polygons, respectively. The value with “†” has been corrected from
the one reported in [26] according to the information sent from the authors.
The best results among the three algorithms are marked with “∗.” From the
table, we can observe that ILSQN is somewhat better than the others.

5 http://paginas.fe.up.pt/~esicup/

216 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

References

1. Adamowicz M, Albano A (1976) Nesting two-dimensional shapes in rectangular
modules, Computer-Aided Design 8:27-33

2. Agarwal PK, Guibas LJ, Har-Peled S, Rabinovitch A, Sharir M (2000) Penetra-
tion depth of two convex polytopes in 3D, Nordic Journal of Computing 7:227–
240

3. Albano A, Sapuppo G (1980) Optimal allocation of two-dimensional irregular
shapes using heuristic search methods, IEEE Transactions on Systems, Man
and Cybernetics 10:242–248

4. Art Jr. RC (1966) An approach to the two-dimensional irregular cutting stock
problem, Technical Report 36-Y08, IBM Cambridge Science Center

5. Babu AR, Babu NR (2001) A genetic approach for nesting of 2-D parts in 2-D
sheets using genetic and heuristic algorithms, Computer-Aided Design 33:879–
891

6. Baker BS, Coffman Jr. EG, Rivest RL (1980) Orthogonal packing in two di-
mensions, SIAM Journal on Computing 9:846–855

7. Beltrán JD, Calderón JE, Cabrera RJ, Pérez JAM, Moreno-Vega JM (2004)
GRASP/VNS hybrid for the strip packing problem, In: Proceedings of the First
International Workshop on Hybrid Meta-heuristics (HM04), 79–90

8. Bennell JA (1998) Incorporating problem specific knowledge into a local search
framework for the irregular shape packing problem, Ph.D. thesis, European
Business Management School, University of Wales, Swansea

9. Bennell JA, Dowsland KA (1999) A tabu thresholding implementation for
the irregular stock cutting problem, International Journal of Production Re-
search 37:4259–4275

10. Bennell JA, Dowsland KA (2001) Hybridising tabu search with optimisation
techniques for irregular stock cutting, Management Science 47:1160–1172

11. Bennell JA, Dowsland KA, Dowsland WB (2001) The irregular cutting-stock
problem—a new procedure for deriving the no-fit polygon, Computers & Op-
erations Research 28:271–287

12. Bertsekas DP (1999) Nonlinear Programming (2nd edition), Athena Scientific.
13. B�lażewicz J, Hawryluk P, Walkowiak R (1993) Using a tabu search for

solving the two-dimensional irregular cutting problem, Annals of Operations
Research 41:313–325

14. Burke E, Hellier R, Kendall G, Whitwell G (2006) A new bottom-left-fill heuris-
tic algorithm for the two-dimensional irregular packing problem, Operations
Research 54:587–601

15. Burke EK, Kendall G, Whitwell G (2004) A new placement heuristic for the
orthogonal stock-cutting problem, Operations Research 52: 655–671

16. Chang YC, Chang YW, Wu GM, Wu SW (2000) B*-trees: a new representa-
tion for non-slicing floorplans, In: Proceedings of the 37th Design Automation
Conference, 458–463

17. Chu CCN, Young EFY (2004) Nonrectangular shaping and sizing of soft mod-
ules for floorplan-design improvement, IEEE Transactions Computer Aided De-
sign of Integrated Circuits and Systems 23:71–79

18. Coffman Jr. EG, Garey MR, Johnson DS, Tarjan RE (1980) Performance
bounds for level-oriented two-dimensional packing algorithms, SIAM Journal
on Computing 9:801–826

Hybrid Metaheuristics for Packing Problems 217

19. Dobkin D, Hershberger J, Kirkpatrick D, Suri S (1993) Computing the
intersection-depth of polyhedra, Algorithmica 9:518–533

20. Dréo J, Pétrowski JDA, Siarry P, Taillard E (2006) Metaheuristics for Hard
Optimization, Springer.

21. Dyckhoff H (1990) A typology of cutting and packing problems, European
Journal of Operational Research 44:145–159

22. Egeblad J, Nielsen BK, Odgaard A (2007) Fast neighborhood search for two-
and three-dimensional nesting problems, European Journal of Operational Re-
search 183:1249–1266

23. Glover F (1995) Tabu thresholding: Improved search by nonmonotonic trajec-
tories, ORSA Journal on Computing 7:426–442

24. Glover FW, Kochenberge GA (eds) (2003) Handbook of Metaheuristics,
Springer.

25. Gomes AM, Oliveira JF (2002) A 2-exchange heuristic for nesting problems,
European Journal of Operational Research 141:359–370

26. Gomes AM, Oliveira JF (2006) Solving irregular strip packing problems by
hybridising simulated annealing and linear programming, European Journal of
Operational Research 171:811–829

27. Guo PN, Takahashi T, Cheng CK, Yoshimura T (2001) Floorplanning using
a tree representation, IEEE Transactions on Computer Aided Design of Inte-
grated Circuits and Systems 20:281–289

28. Heckmann R, Lengauer T (1995) A simulated annealing approach to the nest-
ing problem in the textile manufacturing industry, Annals of Operations Re-
search 57:103–133

29. Hopper E, Turton BCH (2001) An empirical investigation of meta-heuristic and
heuristic algorithms for a 2D packing problem, European Journal of Operational
Research 128:34–57

30. Ibaraki T, Nakamura K (2006) Packing problems with soft rectangles, In:
Almeida F, Blesa Aguilera MJ, Blum C, Vega JMM, Pérez MP, Roli A, Sampels
M (eds) Hybrid Metaheuristics, Springer Lecture Notes on Computer Science
4030:13–27

31. Imahori S, Yagiura M, Ibaraki T (2003) Local search algorithms for the rec-
tangle packing problem with general spatial costs, Mathematical Programming
97:543–569

32. Imahori S, Yagiura M, Ibaraki T (2005) Improved local search algorithms for
the rectangle packing problem with general spatial costs, European Journal of
Operational Research 167:48–67

33. Imahori S, Yagiura M, Ibaraki T (2005) Variable neighborhood search for the
rectangle packing problem, In: Proceedings of the 6th Metaheuristics Interna-
tional Conference (MIC05), 532–537

34. Imamichi T, Yagiura M, Nagamochi H (2006) An iterated local search algo-
rithm based on nonlinear programming for the irregular strip packing problem,
Technical Report 2007-009, Department of Applied Mathematics and Physics,
Graduate School of Informatics, Kyoto University, February, 2007 (available at
http://www.amp.i.kyoto-u.ac.jp/tecrep/); A short version is available in: Pro-
ceedings of the Third International Symposium on Scheduling (ISS06), 132–137

35. Itoga H, Kodama C, Fujiyoshi K (2005) A graph based soft module handling
in floorplan, IEICE Transactions Fundamentals E88-A:3390–3397

218 Toshihide Ibaraki, Shinji Imahori and Mutsunori Yagiura

36. Johnson DS (1990) Local optimization and the traveling salesman problem, In:
Peterson MS (ed) Automata, Languages and Programming, Lecture Notes in
Computer Science 443:446–461

37. Kenyon C, Rémila E (2000) A near-optimal solution to a two-dimensional cut-
ting stock problem, Mathematics of Operations Research 25:645–656

38. Kim YJ, Lin MC, Manocha D (2004) Incremental penetration depth estimation
between convex polytopes using dual-space expansion, IEEE Transactions on
Visualization and Computer Graphics 10:152–163

39. Konno H, Kuno T (1995) Multiplicative programming problems, In: Horst R,
Pardalos PM (eds) Handbook of Global Optimization, Kluwer Academic Pub-
lishers, 369–406

40. Kurebe Y, Miwa H, Ibaraki T (2007) Weighted module placement based on
rectangle packing, 4th ESICUP meeting (EURO Special Interest Group on
Cutting and Packing).

41. Li Z, Milenkovic V (1995) Compaction and separation algorithms for non-
convex polygons and their applications, European Journal of Operational Re-
search 84:539–561

42. Lodi A, Martello S, Monaci M (2002) Two-dimensional packing problems: A
survey, European Journal of Operational Research 141:241–252

43. Lodi A, Martello S, Vigo D (1999) Heuristic and metaheuristic approaches
for a class of two-dimensional bin packing problems, INFORMS Journal on
Computing 11:345–357

44. Milenkovic VJ (1998) Rotational polygon overlap minimization and com-
paction, Computational Geometry 10:305–318

45. Murata H, Fujiyoshi K, Nakatake S, Kajitani Y (1996) VLSI module place-
ment based on rectangle-packing by the sequence-pair, IEEE Transactions on
Computer Aided Design 15:1518–1524

46. Murata H, Kuh ES (1998) Sequence-pair based placement method for
hard/soft/preplaced modules, In: Proceedings of International Symposium on
Physical Design, 167–172

47. Nagamochi H (2005) Packing soft rectangles, International Journal of Founda-
tions of Computer Science 17:1165–1178

48. Nakatake S, Fujiyoshi K, Murata H, Kajitani Y (1998) Module packing based on
the BSG-structure and IC layout applications, IEEE Transactions on Computer
Aided Design of Integrated Circuits and Systems 17:519–530

49. Nesterov Y, Nemirovskii A (1994) Interior Point Polynomial Algorithms in
Convex Programming, SIAM Pub.

50. Okano H (2002) A scanline-based algorithm for the 2D free-form bin packing
problem, Journal of the Operations Research Society of Japan 45:145–161

51. Oliveira JF, Ferreira JS (1993) Algorithms for nesting problems, In: Vidal RVV
(ed) Applied Simulated Annealing. Lecture Notes in Economics and Mathemat-
ical Systems 396, Springer-Verlag, 255–274

52. Oliveira JF, Gomes AM, Ferreira JS (2000) TOPOS—a new constructive algo-
rithm for nesting problems, OR Spektrum 22:263–284

53. Preas BT, van Cleemput WM (1979) Placement algorithms for arbitrarily
shaped blocks, In: Proceedings of the ACM/IEEE Design Automation Con-
ference, 474–480

54. Ramkumar GD (1996) An algorithm to compute the Minkowski sum outer-face
of two simple polygons, In: Proceedings of the Twelfth Annual Symposium on
Computational Geometry (SCG96), 234–241

Hybrid Metaheuristics for Packing Problems 219

55. Stoyan YG, Novozhilova MV, Kartashov AV (1996) Mathematical model and
method of searching for a local extremum for the non-convex oriented polygons
allocation problem, European Journal of Operational Research 92:193–210

56. Takahashi T (1996) An algorithm for finding a maximum-weight decreas-
ing sequence in a permutation, motivated by rectangle packing problem (in
Japanese), Technical Report of IEICE VLD96-30, 31–35

57. Tang X, Tian R, Wong DF (2001) Fast evaluation of sequence pair in block
placement by longest common subsequence computation, IEEE Transactions
on Computer Aided Design of Integrated Circuits and Systems 20:1406–1413

58. Umetani S, Yagiura M, Imamichi T, Imahori S, Nonobe K, Ibaraki T (2006)
A guided local search algorithm based on a fast neighborhood search for the
irregular strip packing problem, In: Proceedings of the Third International Sym-
posium on Scheduling (ISS06), 126–131

59. Wäscher G, Haußner H, Schumann H (2007) An improved typology of cutting
and packing problems, European Journal of Operational Research 183:1109–
1130

60. Young FY, Chu CCN, Luk WL, Wong YC (2001) Handling soft modules in
general nonslicing floorplan using Lagrangean relaxation, IEEE Transactions
on Computer-Aided Design of Integrated Circuit and Systems 20: 687–692

Hybrid Metaheuristics for Multi-objective
Combinatorial Optimization

Matthias Ehrgott and Xavier Gandibleux

Laboratoire d’Informatique de Nantes Atlantique FRE CNRS 2729
Université de Nantes, Nantes, France
{Matthias.Ehrgott,Xavier.Gandibleux}@univ-nantes.fr

Summary. Many real-world optimization problems can be modelled as combina-
torial optimization problems. Often, these problems are characterized by their large
size and the presence of multiple, conflicting objectives. Despite progress in solv-
ing multi-objective combinatorial optimization problems exactly, the large size of-
ten means that heuristics are required for their solution in acceptable time. Since
the middle of the nineties the trend is towards heuristics that “pick and choose”
elements from several of the established metaheuristic schemes. Such hybrid ap-
proximation techniques may even combine exact and heuristic approaches. In this
chapter we give an overview over approximation methods in multi-objective com-
binatorial optimization. We briefly summarize “classical” metaheuristics and focus
on recent approaches, where metaheuristics are hybridized and/or combined with
exact methods.

1 Introduction

The last two or three decades have seen the development and the improvement
of approximate solution methods – usually called heuristics and metaheuris-
tics. The success of metaheuristics, e.g., simulated annealing, tabu search,
genetic algorithms, on hard single objective optimization problems is well
recognized today. Although combinatorial optimization models have been suc-
cessfully used in a vast number of applications, these models often neglect the
fact that many real-life problems require taking into account several conflicting
points of view corresponding to multiple objectives. Here are some examples.

• In portfolio optimization risk and return are the criteria that have gen-
erally been considered. Recently the classical Markowitz model has been
criticized and other criteria have been mentioned: ratings by agencies, div-
idend, long-term performance, etc., see, e.g., Ehrgott et al. [32].

• In airline operations, scheduling technical and cabin crew has a major effect
on cost and small percentage improvements may translate to multi-million

M. Ehrgott and X. Gandibleux: Hybrid Metaheuristics for Multi-objective Combinatorial

Optimization, Studies in Computational Intelligence (SCI) 114, 221–259 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

222 Matthias Ehrgott and Xavier Gandibleux

Euro savings. However, cost is not the only concern in airline operations.
Robust solutions are desired, which avoid the propagation of delays due
to crew changing aircraft, see Ehrgott and Ryan [33].

• In railway transportation, the planning of railway network infrastructure
capacity has the goals of maximizing the number of trains that can use
the infrastructure element (e.g. a station) and to maximize robustness of
the solution to disruptions in operation. This problem can be modelled as
a large scale set packing problem with two objectives [20].

• In radiation therapy planning for cancer treatment conflicting goals are to
achieve a high uniform dose in the tumour whereas the dose absorbed by
healthy tissue is to be limited. For anatomical and physical reasons these
objectives cannot be achieved simultaneously. A multi-criteria model is
described in Hamacher and Küfer [62].

• In computer networks, internet traffic routing may be enhanced if based on
a multi-objective routing procedure to prevent network congestion. Multi-
objective shortest paths between one router and all the other routers of
the network must be computed in real-time, by simultaneously optimizing
linear objectives (cost, delay) and bottleneck ones (quality, bandwidth),
see Randriamasy et al. [44, 107].

Multiple objective optimization differs from traditional single objective
optimization in several ways.

• The usual meaning of the optimum makes no sense in the multiple ob-
jective case because a solution optimizing all objectives simultaneously
does in general not exist. Instead, a search is launched for a feasible solu-
tion yielding the best compromise among objectives on a set of so-called
efficient (Pareto optimal, non-dominated) solutions.

• The identification of a best compromise solution requires the preferences
expressed by the decision maker to be taken into account.

• The multiple objectives encountered in real-life problems can often be
expressed as mathematical functions of a variety of forms, i.e., not only
do we deal with conflicting objectives, but with objectives of different
structures.

1.1 Multi-objective Optimization

A multi-objective optimization problem is defined as

min {(z1(x), . . . , zp(x)) : x ∈ X} , (MOP)

where X ⊂ R
n is a feasible set and z : R

n → R
p is a vector valued objective

function. By Y = z(X) := {z(x) : x ∈ X} ⊂ R
p we denote the image of the

feasible set in the objective space. We consider optimal solutions of (MOP)
in the sense of efficiency, i.e., a feasible solution x ∈ X is called efficient if
there does not exist x′ ∈ X such that zk(x′) � zk(x) for all k = 1, . . . , p and

Hybrid Multi-Objective Metaheuristics 223

zj(x′) < zj(x) for some j. In other words, no solution is at least as good as x
for all objectives, and strictly better for at least one.

Efficiency refers to solutions x in decision space. In terms of the objective
space, with objective vectors z(x) ∈ R

p we use the notion of non-dominance.
If x is efficient then z(x) = (z1(x), . . . , zp(x)) is called non-dominated. The
set of efficient solutions is XE , the set of non-dominated points is YN . We
may also refer to YN as the non-dominated frontier. For y1, y2 ∈ R

p we shall
use the notation y1 � y if y1

k � y2
k for all k = 1, . . . , p; y1 ≤ y2 if y1 � y2

and y1 �= y2; and y1 < y2 if y1
k < y2

k for all k = 1, . . . , p. R
p
� denotes the

non-negative orthant {y ∈ R
p : y � 0}, R

p
≥0 and R

p
>0 are defined analogously.

To solve a multi-objective optimization problem means to find the set of
efficient solutions or, in case of multiple x mapping to the same non-dominated
point, for each y ∈ YN to find an x ∈ XE with z(x) = y. This concept of a
set of efficient solutions is the major challenge of multi-objective optimization.
Most methods require the repeated solution of single objective problems which
are in some sense related to the multi-objective problem, see e.g., Miettinen
[91] or Ehrgott and Wiecek [35]. Many references on the state-of-the-art in
multi-objective optimization are found in [29].

1.2 Multi-objective Combinatorial Optimization

In this chapter we focus on multi-objective combinatorial optimization prob-
lems formulated as

min {Cx : Ax � b, x ∈ Z
n} . (MOCO)

Here C is a p×n objective function matrix, where ck denotes the k-th row
of C. A is an m× n matrix of constraint coefficients and b ∈ R

m. Usually the
entries of C,A and b are integers. The feasible set X = {Ax � b, x ∈ Z

n} may
describe a combinatorial structure such as, e.g., spanning trees of a graph,
paths, matchings etc. We shall assume that X is a finite set. By Y = CX :=
{Cx : x ∈ X} we denote the image of X under C in R

p, the feasible set in
objective space.

MOCO has become a very active area of research since the 1990s as demon-
strated in the bibliographies by Ehrgott and Gandibleux [27, 28].

The biggest additional challenge in solving MOCOs as compared to multi-
objective linear programs (MOLPs) min{Cx : Ax � b, x � 0} results from
the existence of efficient solutions which are not optimal for any scalarization
using weighted sums

min

{
p∑

k=1

λkzk(x) : x ∈ X

}
, (1)

called non-supported efficient solutions XNE . Those that are optimal for some
weighted sum problem (1) are called supported efficient solutions XSE .

224 Matthias Ehrgott and Xavier Gandibleux

Based on this distinction between supported and non-supported efficient
solutions, the so-called two-phase method has first been developed by Ulungu
and Teghem [130, 131]. The method computes supported (in Phase 1) and non-
supported (in Phase 2) efficient solutions. In Phase 2 information obtained in
Phase 1 is exploited. Both phases rely on efficient algorithms for the solution
of single objective problems. The method has been applied to a number of
problems such as network flow [82], spanning tree [106], assignment [104, 131]
and knapsack problems [135].

Notably, all these applications are for bi-objective problems and the first
generalization to three objectives is very recent. Przybylski, Gandibleux and
Ehrgott [102, 103] use a decomposition of the weight set

{
λ ∈ R

p
> : 1T λ = 1

}

(where 1 is a vector of ones) in Phase 1 and upper bound sets (see Sect. 2.1)
and ranking algorithms in Phase 2 in an application to the three-objective
assignment problem.

Many methods generalizing single objective algorithms for the use with
multiple objectives have been developed, including dynamic programming [11]
and branch and bound [88]. For more details we refer again to the bibliogra-
phies by Ehrgott and Gandibleux [27, 28] and references therein.

From a methodological point of view non-supported efficient solution are
the main reason why the computation of XE , respectively YN is hard, from a
more theoretical point of view the computational complexity is another. Most
MOCO problems are NP-hard (finding an efficient solution is hard) as well
as #P-hard (counting efficient solutions is hard), see Ehrgott [26]. The best
illustration of this fact is perhaps the unconstrained problem

min

{(
n∑

i=1

c1
i xi,

n∑

i=1

c2
i xi

)
: x ∈ {0, 1}n

}
,

with c1
i , c

2
i � 0 for i = 1, . . . , n which is trivial with only one objective. More-

over, MOCO problems are often intractable, i.e., there may exist exponentially
many non-dominated points and efficient solutions.

With increasing interest in multi-objective models for real world applica-
tions and the difficulty of solving multi-objective combinatorial optimization
problems exactly, interest in approximate methods for solving MOP/MOCO
problems arose. In this paper we present an overview of approximation meth-
ods for solving multi-objective combinatorial optimization problems, focussing
on hybrid metaheuristics for multi-objective combinatorial optimization.

The chapter is organized as follows. Sect. 2 introduces approximation
methods for MOCO problems. Bound sets and quality of approximation are
discussed in some detail. In Sect. 3, we present classical evolutionary algo-
rithms and neighbourhood search metaheuristics. New methods based on ant
colony optimization and particle swarm optimization are also briefly pre-
sented. In Sect. 4 we develop the hybrid methods and organize the ideas
in six classes.

Hybrid Multi-Objective Metaheuristics 225

2 Approximation Methods for MOCO

Approximation methods for multi-objective optimization include both approx-
imation algorithms which have a guaranteed quality of approximation, i.e.,
polynomial time approximation algorithms, and multiple objective (meta)heu-
ristics, MO(M)H for short. A MO(M)H is a method which finds either sets
of locally potentially efficient solutions that are later merged to form a set
of potentially efficient solutions – the approximation denoted by XPE – or
globally potentially efficient solutions according to the current approximation
XPE .

The interest in approximation methods for multi-objective optimization
is relatively recent. The first polynomial time approximation algorithm with
performance guarantee is due to Warburton for the shortest path problem
[136]. In the last five years this field has been growing, and such algorithms
for, e.g., knapsack [38], travelling salesman [3, 85] and scheduling problems
[58] are now known. Papadimitriou and Yannakakis [96] give a general result
on the existence of polynomial time approximation algorithms.

In this chapter, however, we concentrate on metaheuristics. The first
MOMH algorithm is a genetic algorithm developed 1984 by Schaffer [109].
In 1992, the work of Serafini [111] started a stream of research on multiple
objective extensions of local search based metaheuristics. While the first adap-
tation of metaheuristic techniques for the solution of multi-objective optimiza-
tion problems has been introduced more than 20 years ago, the MO(M)H field
has clearly mushroomed over the last ten years. The pioneer methods have
three characteristics.

• They are inspired either by evolutionary algorithms (EA) or by neighbour-
hood search algorithms (NSA).

• The early methods are direct derivations of single objective metaheuris-
tics, incorporating small adaptations to integrate the concept of efficient
solution for optimizing multiple objectives.

• Almost all methods were designed as a solution concept according to the
principle of metaheuristics. In fact, problem specific heuristics that are so
ubiquitous in combinatorial optimization are rare, even descriptions of lo-
cal search procedures appeared only recently [30, 99]. Paquete and Stützle
describe local search heuristics for the TSP and QAP in [97] and [98],
respectively. [115] develops a local search for the optimization of mobile
phone keymaps.

2.1 Bound Sets

The quality of a solution of a combinatorial optimization problem can be
estimated by comparing lower and upper bounds on the optimal objective
function value. In analogy to moving from the optimal value to a set of non-
dominated points, the concept of bounds has to be extended to bound sets in

226 Matthias Ehrgott and Xavier Gandibleux

multi-objective optimization. It is clear that the ideal and nadir point yI and
yN defined by

yI
k = min{zk(x) : x ∈ X} for k = 1, . . . , p and

yN
k = max{zk(x) : x ∈ XE} for k = 1, . . . , p,

respectively, are lower/upper bounds for YN . We sometimes refer to a utopian
point yU = yI − ε1, where 1 is a vector of all ones and ε is a small positive
number. However, the ideal and nadir points are usually far away from non-
dominated points and do not provide a good estimate of the non-dominated
set. In addition, the nadir point is hard to compute for problems with more
than two objectives, see [34]. Ehrgott and Gandibleux [31] present definitions,
some general procedures and report results on lower and upper bound sets for
the bi-objective assignment, knapsack, travelling salesman, set covering, and
set packing problems.

Fernández and Puerto [39] use bound sets in their exact and heuristic
methods to solve the multi-objective uncapacitated facility location problem.
Spanjaard and Sourd [116] use bound sets in a branch and bound algorithm
for the bi-objective spanning tree problem.

2.2 The Quality of Approximation

MO(M)H algorithms do compute a (usually feasible) set of solutions to a
multi-objective optimization problem. According to the definition of Ehrgott
and Gandibleux [31] these define an upper bound set. But what is a good
approximation of the non-dominated set of a MOP? This is an ongoing dis-
cussion in the literature and there is no sign of a consensus at this point in
time (see Figs. 1 and 2).

Kim et al. [10] propose the integrated preference functional (IFP), which
relies on a weight density function provided by the decision maker, to compare
the quality of algorithms for MOCO problems with two objectives. Sayın [108]
proposes the criteria of coverage, uniformity, and cardinality to measure how
well subsets of the non-dominated set represent the whole non-dominated set.
Although developed for continuous problems the ideas may be interesting for
MOCO problems. However, the methods proposed in [108] can be efficiently
implemented for linear problems only.

Viana and Pinho de Sousa [134] propose distance based measures and vi-
sual comparisons of the generated approximations. The latter are restricted
to bi-objective problems. Jaszkiewicz [70] also distinguishes between cardi-
nal and geometric quality measures. He gives further references and suggests
preference-based evaluation of approximations of the non-dominated set using
outperformance relations. Collette and Siarry [15] mention the proportion of
XPE among all solutions generated in one iteration, the variance of the dis-
tance between points in objective space, and a metric to measure the speed
of convergence. They also talk about the aesthetic of solution sets in the bi-
objective case. Tenfelde-Podehl [126] proposes volume based measures. The

Hybrid Multi-Objective Metaheuristics 227

�
�

�
�

Fig. 1. Three approximations (bullet, triangle, square) and the non-dominated fron-
tier (dotted line) are plotted. Square (better for z1) and triangle (better for z2) are
complementary. Same conclusion for square and bullet. Triangle is better than bullet
in the central part, and reversely. None of the three approximations is dominated.
They are incomparable.

�
�

�
�

Fig. 2. Two approximations (bullet, triangle) and the non-dominated frontier (dot-
ted line) are plotted. Density of points in the bullet approximation is higher than for
the triangle one. However, points appear in clusters with the consequence of report-
ing gaps in the approximated frontier. Points in triangle approximation are better
distributed along the frontier, but report a sparse approximated frontier. None of
the two approximations dominates the other, they are incomparable.

228 Matthias Ehrgott and Xavier Gandibleux

hyper-volume measure introduced by Ziztler and Thiele [139] has become a
popular means of comparing approximations because it has some important
properties such as monotonicity with respect to set inclusion.

Zitzler et al. [140] present a review of performance measures, but none
have been universally adopted in the multi-objective optimization literature,
and further research is clearly needed.

3 Generation 1: Population Based Versus
Neighbourhood Search MOMHs

3.1 Population Based Algorithms

Population based algorithms (see also Chap. 1 of this book) manage a “pop-
ulation” P of solutions rather than a single feasible solution. In general, they
start with an initial population and combine principles of self adaptation, i.e.,
independent evolution (such as the mutation strategy in genetic algorithms),
and cooperation, i.e., the exchange of information between individuals (such as
the “pheromone” used in ant colony systems), to improve approximation qual-
ity. Because the whole population contributes to the evolutionary process, the
generation mechanism is parallel along the non-dominated frontier, and thus
these methods are also called global convergence-based methods. This char-
acteristic makes population-based methods very attractive for solving multi-
objective problems.

For a long time, the problems investigated with these methods were often
unconstrained bi-objective problems with continuous variables and non-linear
functions. Population based algorithms are appreciated by the engineering
community, which could explain the large number of multi-objective evolu-
tionary algorithm (MOEA) applications to real world problems (in mechan-
ical design or electronics, for example). Many of these applications are char-
acterized by long computation times for the evaluation of a single solutions.
Surprisingly, MOCO problems have hardly been attacked by population based
methods until recently.

3.2 The Pioneer: VEGA by Schaffer, 1984

In 1984 Schaffer [109, 110] introduced the Vector Evaluated Genetic Algorithm
(VEGA), which is an extension of Grefenstette’s GENESIS program [60] to
include multiple objective functions. The vector extension concerns only the
selection procedure.

For each generation in VEGA, three stages are performed (Algorithm 17).
The selection procedure is performed independently for each objective. In the
first stage, the population is divided into p subpopulations Sk according to
their performance in objective k (routine pickIndividuals). Each subpopula-
tion is entrusted with the optimization of a single objective. In the next stage,

Hybrid Multi-Objective Metaheuristics 229

subpopulations are shuffled to create a mixed population (routine shuffle).
In the final stage, genetic operators, such as mutation and crossover, are ap-
plied to produce new potentially efficient individuals (routine evolution).
This process is repeated for Ngen iterations.

Algorithm 17 VEGA, Vector Evaluated Genetic Algorithm

input: pop, the population size
Ngen, the generation limit
parameters, the crossover probability and mutation rate

output: XPE , the set of potentially efficient solutions

begin VEGA

- -| Generate an initial population of pop individuals
P0 ← initialization(pop)

- -| Generation process
for n in 1, . . . , Ngen loop

- -| 1. Elaborate p subpopulations of size pop/p using each objective k
- -| in turn

Sk ← pickIndividuals(pop/p , k , Pn−1), ∀k = 1, . . . , p

- -| 2. Set population of size pop shuffling together
- -| the p subpopulations Sk

S ← shuffle(∪k=1,...,pS
k)

- -| 3. Apply genetic operators
Pn ← evolution(S, parameters)

endLoop
XPE ← PNgen

end VEGA

As VEGA selects individuals who excel in one performance dimension
without looking at the other dimensions, the speciation problem can arise
with that method. This implies that individuals with a balanced performance
on all objectives will not survive under this selection mechanism. Speciation is
undesirable because it is opposed to the generation of compromise solutions.
Due to this characteristic VEGA is termed a non-Pareto approach [13]. Ad-
ditional heuristics were developed (like crossbreeding among the species) and
studied to overcome this tendency.

3.3 Other Evolutionary Algorithms

Since VEGA many MOEAs have been developed. Significant progress con-
cerns corrections of shortcomings observed in the first algorithms introduced

230 Matthias Ehrgott and Xavier Gandibleux

and propositions of new algorithmic primitives to generate a better approxi-
mation of XE . Modern MOEAs are characterized according to the way they
handle population structure, archiving, selection/elitism mechanisms, and fit-
ness functions.

Two central questions motivate the research about MOEAs: (1) how to
accomplish both fitness assignment and selection in order to guide the search
toward the non-dominated frontier and (2) how to maintain a diversified popu-
lation in order to avoid premature convergence and find a uniform distribution
of points along the non-dominated frontier?

For the first question MOEAs are distinguished by the way the perfor-
mance of individuals is evaluated in the selection. If the objectives are consid-
ered separately, the selection of individuals is performed by considering each
objective independently (Schaffer [110]), or the selection is based on a compar-
ison procedure according to a predefined (or random) order on the objectives
(Fourman [42]), or the selection takes into account probabilities assigned to
each objective in order to determine a predominant objective (Kursawe [78]).
If the objectives are aggregated into a single parameterized objective function,
the parameters of the function are systematically updated during the same
runs (at random or using a particular weight combination) taking advantage
of information collected on the population of individuals (Hajela and Lin [61]
and Murata and Ishibuchi [94]). Each aggregation defines a search direction
in the objective space and the idea is to optimize in multiple directions si-
multaneously. If, on the other hand, the concept of efficiency is directly used,
(non-domination ranking) the fitness of an individual (i.e. a solution) is calcu-
lated on the basis of the dominance definition. The idea is to take advantage
of information carried by the population of solutions using the notion of domi-
nation for selection. This is the most common approach and has led to several
Pareto-based fitness assignment schemes, see [40, 55, 67, 117, 139], etc.

The majority of the other components of a MOEA deal with the second
question. Fitness sharing based on a principle of niches is the most frequently
used technique and most MOEAs are implementing it, e.g., [40, 67, 117, 138].
Niches are solution neighbourhoods with a radius σsh in objective space, cen-
tered on candidate points. Based on the number of solutions in these niches,
the selection of individuals can be influenced to generate more in areas where
niches are sparsely populated, with the goal of greater distribution uniformity
along the non-dominated frontier. A sharing function, which measures the
distance d(i, j) between a candidate point i and a neighbour j, is defined by

φ(d(i, j)) = 1−
(

d(i, j)
σsh

)α

if d(i, j) < σsh and 0 otherwise. The parameter α amplifies (α > 1) or at-
tenuates (α < 1) the sharing value computed. Thus the shared fitness fsi

of
candidate i is

fsi
=

fi∑N
j=1 φ(d(i, j))

Hybrid Multi-Objective Metaheuristics 231

such that the shared fitness of candidates increases the fitness fi if φ values
are small, i.e. the distance of neighbours from i is close to σsh.

A number of important implementations of MOEAs have been published
in recent years. There are even a number of surveys on the topic (see [13,
14, 41, 72]). The most outstanding among the pioneer MOEAs are mentioned
briefly below:

• Vector Evaluated Genetic Algorithm (VEGA) by Schaffer, 1984 [109].
• Multiple Objective Genetic Algorithm (MOGA93) by Fonseca and Flem-

ing, 1993 [40]. MOGA93 uses a ranking procedure in which the rank of
an individual is equal to the number of solutions which dominate this
individual.

• Non-dominated Sorting Genetic Algorithm (NSGA) by Srinivas and Deb,
1994 [117]. NSGA implements Goldberg’s ranking idea in which the rank
of an individual is equal to its domination layer, computed by ranking the
population on the basis of domination.

• Niched Pareto Genetic Algorithm (NPGA) by Horn, Nafpliotis and Gold-
berg, 1994 [67]. NPGA combines the Pareto dominance principle and a
Pareto tournament selection where two competing individuals and a set of
individuals are compared to determine the winner of the tournament.

• Strength Pareto Evolutionary Algorithm (SPEA) by Zitzler and Thiele,
1998 [138]. SPEA takes the best features of previous MOEAs and combines
them to create a single algorithm. The multi-objective multi-constraint
knapsack problem has been used as a benchmark to evaluate the method
[139].

• Pareto Archived Evolution Strategy (PAES) by Knowles and Corne, 1999
[77]. PAES is an evolutionary strategy that employs local search to gener-
ate new candidate solutions and a reference archive to compute solution
quality.

3.4 Other Population Based Methods

Ant colony optimization (ACO) based heuristics are population based meth-
ods imitating the foraging behaviour of ants. The principle is based on the
positive reinforcement of elementary decisions via the use of pheromone trails,
which are left by the ants. The cooperation between ants is accomplished by
pheromone trails which act as a common memory of the colony.

Roughly speaking, in the case of a combinatorial optimisation problem,
the pheromone trails induce a probability distribution over the search space.
An ACO algorithm consists in an iterative process where, at each iteration
the ants build solutions by exploiting the pheromone trails. Hence, they have
the ability of learning “good and bad” decisions when building solutions.
Once a solution is completed, pheromone trails are updated according to the
quality of some of the generated solutions. Recently, ACO algorithms have
been proposed for MOPs, introducing a novel stream of population based
algorithms. We summarize some of the published papers.

232 Matthias Ehrgott and Xavier Gandibleux

• The MOAQ algorithm of Mariano and Morales [86, 87] uses one ant colony
for each objective function. All colonies have the same number of ants.
(Partial) solutions of each colony are used in the next colony. The algo-
rithm is applied to two literature problems (and compared with VEGA
[109]). The research is motivated by the real world problem of designing
a water distribution network for irrigation to minimise network cost and
maximise profit.

• McMullen [89] addresses a just-in-time sequencing problem with the ob-
jective of minimizing the number of setups and minimizing the usage rates
of raw materials. The problem is reformulated as a TSP by spatialising
the data and applying a standard single objective ant colony algorithm.

• Iredi and Middendorf [68] propose a number of ant colony optimization
algorithms to solve bi-criteria combinatorial problems, including ones with
single and multiple colonies. Various methods for pheromone update and
weight assignment (in order to browse the whole non-dominated frontier)
are proposed and tested on a single machine scheduling problem to min-
imise total tardiness and changeover cost. Numerical tests are presented.

• Doerner et al. [21, 22, 23, 24] work on a multi-objective portfolio selection
problem. They consider a rather large number of objectives p = (B +R)T ,
where B is the number of benefit categories, R is the number of resources,
and T is the planning period. They use one colony and a random selection
of weights of objectives for each ant. The global update considers the best
and second best solutions for each objective found in the current iteration.
The results on test problems are compared with NSGA [117], PSA [16],
and the true efficient set (for small problems).

• Doerner et al. [25] solve a special case of the pickup and delivery prob-
lem with the linearly combined objectives of total number of vehicles and
empty vehicle movements by a multi-colony approach. The colonies use dif-
ferent heuristic information, and their sizes change during the algorithm.

• Gravel et al. [59] consider the problem of sequencing orders for the casting
of aluminium. Four objectives are considered in a lexicographic sense. A
distance function based on penalties for bad performance is used to trans-
late the problem into a TSP setting. Global pheromone update considers
only the primary objective.

Particle swarm optimization (PSO) is a population based metaheuristic in-
spired by the social behaviour of bird flocks and fish schools (swarms) search-
ing for food. Each individual determines its velocity based on its experience
and information obtained from interacting with other members. In the opti-
mization context, the individual members of the swarm (particles) “travel”
through solution space. Each particle is characterized by three vectors x, v
and p, where x is the current position (solution), v is the velocity, and p is the
best position occupied so far. In each iteration k, the position and velocity of
the particles are updated: vk+1 := f(vk, pk, xk, p̂k) and xk+1 = xk +vk+1. The
update function f depends not only on the particles own experience but also

Hybrid Multi-Objective Metaheuristics 233

on p̂, the best position of any particle so far, thus modelling the interaction
in the swarms behaviour.

The PSO method has been introduced by Kennedy and Eberhart [76]
in 1995 and applications in multi-objective optimization date back to [92].
Implementations usually use an archive of potentially efficient solutions. Very
few applications in the MOCO area exist.

In [105] PSO is applied to a permutation flowshop problem to minimize
weighted mean completion time and weighted mean tardiness. Yapicioglu et
al. [137] use it to solve a bi-objective formulation of the semi-desirable fa-
cility location problem. The algorithm uses local search to improve solutions
obtained by the basic PSO mechanism.

The scatter search principle has been proposed by Glover, Laguna, and
Mart́ı [54]. It uses a population of solutions called the reference set. The
method forms combinations of solutions which are subsequently improved,
before updating the reference set. A scatter search algorithm consists of

1. a diversification method to generate a diverse set of solutions,
2. an improvement method to be applied to solutions,
3. a reference set update method,
4. a subset generation method to select solutions from the reference set that

is used for creating combinations,
5. and a solution combination method.

An adaptation to multi-objective optimization appeared shortly after the
original method [8]. The only MOCO papers using scatter search we are aware
of are [56] and [57], who apply it to the bi-objective knapsack problem. The
former paper uses exact solutions of the LP relaxation as diversification, sim-
ple heuristics to obtain feasible and improved solutions, a clustering method
for reference set update, selects pairs of consecutive solutions from the ref-
erence set, and uses path relinking for combining solutions. The latter is a
hybrid method that improves some of the methods used in [56] and includes
the exact solution of small residual problems in the improvement method.

3.5 Neighbourhood Search Algorithms

In neighbourhood search algorithms (NSA) the generation of solutions relies
upon one individual, a current solution xn, and its neighbours x ∈ N (xn).
Using a local aggregation mechanism for the objectives (often based on a
weighted sum), a weight vector λ ∈ Λ, and an initial solution x0, the proce-
dure iteratively projects the neighbours into the objective space in a search
direction λ by optimizing the corresponding parametric single objective prob-
lem. A local approximation of the non-dominated frontier is obtained using
archives of the successive potentially efficient solutions detected. This gener-
ation mechanism is sequential along the frontier, producing a local conver-
gence to the non-dominated frontier, and so such methods are called local

234 Matthias Ehrgott and Xavier Gandibleux

convergence-based methods. The principle is repeated for diverse search direc-
tions to completely approximate the non-dominated frontier. NSAs are well-
known for their ability to locate the non-dominated frontier, but they require
more effort in diversification than EAs in order to cover the non-dominated
frontier completely.

The first approximation methods proposed for MOCO problems were
“pure” NSA strategies and were straightforward extensions of well-known
metaheuristics for dealing with the notion of non-dominated points. Simu-
lated annealing (the MOSA method [132]), tabu search (the MOTS method
[46], the method of Sun [119]), or GRASP (the VO-GRASP method [52]) are
examples.

3.6 The Pioneer: MOSA by Ulungu, 1992

In 1992 (EURO XII conference, Helsinki), Ulungu introduced Multi-objective
Simulated Annealing, MOSA [130], a direct derivation of the simulated an-
nealing principle for handling multiple objectives (see Algorithm 18). Starting
from an initial, randomly generated solution x0 and a neighbourhood struc-
ture N (xn), MOSA computes a neighbour x ∈ N (·) using a set of weights
Λ that define search directions λ ∈ Λ. The comparison of x with xn accord-
ing to p objectives zk(x), k = 1, . . . , p gives rise to three possible cases. If
∆zk = zk(x) − zk(xn) is the difference between solution x and xn in the
objective k:

(a) ∆zk � 0 for all k: x improves all objectives. x (weakly) dominates xn.
(b) ∆zk < 0 and ∆zk′ > 0 for some k and k′: Improvement and deterioration

occur simultaneously for different objectives. Both solutions x and xn are
potentially efficient.

(c) ∆zk � 0 for all k: All objectives deteriorate with at least one strict in-
equality. Solution x is dominated by xn.

A neighbour x is always accepted if it dominates xn (a). When x is dom-
inated (c), it can be accepted with decreasing probability, depending on the
current “temperature” of the cooling schedule (Routine isAccepted). In the
initial version of MOSA, a neighbour in situation (b) was also always ac-
cepted (Routine isBetter). This acceptance principle has been revised in a
later version of the method to include the search direction in the decision.

To measure the degradation in the routine isAccepted, the values are
aggregated using a scalarizing function S(z(x), λ). Such a function makes a
“local aggregation” of the objectives which allows the computation of the
“weighted distance” ∆s = S(z(x), λ)− S(z(xn), λ) between z(x) and z(xn).

If a neighbour is accepted, the set of potentially efficient solutions XPEλ in
direction λ is updated. The search stops after a certain number of iterations,
or when a predetermined temperature is reached (Routine isFinished). At
the end, MOSA combines the sequential processes in the objective space Y in

Hybrid Multi-Objective Metaheuristics 235

a set XPE by merging the sets PEλ (Routine merge). The outline of MOSA
for maximizing objectives is given in Algorithm 18.

Algorithm 18 MOSA, multi-objective Simulated Annealing

input: Λ, set of weights
T, α,Nstep, Tstop, Nstop, SA parameters

output: XPE , set of potentially efficient solutions

begin MOSA
XPE ← ∅
for all λ ∈ Λ loop

T0 ← T ; Ncount ← 0 ; n ← 0
randomly draw xn ∈ X ; XPEλ ← {xn}
repeat randomly draw x ∈ N (xn)

if isBetter(x, xn) or else isAccepted(x, xn, n, Tn, λ) then
XPEλ ← archive(XPEλ, x); xn+1 ← x ; Ncount ← 0

else
xn+1 ← xn; Ncount + +

endIf
n + + ; updateParameters(α, n, Tn)

until isFinished(Ncount, Tn)
endLoop
XPE ← merge(XPEλ)

end MOSA

3.7 Other Neighbourhood Search Methods

In 1996 (MOPGP 96 conference, Torremolinos), Gandibleux et al. introduced
the first TS-based method called MOTS for multi-objective tabu search [46],
designed to compute a set of potentially efficient solutions. Using a scalarizing
function and a reference point, the method performs a series of tabu processes
guided automatically in the objective space by the current approximation of
the non-dominated frontier. Intensification, diversification and tabu daemon
(usually called aspiration criteria) are designed for the multi-objective case.
Two tabu lists are used, one on the decision space TmemX, the second on the
objective space TmemY . The former is an attribute-based tabu list preventing
a return to already visited solutions during a tabu process. The latter is related
to the objectives and based on an improvement measure of each objective. It
is used for updating weights between two consecutive tabu processes.

The MOTS search strategy is encapsulated in a tabu process, which is
composed of a series of iterations. Let us consider, at the nth iteration, the

236 Matthias Ehrgott and Xavier Gandibleux

current solution xn and its (sub)neighbourhood N (xn) obtained according to
a suitable move xn → x defined according to the structure of the feasible
set X (routine exploreNeighbourhood). The successor x̄ of xn for the next
iteration is selected from the list of neighbour solutions L = {x ∈ N (xn)} as
the best according to a weighted scalarizing function S(z(x), yU , λ)

S(z(x), yU , λ) = max
1≤k≤p

{
λk

(
yU

k − zk(x)
)}

+ ρ

p∑

k=1

λk

(
yU

k − zk(x)
)
,

with ρ > 0. The number of candidates in list L is limited to K so-
lutions. The value of this parameter depends on the neighbourhood size
(1 ≤ K ≤ |N (xn)|). The reference point yU in the scalarizing function
is the locally determined utopian point yU = (yU

1 , . . . , yU
p) over L, where

yU
k < inf{zk(x) : x ∈ L}. This point dominates the ideal point given by the

lowest objective function value on each objective among the solutions in the
neighbourhood of the current solution. The tabu list TmemX is used to avoid
cycling. The selected solution x̄ ∈ L, which minimizes S(z(x), yU , λ) over L
such that the move xn → x̄ is not tabu, becomes the new current solution
xn+1. The tabu daemon overrides the tabu status of a solution x′ ∈ N (xn)
if s(z(x′), λ) ≤ s(z(x̄), λ) − ∆, with ∆ being a static or dynamic threshold
value. As L is generally a finite subset of X, the successor solution xn+1 can
be found easily. However, the time complexity depends on the size of the
neighbourhood N (xn). Each iteration ends with the identification of the po-
tentially efficient solutions in L, which represents a local approximation of
the non-dominated frontier (routine archive). More details about MOTS are
available in [30, 46]. This is a generic method, rather than a ready-to-use tech-
nique. All of its primitives need to be stated in a suitable manner, according
to the MOCO problem to be solved.

Few implementations have been developed in this stream. It can be ex-
plained by the fact that the advantage of NSA algorithms hybridized with
other techniques has been recognized early, giving birth to the hybrid MOMH
wave. Among the “pure NSA” algorithms discussed, we find:

• Multi-objective tabu search (MOTS) by Gandibleux, Mezdaoui and Fré-
ville, 1996 [46].

• Sun’s Method, 1997 [119]. An interactive procedure using tabu search for
general multiple objective combinatorial optimization problems, the pro-
cedure is similar to the combined Tchebycheff/aspiration criterion vector
method [118]. The tabu search is used to solve subproblems in order to
find potentially efficient solutions. The principles used for designing the
TS search strategy are similar to those defined for MOTS. This method
has been used for facility location planning [1].

• Adaptations of metaheuristics, such as the greedy randomized adaptive
search procedure GRASP [52].

• Other simulated annealing-based methods. Nam and Park’s method, 2000
[95] is another simulated annealing-based method. The authors report

Hybrid Multi-Objective Metaheuristics 237

good results in comparison with MOEA. Applications include aircrew ros-
tering problems [84], assembly line balancing problems with parallel work-
stations [90], and analogue filter tuning [127].

4 Generation 2: Hybrid MOMHs

The methods that followed the pioneer ones, designed to be more efficient
algorithms in the MOCO context, have been influenced by two important
observations.

The first observation is that on the one hand, NSAs focus on convergence
to efficient solutions, but must be guided along the non-dominated frontier. On
the other hand, EAs are very well able to maintain a population of solutions
along the non-dominated frontier (in terms of diversity, coverage, etc.), but
often converge too slowly to the non-dominated frontier. Naturally, methods
have been proposed that try to take advantage of both EA and NSA features
by combining components of both approaches, introducing hybrid algorithms
for MOPs.

The second observation is that MOCO problems contain information deriv-
ing from their specific combinatorial structure, which can be advantageously
exploited by the approximation process. Single objective combinatorial opti-
mization is a very active field of research. Many combinatorial structures are
very well understood. Thus combinatorial optimization represents a useful
source of knowledge to be used in multi-objective optimization. This knowl-
edge (e.g., cuts for reducing the search space) are more and more taken into
account when designing a very efficient approximation method for a particu-
lar MOCO. It is not surprising to see an evolutionary algorithm – for global
convergence – coupled with a tabu search algorithm – for the exploitation of
the combinatorial structure – within one approximation method.

Modern MOMH’s for MOCO problems appear more and more as problem-
oriented techniques, i.e., selections of components that are advantageously
combined to create an algorithm which can tackle the problem in the most
efficient way. By nature the algorithm is hybrid, including evolutionary compo-
nents, neighbourhood search components, and problem specific components.

This section gives an overview of the literature on hybrid MOMH’s clas-
sified in three main categories: metaheuristic with metaheuristic (Sects. 4.1,
4.2 and 4.3), metaheuristic with other techniques (Sect. 4.4) and metaheuris-
tic with preferences provided by a decision-maker (Sect. 4.5). An overview of
the trends in the design of hybrid multi-objective metaheuristics closes this
section (Sect. 4.6).

4.1 Hybridization to Make a Method More Aggressive

To enhance the aggressiveness of the approximation procedure, the first step
of hybridization has been the inclusion of a local search inside a MOEA. In

238 Matthias Ehrgott and Xavier Gandibleux

that scheme, EA drives the search procedure, and activates an NSA, with the
aim to improve as far as possible the promising solutions resulting from the
evolutionary operators. The NSA can simply be a depth first search method,
or a more sophisticated method like a (truncated) tabu search exploiting ad-
vantageously the combinatorial structure of the optimization problem.

Figs. 3 and 4 report the results obtained for a bi-objective knapsack prob-
lem with two constraints and 250 items. The exact frontier has been com-
puted with CPLEX. Approximations are the output of a single run of five
MOMHs. The approximations obtained with three MOEAs without NSA
(VEGA, NSGA, SPEA) are concentrated in the middle part of the non-
dominated frontier (Fig. 3). Notice the gap of efficiency between VEGA, the
pioneer method, and the two well-known methods, NSGA and SPEA, which
is well visible on this example. The two MOEAs with a NSA (MOGLS and
MOGTS) compute comparable approximations, both are well spread along
the non-dominated frontier (Fig. 4).

7500

8000

8500

9000

9500

10000

10500

7000 7500 8000 8500 9000 9500 10000

z1

z2

Exact

VEGA

SPEA

NSGA

Fig. 3. Multi-objective multi-constrained knapsack problem (250 items, 2 objec-
tives, and 2 constraints), solved with VEGA, NSGA, and SPEA.

The following references give an overview of methods falling in this cate-
gory.

• Multiple Objective Genetic Algorithm (MOGA) by Murata and Ishibuchi,
1995 [94]. This method is not based on the Pareto ranking principle but

Hybrid Multi-Objective Metaheuristics 239

7500

8000

8500

9000

9500

10000

10500

7000 7500 8000 8500 9000 9500 10000

z1

z2
Exact

MOGLS

MOGTS

Fig. 4. Multi-objective multi-constrained knapsack problem (250 items, 2 objec-
tives, and 2 constraints), solved with MOGLS and MOGTS.

on a weighted sum of objective functions, combining them into a scalar
fitness function that uses randomly generated weight values in each iter-
ation. Later, the authors coupled a local search with a genetic algorithm,
introducing the memetic algorithm principle for MOPs.

• Method of Morita et al. (MGK) by Morita, Gandibleux and Katoh, 1998
[47]. Seeding solutions, either greedy or supported efficient, are put in the
initial population in order to initialise the algorithm with good genetic
information. The bi-objective knapsack problem is used to validate the
principle. This method becomes a memetic algorithm when a local search
has been performed on each new potentially efficient solution [48].

• Pareto Archived Evolution Strategy (PAES) by Knowles and Corne, 1999
[77]. PAES is an evolutionary strategy that employs local search to gener-
ate new candidate solutions and a reference archive to compute solution
quality.

• Multiple Objective Genetic Local Search (MOGLS) by Jaszkiewicz, 2001
[69]. This method hybridizes recombination operators with local improve-
ment heuristics. A scalarizing function is drawn at random for selecting
solutions, which are then recombined, and the offspring of the recombina-
tion are improved using heuristics.

240 Matthias Ehrgott and Xavier Gandibleux

• Multiple Objective Genetic Tabu Search (MOGTS) by Barichard and Hao,
2002 [5]. This is another hybrid method in which a genetic algorithm is
coupled with a tabu search. MOGTS has been evaluated on the multi-
constraint knapsack problem.

• Multi-colony Ant System (MACS) by Gambardella, Taillard and Agazzi,
1999 [43]. A bi-criteria vehicle routing problem with time windows with
the lexicographically sorted objectives of minimizing the number of vehi-
cles and minimizing total travel distance is solved. MACS uses one colony
for each objective and local as well as global pheromone update. The
colonies cooperate through the use of the global best solution for the global
pheromone update. Local search is applied to improve the quality of each
solution found.

• T’Kindt et al., 2002 [128]. A (single) ant colony optimization approach
is proposed for a two machine bi-criteria flowshop problem to minimize
makespan and total flowtime in a lexicographic sense. The solutions pro-
duced by the ants are improved by local search.

Other references in this most popular category include [123, 124, 122], all of
which apply an evolutionary algorithm combined with local search heuristics
to variants of the vehicle routing problem. In [71] this idea is applied to the bi-
objective set covering problem and [79] deals with the bi-objective arc routing
problem following this strategy and [74] apply it to the TSP with profits.

4.2 Hybridization to Drive a Method

One fundamental question for “pure” NSA based MOMHs, like MOSA or
MOTS, is the guidance mechanism along the non-dominated frontier. Influ-
enced by the success of MOGA, authors introduced the principle of deriving
search directions from a population of individuals. Here, global information
about the current approximation is deduced and drives local search processes
in order to “guarantee” a good coverage of the non-dominated frontier.

Using, for example, mechanisms based on notions of repulsion between
non-dominated points, the search is guided toward subareas of the frontier
containing (i) a high density of solutions or (ii) areas not yet explored.

This is the principle of the PSA [17] and the TAMOCO [63] methods.
Dealing with the same question, Engrand’s revised method [36, 100], and Sh-
elokar et al. [114] use the non-domination definition to avoid the management
of search directions.

• Pareto Simulated Annealing (PSA) by Czyzak and Jaszkiewicz, 1995 [16,
17, 18]. This method combines simulated annealing and genetic algorithm
principles. The main ideas concern the management of weights and the
consideration of a set of current solutions. A sample S ⊂ X of #S solutions
is determined and used as initial solutions. Each solution in this set is
“optimized” iteratively, i.e., by generating neighbouring solutions that may

Hybrid Multi-Objective Metaheuristics 241

be accepted according to a probabilistic strategy. For a given solution x̄ ∈ S
the weights are changed in order to increase the probability of moving it
away from its closest neighbour in S denoted by x̄′. Solutions in S play the
role of agents working almost independently but exchanging information
about their positions in the objective space. Thus, the interaction between
solutions guides the generation process through the values of λ.

• Multi-objective Tabu Search (TAMOCO) by Hansen, 1997 [64]. This
method uses a set of “generation solutions”, each with its own tabu list.
These solutions are dispersed throughout the objective space in order to
allow searches in different areas of the non-dominated frontier (see Fig. 5).
Weights are defined for each solution with the aim of forcing the search
into a certain direction of the non-dominated frontier and away from other
current solutions that are efficient with respect to it. Diversification is en-
sured by a set of generation solutions and a drift criterion. Results for
the knapsack problem and for a resource constrained project scheduling
problem are available in [134].

Fig. 5. The positions of four solutions A, B, C and D in objective space are shown
(for a maximization problem). Solution A should be improved to move towards the
non-dominated frontier but at the same time it should move away from other current
solutions, which are non-dominated with respect to A (solutions B and C). Solution
B pushes solution A away and this is shown by an optimization influence in the
direction of vector b. Likewise does solution C influence solution A to move away
from it in direction c. The final optimization direction for solution A is found by
adding these weighted influence vectors. (The figure is reproduced from [63].)

• Engrand’s method, 1997 [36, 37]. This is a hybridization of simulated an-
nealing principles with genetic algorithms originally applied to a nuclear
fuel management problem. Engrand’s method has been revised later by
Park and Suppapitnarm [100, 120, 121] and applied to the pressurized
water reactor reload core design optimization problem. The main charac-
teristic of this revised version is its ability to work without search direc-
tions, using a population of individuals to ensure the exploration of the
complete trade-off surface. Each objective is considered separately. The

242 Matthias Ehrgott and Xavier Gandibleux

method uses only the non-domination definition to select potentially ef-
ficient solutions, thus avoiding the management of search directions and
aggregation mechanisms. Advanced strategies use the population of po-
tentially efficient solutions to drive the approximation mechanism, thus
ensuring the detection of the whole non-dominated frontier.

• The method of Shelokar et al., 2000 [112, 113, 114]. An ant algorithm
for multi-objective continuous optimization is proposed. An interesting
feature is that it combines the ant system methodology with the strength
Pareto fitness assignment of [138] and clustering methods. The algorithm is
applied to reliability engineering problems in [112] and to the optimization
of reactor regenerator systems in [113].

• Armentano and Arroyo’s method [4] is based on the tabu search principle.
However, they work on a set of solutions following several paths, each
having its own tabu-list. To diversify the search they apply a clustering
technique to the set of potentially efficient solutions in any given iteration
and use the centroids of clusters to define search directions. They report
experiments on a bi-objective flowshop scheduling problem, obtaining good
results compared to exact methods, local search, and tabu search.

4.3 Hybridization for Exploiting Complementary Strengths

The idea of using the complementary forces of metaheuristics was a natural
way for the emergence of hybrid methods. A MOMH is often designed as a two
step method, switching from method A to method B, with a communication
process of solutions from A to B. The couple EA+NSA aims to take the
advantage of, for example, a GA-based algorithm for building a set of good
solutions in a first step followed by an aggressive search method, e.g., a TS-
based algorithm, in a second step. The couple NSA+GA makes sense for
example when an efficient algorithm is known for the single objective version
of the optimization problem. The first step aims to poke around the non-
dominated frontier, providing a sample of very good solutions covering very
well the whole non-dominated frontier, while the second step has to fill out
the approximation in terms of distribution. The following references illustrate
three MOMHs falling in this category.

• Ben Abdelaziz et al.’s hybrid method, 1999 [9]. The authors present a
hybrid algorithm using both EA and NSA independently. The goal of the
EA (a genetic algorithm) is to produce a first diversified approximation,
which is then improved by the NSA (a tabu search algorithm). Results
have been reported on the multi-objective knapsack problem.

• Delorme et al. [19] design a scheme based on an NSA interfaced with an
EA for solving the bi-objective set packing problem. The idea is to take
advantage of an efficient heuristic known for the single objective problem
in order to compute an initial set of very good solutions P0 in a first phase.
The heuristic (a GRASP algorithm) is encapsulated in a basic generation

Hybrid Multi-Objective Metaheuristics 243

procedure, for example using a convex combination of the objectives: λ-
GRASP. The second phase works on a population of individuals P derived
from the initial set P0, and performs an EA (a modified version of SPEA
dealing with all potential efficient solutions and integrating a local search:
A-SPEA) in order to consolidate the approximation of the non-dominated
frontier (see Fig. 6).

Fig. 6. The figure illustrates the average percentage of exact solutions found using
λ-GRASP, A-SPEA, and the hybrid for the set packing problem with two objectives,
when all three methods are allowed the same computational effort. (The figure is
reproduced from [19].)

• López-Ibáñez, Paquete and Stützle [83] compare hybridizations of a multi-
objective ant colony optimization algorithm and the evolutionary algo-
rithm SPEA with short runs of a tabu search or a simple iterative improve-
ment algorithm. The goal of the hybridization is to achieve an acceptable
trade-off between solutions speed and solution quality. Their experimental
study on the bi-objective quadratic assignment problem shows that char-
acteristics of the instance have a strong influence on the performance of
the variants.

4.4 Hybridization with Other Techniques

Embedding (meta)heuristics in an exact solution method or reversely is com-
mon in single objective optimization. More broadly speaking, the integration

244 Matthias Ehrgott and Xavier Gandibleux

of techniques from several fields as operations research, artificial intelligence,
and constraint programming has lead to interesting results on large and com-
plex single objective problems. But it is astonishing to observe that this way
to proceed is marginal in the multi-objective context. Four successful cases of
that kind of hybridization are reported.

• Gandibleux and Fréville [45] propose a procedure for the bi-objective knap-
sack problem combining an exact procedure for reducing the search space
with a tabu search process for identifying the potentially efficient solu-
tions. The reduction principle is based on cuts which eliminate parts of
the decision space where (provably) no exact efficient solution exists (see
Fig. 7). It uses an additional constraint on the cardinality of an optimal
solution for computing a utopian reference point and an approximation
set for verifying if the reference point is dominated. The tabu search is
triggered on the reduced space and dynamically updates the bounds in
order to guarantee the tightest value at any time. Here the cuts help the
metaheuristic.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

instance

layers
eliminated

layers
to visit

layers
eliminated

KP50 KP100 KP150 KP200 KP250 KP300 KP400KP350 KP450 KP500
LB=44 LB+=78

UB=105 UB-=104

layers
(1...n)
in %

: proposition 2: proposition 1

Fig. 7. The figure shows how two pre-processing procedures reduce the search area
in decsision space by proving that solutions with small or large cardinality can not be
efficient. E.g., for KP 150, the first procedure establishes that all efficient solutions
must have between 44 and 105 items in the knapsack, whereas the second procedure
shows they must have between 78 and 104 items. The vertical axis is relative because
the results are for instances of size 50 to 500. (The figure is reproduced from [45].)

• Przybylski et al. [104] introduced the seek and cut method for solv-
ing the bi-objective assignment problem. The “seek” computes a local

Hybrid Multi-Objective Metaheuristics 245

approximation of the non-dominated frontier (i.e., bounds are computed by
a population-based algorithm coupled with path relinking) which is then
used for “cutting” the search space of an implicit enumeration scheme (see
Fig. 8). Here the metaheuristic helps the enumeration scheme in providing
bounds of good quality for generating the exact non-dominated points.

0

2000

4000

6000

8000

10000

12000

14000

16000

50 55 60 65 70 75 80 85 90 95 100

C
P

U
_t

 (
s)

instance size

Results to compute a complete set E for the instances with range = 20

2phRevisited

(PR3)(N1)

(PR1)(N1)
(PR1)(N2)
(PR2)(N1)
(PR2)(N2)

Fig. 8. CPU time used by an exact method for solving the assignment problem
with two objectives without (the upper curve) and with (the lower curves) the use
of approximate solutions for the pruning test inside the method of [104].

• Barichard introduced constraint programming techniques in the solution
procedure of MOP problems with the PICPA method [6, 7]. The main
goal of CP in PICPA is to build a sharp bound around the non-dominated
frontier in the decision space using value propagation mechanisms over
variables.

• Jozefowiez proposed Target Aiming Pareto Search (TAPaS) [73], a MOMH
where the search directions of the procedure are given by the current set
XPE , similar to the principle of almost all the tabu search adaptations for
MOP [46, 64, 119]. A series of goals is deduced from XPE and a scalarizing
function is used for guiding an NSA, defining a two phase strategy. For the
covering tour problem, the method is coupled with an EA plus a branch
and cut algorithm specifically designed for the single objective version of
the problem.

We mention a few more papers with combinations of metaheuristics with
exact methods for MOCO. In [57] scatter search is combined with the exact

246 Matthias Ehrgott and Xavier Gandibleux

solution of small residual problems. [75] combine an evolutionary algorithm
with a branch and cut algorithm to solve subproblems. The approach by [80]
adaptively constructs right hand side values for the ε-constraint scalarization
and solves the single objective subproblems, e.g., by an evolutionary algo-
rithm.

Chen et al. [12] integrate simulation to model uncertainty and a genetic al-
gorithm to solve a bi-level multi-objective stochastic program arising in built-
operate-transfer network design problems.

4.5 Hybridization with Preferences Provided by a Decision-Maker

A decision-maker can be invited to play a role in a resolution process of
an MOP. Information provided by the decision maker often concerns his pref-
erences. Here, it is usual to distinguish three modes following the role of the
decision maker in the resolution process. In “a priori mode”, all the preferences
are known at the beginning of the decision making process. The techniques
used seek for a solution on the basis of these parameters. In “a posteriori
mode” the set of all efficient solutions is generated for the considered problem.
At the end, this set is analyzed according to the decision maker’s preferences.
Many MOMHs are designed following this solution mode. In the “interactive
mode”, the preferences are introduced by the decision maker during the so-
lution process. The methods involve a series of computing steps alternating
with dialogue steps and can be viewed as the interactive determination of a
satisfying compromise for the decision maker. Thus they require a high par-
ticipation level on the part of the decision maker. Practical problems are often
solved according to the interactive mode.

The interactive mode defines a kind of hybrid MOMH. The following ref-
erences give an overview of some procedures proposed in that context.

• Alves and Cĺımaco [2] propose a general interactive method for solving
0-1 multi-objective problems where simulated annealing and tabu search
work as two alternative and complementary computing procedures. It is a
progressive and selective search of potentially efficient solutions by focus-
ing the search on a subregion delimited by information for the objective
function values specified by the decision-maker. Computational results for
multiple-constraint knapsack problems with two objectives are reported.

• Pamuk and Köksalan proposed an evolutionary metaheuristic that inter-
acts with the decision maker to guide the search effort towards his or her
preferred solutions.

• PSA (see Sect. 4.2) has been coupled with an interactive procedure (light
beam search) in order to organize an interactive search in [65].

• An interactive version of MOSA (see Sect. 3.6) has been introduced. In
[125], a simulation with a fictitious decision maker is reported for the
knapsack problem with four objectives and the assignment problem with
three objectives. In [133] the interactive version is used for solving a real
situation, the problem of homogeneous grouping of nuclear fuel.

Hybrid Multi-Objective Metaheuristics 247

4.6 Conclusions and Discussion

Literature overviews published these last 20 years about progress in the field of
MOMH, show clearly that the methods have quickly transcended the perime-
ter of principles endogenous of metaheuristics. Various ideas and techniques
have been progressively integrated for making the method more aggressive, for
better tackling the specificities and difficulties of multi-objective optimization
problems, for reusing well-established results in the single objective case, etc.
MOMHs became a blend of heterogeneous components, hybrid methods by
nature. Another important change relates to the abandonment of the idea to
design a single universal method (solver). Methods are more and more spe-
cific, strongly related to the optimization problem to be solved. This double
observation is particularly true when the problem to be solved is a MOCO
problem.

The research field now has a significant background which allows to mea-
sure the strengths and weaknesses of ideas which were introduced. Postulating
that an approximation method in multi-objective optimization is specialized
for the problem to be solved, a MOMH appears today as collection of various
techniques available in a library, which have to be combined together and in-
stantiated on a given problem. Without being exhaustive, among the relevant
techniques who can be embedded in components available for a MOMH de-
signer, we find: a population of solutions, evolutionary operators, strategies of
ranking/guiding/clustering, a neighbourhood structure, an exploration strat-
egy (partial, exhaustive), a scalarizing function, etc. Three components have
been recently underlined as important for the efficiency of a MOMH designed
for solving MOCO problems:

• The initial solutions. In [81] Zitzler has underlined the significant role
played by elite (potentially efficient) solutions in a MOEA. However, the
initial population is often composed of feasible solutions built randomly.
For MOCO problems, subsets of exact solutions or approximate solutions
computed with a greedy or an ad-hoc algorithm can be advantageously ex-
ploited. The role of elite solutions in the generation of the non-dominated
frontier has been investigated by Gandibleux et al. [48, 93] for the knap-
sack problem. Using greedy solutions, or efficient supported solutions, in
the initial population makes the algorithm more apt to generate quickly
efficient solutions. Haubelt et al. [66] obtained the same conclusion for a
MOCO problem in the field of embedded system synthesis. Gandibleux
et al. [51] compute a complete set of exact supported solutions for the bi-
objective assignment problem. Pasia et al. [101] use a single objective ACO
algorithm for generating individuals objective by objective for a flowshop
problem.

• Lower and upper bounds on the non-dominated frontier. A lo-
cal search is usually an expensive procedure in terms of computing time.
Triggering a local search from a solution, while it has little chance of gen-
erating new potentially efficient solutions is a waste of time. A solution

248 Matthias Ehrgott and Xavier Gandibleux

can be a candidate for performing a local search basically if it close to the
non-dominated frontier. Knowing a lower bound on the non-dominated
frontier can help to implement such a strategy. Bounds and bound sets
are discussed by Ehrgott and Gandibleux [31]. The principle has been
implemented successfully by Gandibleux et al. [51] and Paisa et al. [101].

• A path relinking operator. In Gandibleux et al. [50], similarities in
solutions and subsets of exact solutions are used advantageously by the
components of an evolutionary method. Here, interesting performance re-
sults are measured with a path relinking operator [53], given a subset of
optimal solutions (or approximations) in the initial population. Path re-
linking generates new solutions by exploring the trajectories that connect
good solutions. A path relinking operation starts by randomly selecting
IA (the initiating solution) and IB (the guiding solution), two individuals
from the current population (Fig. 9). The path relinking operation gen-
erates a path IA(= I0), I1, . . . , IB through the neighbourhood space, such
that the distance between Ii and IB decreases monotonically in i, where
the distance is defined as the number of positions for which different values
are assigned in Ii and IB .
Although many such paths may possibly exist, one path is chosen using,
for example, random moves based on a swap operator. Such randomness
introduces a form of diversity to the solutions generated along the path.
For every intermediate solution Ii, a single solution is generated in the
neighbourhood (Fig. 9). Introduced for the first time in 2003 in multi-
objective optimization [49], path relinking has shown clearly its impact
for the approximation of efficient solutions. This principle has been suc-
cessfully implemented for computing the approximation of the complete
non-dominated frontier of assignment and knapsack problems with two ob-
jectives [51], and recently on a bi-objective flowshop problem [101]. Fig. 10
provides a sample of these results. Using the same numerical instances, this
population-based method based on specific operators outperforms MOSA
[129].

Despite all the work done, many hot topics are open in the field of hybrid
metaheuristics for multi-objective combinatorial optimization. Among them,
we mention the scalability problem, the reduction of (decision and objective)
spaces, the impact of objective functions, or the solution of problems with
more than two objectives.

Answers may come from effectively reusing 50 years of knowledge in (sin-
gle objective) optimization, the coupling with others techniques like constraint
programming, or again the design of new efficient components for combinato-
rial problems, like the path relinking. These challenges promise many future
papers.

Hybrid Multi-Objective Metaheuristics 249

0
0

z2

z1

IA

IB

N(IA)

Fig. 9. Illustration of a possible path construction (see [50]). IA and IB are two
individuals randomly selected from the current elite population (small bullets). IA

is the initiating solution, and IB is the guiding solution. N (IA) is the feasible neigh-
bourhood according to the move defined. IA − I1 − I2 − I3 − I4 − IB is the path that
is built.

References

1. P. Agrell, M. Sun, and A. Stam. A tabu search multi-criteria decision model
for facility location planning. In Proceedings of the 1997 DSI Annual Meeting,
San Diego, California, volume 2, pages 908–910. Decision Sciences Institute,
Atlanta, GA, 1997.

2. M. J. Alves and J. Climaco. An interactive method for 0-1 multiobjective
problems using simulated annealing and tabu search. Journal of Heuristics,
6(3):385–403, 2000.

3. E. Angel, E. Bampis, and L. Gourvès. Approximating the Pareto curve with
local search for the bicriteria TSP(1,2) problem. Theoretical Computer Science,
310:135–146, 2004.

4. V. A. Armentano and J. E. C. Arroyo. An application of a multi-objective
tabu search algorithm to a bicriteria flowshop problem. Journal of Heuristics,
10:463–481, 2004.

5. V. Barichard and J.-K. Hao. Un algorithme hybride pour le problème de sac à
dos multi-objectifs. In Huitièmes Journées Nationales sur la Résolution Pra-
tique de Problèmes NP-Complets JNPC’2002 Proceedings, 2002. Nice, France,
27–29 May.

6. V. Barichard and J.-K. Hao. A population and interval constraint propagation
algorithm. In G. Goos, J. Hartmanis, and J. van Leeuwen, editors, Evolutionary
Multi-Criterion Optimization: Second International Conference, EMO 2003,
Faro, Portugal, April 8-11, 2003. Proceedings, volume 2632 of Lecture Notes in
Computer Science, pages 88–101. Springer-Verlag, Berlin, Germany, 2003.

250 Matthias Ehrgott and Xavier Gandibleux

0 %

20 %

40 %

60 %

80 %

100 %

05 10 15 20 25 30 35 40 45 50 60 70 80 90 100
0 s

50 s

100 s

150 s

200 s

250 s

300 s

350 s

400 s

450 s

500 s

M
1

(%
)

C
P

U
t(

se
c)

Instance size (n x n)

 M1 (improved MOSA) vs M1 (min/avg/max) & CPUt (avg) for rule 1+3 with PEinit

M1 (min/avg/max)
CPUt (avg)

improved MOSA (M1)

Fig. 10. Approximations obtained with the MOSA method and a population-based
method for the assignment problem with two objectives. The comparison is based on
the performance measure M1 [130], which measures the percentage of exact solutions
included in the final approximation set.

7. V. Barichard and J.-K. Hao. A population and interval constraint propagation
algorithm for mulitobjective optimization. In Proceedings of The Fifth Meta-
heuristics International Conference MIC’03, paper ID MIC03–04. CD ROM,
2003.

8. R. Beausoleil. Multiple criteria scatter search. In J. P. de Sousa, editor, MIC
2001 Proceedings of the 4th Metaheuristics International Conference, Porto,
July 16-20, 2001, volume 2, pages 539–543, 2001.

9. F. Ben Abdelaziz, J. Chaouachi, and S. Krichen. A hybrid heuristic for multiob-
jective knapsack problems. In S. Voß, S. Martello, I. Osman, and C. Roucairol,
editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms for
Optimization, pages 205–212. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1999.

10. W. M. Carlyle, J. W. Fowler, E. S. Gel, and B. Kim. Quantitative comparison
of approximate solution sets for bi-criteria optimization problems. Decision
Sciences, 34(1):63–82, 2003.

11. R. L. Carraway, T. L. Morin, and H. Moskovitz. Generalized dynamic program-
ming for multicriteria optimization. European Journal of Operational Research,
44:95–104, 1990.

12. A. Chen, K. Subprasom, and Z. Ji. A simulation-based multi-objective genetic
algorithm (SMOGA) procedure for BOT network design. Optimization and
Engineering, 7:225–247, 2006.

13. C. A. Coello. A comprehensive survey of evolutionary-based multiobjective op-
timization techniques. Knowledge and Information Systems, 1(3):269–308, 1999.

Hybrid Multi-Objective Metaheuristics 251

14. C. A. Coello. An updated survey of GA-based multiobjective optimization
techniques. ACM Computing Surveys, 32(2):109–143, 2000.

15. Y. Collette and P. Siarry. Three new metrics to measure the convergence of
metaheuristics towards the Pareto frontier and the aesthetic of a set of solutions
in biobjcetive optimization. Computers and Operations Research, 32:773–792,
2005.

16. P. Czyżak and A. Jaszkiewicz. A multiobjective metaheuristic approach to
the localization of a chain of petrol stations by the capital budgeting model.
Control and Cybernetics, 25(1):177–187, 1996.

17. P. Czyżak and A. Jaszkiewicz. Pareto simulated annealing. In G. Fandel and
T. Gal, editors, Multiple Criteria Decision Making. Proceedings of the XIIth
International Conference, Hagen (Germany), volume 448 of Lecture Notes in
Economics and Mathematical Systems, pages 297–307. Springer-Verlag, Berlin,
Germany, 1997.

18. P. Czyżak and A. Jaszkiewicz. Pareto simulated annealing – A metaheuristic
technique for multiple objective combinatorial optimization. Journal of Multi-
Criteria Decision Analysis, 7(1):34–47, 1998.

19. X. Delorme, X. Gandibleux, and F. Degoutin. Evolutionary, constructive and
hybrid procedures for the biobjective set packing problem. September 2005. In
revision (European Journal of Operational Research) Research report EMSE
2005-500-011, Ecole des Mines de Saint-Etienne, 2005.

20. X. Delorme, X. Gandibleux, and J. Rodriguez. Résolution d’un problème
d’évaluation de capacité d’infrastructure ferroviaire. In Actes du colloque
sur l’innovation technologique pour les transports terrestres (TILT), volume 2,
pages 647–654. GRRT Lille, 2003.

21. K. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss, and C. Stummer. Ant
colony optimization in multiobjective portfolio selection. In J. P. de Sousa, ed-
itor, MIC’2001 Proceedings of the 4th Metaheurstics International Conference,
Porto, July16-20, 2001, volume 1, pages 243–248, 2001.

22. K. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss, and C. Stum-
mer. Investitionsentscheidungen bei mehrfachen Zielsetzungen und künstliche
Ameisen. In P. Chamoni, R. Leisten, A. Martin, J. Minnemann, and
H. Stadtler, editors, Operations Research Proceedings 2001, Selected Papers
of OR 2001, pages 355–362. Springer-Verlag, Berlin, Germany, 2002.

23. K. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss, and C. Stummer. Pareto
ant colony optimization: A metaheuristic approach to multiobjective portfolio
selection. Annals of Operations Research, 131:79–99, 2004.

24. K. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss, and C. Stummer. Pareto
ant colony optimization with ILP preprocessing in multiobjective portfolio se-
lection. European Journal of Operational Research, 171:830–841, 2006.

25. K. Doerner, R. F. Hartl, and M. Reimann. Are COMPETants more com-
petent for problem solving? The case of a multiple objective transportation
problem. In L. Lee Spector, A. D. Goodman, A. Wu, W. B. Langdon, H.-M.
Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke,
editors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), page 802. Morgan Kaufmann, San Francisco, CA, 2001.

26. M. Ehrgott. Approximation algorithms for combinatorial multicriteria opti-
mization problems. International Transcations in Operational Research, 7:5–
31, 2000.

252 Matthias Ehrgott and Xavier Gandibleux

27. M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of mul-
tiobjective combinatorial optimization. OR Spektrum, 22:425–460, 2000.

28. M. Ehrgott and X. Gandibleux. Multiobjective combinatorial optimization.
In M. Ehrgott and X. Gandibleux, editors, Multiple Criteria Optimization –
State of the Art Annotated Bibliographic Surveys, volume 52 of Kluwer’s Inter-
national Series in Operations Research & Management Science, pages 369–444.
Kluwer Academic Publishers, Boston, MA, 2002.

29. M. Ehrgott and X. Gandibleux, editors. Multiple Criteria Optimization – State
of the Art Annotated Bibliographic Surveys, volume 52 of Kluwer’s Interna-
tional Series in Operations Research and Management Science. Kluwer Acad-
emic Publishers, Boston, MA, 2002.

30. M. Ehrgott and X. Gandibleux. Approximative solution methods for multiob-
jective combinatorial optimization. TOP, 12(1):1–88, 2004.

31. M. Ehrgott and X. Gandibleux. Bound sets for biobjective combinatorial op-
timization problems. Computers & Operations Research, 34:2674–2694, 2007.

32. M. Ehrgott, K. Klamroth, and S. Schwehm. An MCDM approach to portfolio
optimization. European Journal of Operational Research, 155(3):752–770, 2004.

33. M. Ehrgott and D. M. Ryan. Constructing robust crew schedules with bicriteria
optimization. Journal of Multi-Criteria Decision Analysis, 11:139–150, 2002.

34. M. Ehrgott and D. Tenfelde-Podehl. Computation of ideal and nadir values and
implications for their use in MCDM methods. European Journal of Operational
Research, 151(1):119–131, 2003.

35. M. Ehrgott and M. Wiecek. Multiobjective programming. In J. Figueira,
S. Greco, and M. Ehrgott, editors, Multicriteria Decision Analysis: State of the
Art Surveys, pages 667–722. Springer Science + Business Media, New York,
2005.

36. P. Engrand. A multi-objective approach based on simulated annealing
and its application to nuclear fuel management. In Proceedings of the 5th
ASME/SFEN/JSME International Conference on Nuclear Engineering. Icone
5, Nice, France 1997, pages 416–423. American Society of Mechanical Engi-
neers, New York, NY, 1997.

37. P. Engrand and X. Mouney. Une méthode originale d’optimisation multi-
objectif. Technical Report 98NJ00005, EDF-DER Clamart, France, 1998.

38. T. Erlebach, H. Kellerer, and U. Pferschy. Approximating multiobjective knap-
sack problems. Management Science, 48(12):1603–1612, 2002.

39. E. Fernández and J. Puerto. Multiobjective solution of the uncapacitated plant
location problem. European Journal of Operational Research, 145(3):509–529,
2003.

40. C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective op-
timization: Formulation, discussion and generalization. In S. Forrest, editor,
Proceedings of the Fifth International Conference on Genetic Algorithms, San
Mateo, California, 1993. University of Illinois at Urbana-Champaign, pages
416–423. Morgan Kaufmann, San Francisco, CA, 1993.

41. C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in
multiobjective optimization. Evolutionary Computation, 3(1):1–16, 1995.

42. M. P. Fourman. Compaction of Symbolic Layout using Genetic Algorithms. In
Genetic Algorithms and their Applications: Proceedings of the First Interna-
tional Conference on Genetic Algorithms, pages 141–153. Lawrence Erlbaum,
1985.

Hybrid Multi-Objective Metaheuristics 253

43. L. M. Gambardella, E. Taillard, and G. Agazzi. MACS-VRPTW: A multiple
ant colony system for vehicle routing problems with time windows. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 63–76.
McGraw-Hill, London, 1999.

44. X. Gandibleux, F. Beugnies, and S. Randriamasy. Martins’ algorithm revisited
for multi-objective shortest path problems with a maxmin cost function. 4OR:
Quarterly Journal of Operations Research, 4(1):47–59, 2006.

45. X. Gandibleux and A. Fréville. Tabu search based procedure for solving the 0/1
multiobjective knapsack problem: The two objective case. Journal of Heuris-
tics, 6(3):361–383, 2000.

46. X. Gandibleux, N. Mezdaoui, and A. Fréville. A tabu search procedure to solve
multiobjective combinatorial optimization problems. In R. Caballero, F. Ruiz,
and R. Steuer, editors, Advances in Multiple Objective and Goal Programming,
volume 455 of Lecture Notes in Economics and Mathematical Systems, pages
291–300. Springer-Verlag, Berlin, Germany, 1997.

47. X. Gandibleux, H. Morita, and N. Katoh. A genetic algorithm for 0-1 multiob-
jective knapsack problem. In International Conference on Nonlinear Analysis
and Convex Analysis (NACA98) Proceedings, 1998. July 28-31 1998, Niigata,
Japan.

48. X. Gandibleux, H. Morita, and N. Katoh. The supported solutions used as a
genetic information in a population heuristic. In E. Zitzler, K. Deb, L. Thiele,
C. A. Coello Coello, and D. Corne, editors, First International Conference on
Evolutionary Multi-Criterion Optimization, volume 1993 of Lecture Notes in
Computer Science, pages 429–442. Springer-Verlag, Berlin, Germany, 2001.

49. X. Gandibleux, H. Morita, and N. Katoh. Impact of clusters, path-relinking
and mutation operators on the heuristic using a genetic heritage for solving
assignment problems with two objectives. In Proceedings of The Fifth Meta-
heuristics International Conference MIC’03, pages Paper ID MIC03–23. CD
ROM, 2003.

50. X. Gandibleux, H. Morita, and N. Katoh. A population-based metaheuris-
tic for solving assignment problems with two objectives. Technical Report
no7/2003/ROI, LAMIH, Université de Valenciennes, 2003.

51. X. Gandibleux, H. Morita, and N. Katoh. Evolutionary operators based on elite
solutions for biobjective combinatorial optimization. In C. Coello Coello and
G. Lamont, editors, Applications of Multi-Objective Evolutionary Algorithms,
chapter 23, pages 555–579. World Scientific, Singapore, 2004.

52. X. Gandibleux, D. Vancoppenolle, and D. Tuyttens. A first making use
of GRASP for solving MOCO problems. Technical report, University of
Valenciennes, France, 1998. Paper presented at MCDM 14, June 8-12 1998,
Charlottesville, VA.

53. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1997.

54. F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path
relinking. Control and Cybernetics, 39(3):653–684, 2000.

55. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Co., Reading, MA, 1989.

56. C. Gomes da Silva, J. Climaco, and J. Figueira. A scatter search method for bi-
criteria {0, 1}-knapsack problems. European Journal of Operational Research,
169:373–391, 2006.

254 Matthias Ehrgott and Xavier Gandibleux

57. C. Gomes da Silva, J. Figueira, and J. Cĺımaco. Integrating partial optimization
with scatter search for solving bi-criteria {0, 1}-knapsack problems. European
Journal of Operational Research, 177:1656–1677, 2007.

58. L. Gourvès. Approximation polynomiale et optimisation combinatoire multi-
critère. PhD thesis, Université dÉvry Val d’Essone, 2005.

59. M. Gravel, W. L. Price, and C. Gagné. Scheduling continuous casting of alu-
minium using a multiple objective ant colony optimization metaheuristic. Eu-
ropean Journal of Operational Research, 143(1):218–229, 2002.

60. J. J. Grefenstette. GENESIS: A system for using genetic search procedures.
In Proceedings of the 1984 Conference on Intelligent Systems and Machines,
pages 161–165. Oakland University, Rochester, MI, 1984.

61. P. Hajela and C. Y. Lin. Genetic search strategies in multicriterion optimal
design. Structural Optimization, 4:99–107, 1992.

62. H. W. Hamacher and K.-H. Küfer. Inverse radiation therapy planing – A mul-
tiple objective optimization approach. Discrete Applied Mathematics, 118(1-
2):145–161, 2002.

63. M. P. Hansen. Metaheuristics for multiple objective combinatorial optimiza-
tion. PhD thesis, Institute of Mathematical Modelling, Technical University of
Denmark, Lyngby (Denmark), 1998. Report IMM-PHD-1998-45.

64. M. P. Hansen. Tabu search for multiobjective combinatorial optimization:
TAMOCO. Control and Cybernetics, 29(3):799–818, 2000.

65. M. Hapke, A. Jaszkiewicz, and R. Slowinski. Interactive analysis of multiple-
criteria project scheduling problems. European Journal of Operational Re-
search, 107(2):315–324, 1998.

66. C. Haubelt, J. Gamenik, and J. Teich. Initial population construction for con-
vergence improvement of MOEAs. In C. Coello Coello, A. Hernández Aguirre,
and E. Zitzler, editors, Evolutionary Multi-Criterion Optimization, volume
3410 of Lecture Notes in Computer Sciences, pages 191–205. Springer-Verlag,
Berlin, Germany, 2005.

67. J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched Pareto genetic algorithm
for multiobjective optimization. In Proceedings of the First IEEE Conference
on Evolutionary Computation, IEEE World Congress on Computational Intel-
ligence, Orlando, FL, 29 June – 1 July 1994, volume 1, pages 82–87. IEEE
Service Center, Piscataway, NJ, 1994.

68. S. Iredi, D. Merkle, and M. Middendorf. Bi-criterion optimization with multi
colony ant algorithms. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello,
and D. Corne, editors, First International Conference on Evolutionary Multi-
Criterion Optimization, volume 1993 of Lecture Notes in Computer Science,
pages 359–372. Springer-Verlag, Berlin, Germany, 2001.

69. A. Jaszkiewicz. Multiple objective genetic local search algorithm. In
M. Köksalan and S. Zionts, editors, Multiple Criteria Decision Making in the
New Millennium, volume 507 of Lecture Notes in Economics and Mathematical
Systems, pages 231–240. Springer-Verlag, Berlin, Germany, 2001.

70. A. Jaszkiewicz. Multiple objective metaheuristic algorithms for combinatorial
optimization. Habilitation thesis, Poznan University of Technology, Poznan
(Poland), 2001.

71. A. Jaszkiewicz. A comparative study of multiple-objective metaheuristics on
the bi-objective set covering problem and the Pareto memetic algorithm. An-
nals of Operations Research, 131:135–158, 2004.

Hybrid Multi-Objective Metaheuristics 255

72. D. Jones, S. K. Mirrazavi, and M. Tamiz. Multi-objective meta-heuristics:
An overview of the current state-of-the-art. European Journal of Operational
Research, 137(1):1–9, 2002.

73. N. Jozefowiez. Modélisation et résolution approchée de problèmes de tournées
multi-objectif. PhD thesis, Université de Lille 1, France, 2004.

74. N. Jozefowiez, F. Glover, and M. Laguna. A hybrid meta-heuristic for the
traveling salesman problem with profits. Technical report, Leeds School of
Business, University of Colorado at Boulder, 2006.

75. N. Jozefowiez, F. Semet, and E. G. Talbi. The bi-objective covering tour
problem. Computers and Operations Research, 34:1929–1942, 2007.

76. J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings
of the 1995 IEEE International Conference on Neural Networks, volume IV,
pages 1942–1948. IEEE Service Center, Piscataway, NJ, 1995.

77. J. D. Knowles and D. W. Corne. The Pareto archived evolution strategy: A
new baseline algorithm for multiobjective optimisation. In Proceedings of the
1999 Congress on Evolutionary Computation. Washington, D.C., pages 98–
105. IEEE Service Center, Piscataway, NJ, 1999.

78. F. Kursawe. Evolution strategies for vector optimization. In Proceedings of the
10th International Conference on Multiple Criteria Decision Making, Taipei-
Taiwan, volume III, pages 187–193, 1992.

79. P. Lacomme, C. Prins, and M. Sevaux. A genetic algorithm for a bi-objective
arc routing problem. Computers and Operations Research, 33:3473–3493, 2006.

80. M. Laumanns, L. Thiele, and E. Zitzler. An efficient, adaptive parameter
variation scheme for metaheuristics based on the epsilon-constraint method.
European Journal of Operational Research, 169:932–942, 2006.

81. M. Laumanns, E. Zitzler, and L. Thiele. On the effect of archiving, elitism, and
density based selection in evolutionary multi-objective optimization. In Evo-
lutionary Multi-Criteria Optimization. First International Conference, EMO
2001. Zürich, Switzerland, March 7–9, 2001. Proceedings, volume 1993 of
Lecture Notes in Computer Science, pages 181–196. Springer-Verlag, Berlin,
Germany, 2001.

82. H. Lee and P. S. Pulat. Bicriteria network flow problems: Integer case. European
Journal of Operational Research, 66:148–157, 1993.

83. M. López-Ibáñez, L. Paquete, and T. Stützle. Hybrid population-based algo-
rithms for the biobjective quadratic assignment problem. Technical report,
Computer Science Department, Darmstadt University of Technology, 2004.

84. P. Lučić and D. Teodorović. Simulated annealing for the multi-objective
aircrew rostering problem. Transportation Research A: Policy and Practice,
33(1):19–45, 1999.

85. B. Manthey and L. S. Ram. Approximation algorithms for multi-criteria trav-
eling salesman problems. In T. Erlebach and C. Kaklamanis, editors, Approx-
imation and Online Algorithms, volume 4368 of Lecture Notes in Computer
Science, pages 302–315. Springer-Verlag, Berlin, Germany, 2007.

86. C. E. Mariano and E. Morales. MOAQ and ant-Q algorithm for multiple objec-
tive optimization problems. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Gar-
zon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the
Genetic and Evolutionary Computation Conference, Orlando, Florida, USA,
13-17 July 1999, volume 1, pages 894–901. Morgan Kaufmann, San Francisco,
CA, 1999.

256 Matthias Ehrgott and Xavier Gandibleux

87. C. E. Mariano and E. Morales. A multiple objective ant-q algorithm for the
design of water distribution irrigation networks. Technical Report HC-9904,
Instituto Mexicano de Tecnoloǵıa del Agua, 1999.

88. G. Mavrotas and D. Diakoulaki. A branch and bound algorithm for mixed zero-
one multiple objective linear programming. European Journal of Operational
Research, 107(3):530–541, 1998.

89. P. R. McMullen. An ant colony optimization approach to addressing a JIT
sequencing problem with multiple objectives. Artificial Intelligence in Engi-
neering, 15:309–317, 2001.

90. P. R. McMullen and G. V. Frazier. Using simulated annealing to solve a
multiobjective assembly line balancing problem with parallel workstations. In-
ternational Journal of Production Research, 36(10):2717–2741, 1999.

91. K. Miettinen. Nonlinear Multiobjective Optimization, volume 12 of Interna-
tional Series in Operations Research and Management Science. Kluwer Acad-
emic Publishers, Dordrecht, The Netherlands, 1999.

92. J. Moore and R. Chapman. Application of particle swarm to multiobjective
optimization. Technical report, Department of Computer Science and Software
Engineering, Auburn University, 1999.

93. H. Morita, X. Gandibleux, and N. Katoh. Experimental feedback on biob-
jective permutation scheduling problems solved with a population heuristic.
Foundations of Computing and Decision Sciences Journal, 26(1):23–50, 2001.

94. T. Murata and H. Ishibuchi. MOGA: Multi-objective genetic algorithms. In
Proceedings of the 2nd IEEE International Conference on Evolutionary Com-
puting, Perth, Australia, pages 289–294. IEEE Service Center, Piscataway, NJ,
1995.

95. D. Nam and C. H. Park. Multiobjective simulated annealing: A comparative
study to evolutionary algorithms. International Journal of Fuzzy Systems,
2(2):87–97, 2000.

96. C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-
offs and optimal access to web sources. In Proceedings of the 41st Annual
Symposium on the Foundation of Computer Science FOCS00, pages 86–92.
IEEE Computer Society, Los Alamitos, CA, 2000.

97. L. Paquete and T. Stützle. A two-phase local search for the biobjective trav-
eling salesman problem. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb,
and L. Thiele, editors, Evolutionary Multi-Criterion Optimization – Second
International Conference, EMO 2003, Faro, Portugal, April 8-11, 2003, Pro-
ceedings, volume 2632 of Lecture Notes in Computer Science, pages 479–493.
Springer-Verlag, Berlin, Germany, 2003.

98. L. Paquete and T. Stützle. A study of stochastic local search for the biobjective
QAP with correlated flow matrices. European Journal of Operational Research,
169:943–959, 2006.

99. L. F. Paquete. Stochastic Local Search Algorithms for Multiobjective Com-
binatorial Optimization: Methods and Analysis. PhD thesis, Department of
Computer Science, Technical University of Darmstadt, 2005.

100. G. Parks and A. Suppapitnarm. Multiobjective optimization of PWR reload
core designs using simulated annealing. In Proceedings of the International
Conference on Mathematics and Computation, Reactor Physics and Environ-
mental Analysis in Nuclear Applications. Madrid, Spain, September 1999, vol-
ume 2, pages 1435–1444. Senda Editorial S. A., Madrid, Spain, 1999.

Hybrid Multi-Objective Metaheuristics 257

101. J. M. Pasia, X. Gandibleux, K. F. Doerner, and R. F. Hartl. Local search
guided by path relinking and heuristic bounds. In S. Obayashi, K. Deb,
C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion
Optimization, volume 4403 of Lecture Notes in Computer Science, pages 501–
515. Springer-Verlag, Berlin, Germany, 2007.

102. A. Przybylski, X. Gandibleux, and M. Ehrgott. Recursive algorithms for finding
all nondominated extreme points in the outcome set of a multiobjective integer
program. Technical report, LINA, Université de Nantes, 2007. Submitted for
publication.

103. A. Przybylski, X. Gandibleux, and M. Ehrgott. A two phase method for multi-
objective integer programming and its application to the assignment problem
with three objectives. Technical report, LINA – Laboratoire d’Informatique de
Nantes Atlantique, 2007.

104. A. Przybylski, X. Gandibleux, and M. Ehrgott. Two phase algorithms for the
biobjective assignment problem. European Journal of Operational Research,
185:509–533, 2008.

105. A. R. Rahimi-Vahed and S. M. Mirghorbani. A multi-objective particle swarm
for a flow shop scheduling problem. Journal of Combinatorial Optimization,
13:79–102, 2007.

106. R. M. Ramos, S. Alonso, J. Sicilia, and C. González. The problem of the
optimal biobjective spanning tree. European Journal of Operational Research,
111:617–628, 1998.

107. S. Randriamasy, X. Gandibleux, J. Figueira, and P. Thomin. Device and a
method for determining routing paths in a communication network in the pres-
ence of selection attributes. Patent 11/25/04. #20040233850. Washington, DC,
USA. www.freepatentsonline.com/20040233850.htm, 2004.

108. S. Sayın. Measuring the quality of discrete representations of efficient sets in
multiple objective mathematical programming. Mathematical Programming,
87:543–560, 2000.

109. J. D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms. PhD thesis, Vanderbilt University, Nashville, TN (USA), 1984.

110. J. D. Schaffer. Multiple objective optimization with vector evaluated genetic
algorithms. In J. J. Grefenstette, editor, Genetic Algorithms and their Applica-
tions: Proceedings of the First International Conference on Genetic Algorithms,
pages 93–100. Lawrence Erlbaum, Pittsburgh, PA, 1985.

111. P. Serafini. Simulated annealing for multiobjective optimization problems. In
Proceedings of the 10th International Conference on Multiple Criteria Decision
Making, Taipei-Taiwan, volume I, pages 87–96, 1992.

112. P. S. Shelokar, V. K. Jarayaman, and B. D. Kulkarni. Ant algorithm for single
and multiobjective reliability optimization problems. Quality and Reliability
Engineering International, 18(6):497–514, 2002.

113. P. S. Shelokar, V. K. Jayarama, and B. D. Kulkarni. Multiobjective optimiza-
tion of reactor-regenerator system using ant algorithm. Petroleum Science and
Technology, 21(7&8):1167–1184, 2003.

114. P. S. Shelokar, S. Adhikari, R. Vakil, V. K. Jayaraman, and B. D. Kulkarni.
Multiobjective ant algorithm: Combination of strength Pareto fitness assign-
ment and thermodynamic clustering. Foundations of Computing and Decision
Sciences, 25(4):213–230, 2000.

258 Matthias Ehrgott and Xavier Gandibleux

115. K. Sörensen. Multi-objective optimization of mobile phone keymaps for typing
messages using a word list. European Journal of Operational Research, 179:838–
846, 2007.

116. F. Sourd, O. Spanjaard, and P. Perny. Multi-objective branch and bound.
application to the bi-objective spanning tree problem. Technical report, De-
partment of Decision, Intelligent Systems and Operations Research Université
Pierre et Marie Curie, Paris, 2006.

117. N. Srinivas and K. Deb. Multiobjective optimization using non-dominated
sorting in genetic algorithms. Evolutionary Computation, 2(3):221–248, 1994.

118. R. Steuer, J. Silverman, and A. Whisman. A combined Tchebycheff/aspiration
criterion vector interactive multiobjective programming procedure. Manage-
ment Science, 39(10):1255–1260, 1993.

119. M. Sun. Applying tabu search to multiple objective combinatorial optimiza-
tion problems. In Proceedings of the 1997 DSI Annual Meeting, San Diego,
California, volume 2, pages 945–947. Decision Sciences Institute, Atlanta, GA,
1997.

120. A. Suppapitnarm and G. Parks. Simulated annealing: An alternative approach
to true multiobjective optimization. In A. S. Wu, editor, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’99). Orlando,
Florida. Morgan Kaufmann, San Francisco, CA, 1999.

121. A. Suppapitnarm, K. Seffen, G. Parks, and P. Clarkson. A simulated an-
nealing algorithm for multiobjective optimization. Engineering Optimization,
33(1):59–85, 2000.

122. K. C. Tan, C. Y. Cheong, and C. K. Goh. Solving multiobjective vehicel rout-
ing problem with stochastic demand via evolutionary computation. European
Journal of Operational Research, 177:813–839, 2007.

123. K. C. Tan, Y. H. Chew, and L. H. Lee. A hybrid multi-objective evolutionary
algorithm for solving truck and trailer vehicle routing problems. European
Journal of Operational Research, 172:855–885, 2006.

124. K. C. Tan, Y. H. Chew, and L. H. Lee. A hybrid multiobjective evolutionary al-
gorithm for solving vehicle routing problem with time windows. Computational
Optimization and Applications, 34:115–151, 2006.

125. J. Teghem, D. Tuyttens, and E. L. Ulungu. An interactive heuristic method
for multi-objective combinatorial optimization. Computers and Operations Re-
search, 27(7-8):621–634, 2000.

126. D. Tenfelde-Podehl. Facilities Layout Problems: Polyhedral Structure, Multiple
Objectives and Robustness. PhD thesis, University of Kaiserslautern, Depart-
ment of Mathematics, 2002.

127. M. Thompson. Application of multi objective evolutionary algorithms to ana-
logue filter tuning. In E. Zitzler, K. Deb, L. Thiele, C. A. Coello Coello,
and D. Corne, editors, First International Conference on Evolutionary Multi-
Criterion Optimization, volume 1993 of Lecture Notes in Computer Science,
pages 546–559. Springer-Verlag, Berlin, Germany, 2001.

128. V. T’kindt, N. Monmarché, F. Tercinet, and D. Laügt. An ant colony opti-
mization algorithm to solve a 2-machine bicriteria flowshop scheduling problem.
European Journal of Operational Research, 142(2):250–257, 2002.

129. D. Tuyttens, J. Teghem, P. Fortemps, and K. Van Nieuwenhuyse. Perfor-
mance of the MOSA method for the bicriteria assignment problem. Journal of
Heuristics, 6(3):295–310, 2000.

Hybrid Multi-Objective Metaheuristics 259

130. E. L. Ulungu. Optimisation combinatoire multicritère: Détermination de
l’ensemble des solutions efficaces et méthodes interactives. PhD thesis, Fac-
ulté des Sciences, Université de Mons-Hainaut. Mons, Belgium, 1993.

131. E. L. Ulungu and J. Teghem. The two-phases method: An efficient proce-
dure to solve bi-objective combinatorial optimization problems. Foundations
of Computing and Decision Sciences, 20(2):149–165, 1994.

132. E. L. Ulungu, J. Teghem, P Fortemps, and D. Tuyttens. MOSA method: A
tool for solving multi-objective combinatorial optimization problems. Journal
of Multi-Criteria Decision Analysis, 8(4):221–236, 1999.

133. E. L. Ulungu, J. Teghem, and C. Ost. Efficiency of interactive multi-objective
simulated annealing through a case study. Journal of the Operational Research
Society, 49:1044–1050, 1998.

134. A. Viana and J. Pinho de Sousa. Using metaheuristics in multiobjective
ressource constrained project scheduling. European Journal of Operational
Research, 120(2):359–374, 2000.

135. M. Visée, J. Teghem, M. Pirlot, and E. L. Ulungu. Two-phases method and
branch and bound procedures to solve the bi-obective knapsack problem. Jour-
nal of Global Optimization, 12:139–155, 1998.

136. A. Warburton. Approximation of Pareto optima in multiple-objective shortest-
path problems. Operations Research, 35(1):70 –79, 1987.

137. H. Yapicioglu, A. E. Smith, and G. Dozier. Solving the semi-desirable facil-
ity location problem using bi-objective particle swarm. European Journal of
Operational Research, 177:733–749, 2007.

138. E. Zitzler and L. Thiele. An evolutionary algorithm for multiobjective op-
timization: The strength Pareto approach. Technical Report 43, Computer
Engineering and Communication Networks Lab (TIK), Swiss Federal Institute
of Technology (ETH), Zürich, Switzerland, May 1998.

139. E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A compar-
ative case study and the strength Pareto approach. IEEE Transactions on
Evolutionary Computation, 3(4):257–271, 1999.

140. E. Ziztler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da Fonseca.
Performance assessment of multiobjective optimizers: An analysis and review.
IEEE Transactions on Evolutionary Computation, 7(2):117–132, 2003.

Multilevel Refinement for Combinatorial
Optimisation: Boosting Metaheuristic
Performance

Chris Walshaw

Computing and Mathematical Sciences, University of Greenwich
Old Royal Naval College, Greenwich, London
C.Walshaw@gre.ac.uk

Summary. The multilevel paradigm as applied to combinatorial optimisation prob-
lems is a simple one, which at its most basic involves recursive coarsening to create
a hierarchy of approximations to the original problem. An initial solution is found,
usually at the coarsest level, and then iteratively refined at each level, coarsest
to finest, typically by using some kind of heuristic optimisation algorithm (either
a problem-specific local search scheme or a metaheuristic). Solution extension (or
projection) operators can transfer the solution from one level to another. As a gen-
eral solution strategy, the multilevel paradigm has been in use for many years and
has been applied to many problem areas (for example multigrid techniques can be
viewed as a prime example of the paradigm). Overview papers such as [39] attest to
its efficacy. However, with the exception of the graph partitioning problem, multi-
level techniques have not been widely applied to combinatorial problems and in this
chapter we discuss recent developments. In this chapter we survey the use of mul-
tilevel combinatorial techniques and consider their ability to boost the performance
of (meta)heuristic optimisation algorithms.

1 Introduction

The last 50 years have seen a huge amount of research effort devoted to the
study of combinatorial optimisation problems. Spanning applied mathemat-
ics, through operations research, to management sciences, such problems are
typically concerned with the allocation of resources in some way and are used
in many diverse applications including scheduling, timetabling, logistics and
the design of computer components.

There are now a bewildering array of (meta)heuristic optimisation algo-
rithms (e.g. ant colony optimisation, genetic algorithms, simulated annealing,
tabu search, variable neighbourhoods, etc., [4]) to address such problems and
for any given application, the practitioner must often answer the question
‘which is likely to be the best algorithm for my problem?’

C. Walshaw: Multilevel Refinement for Combinatorial Optimisation: Boosting Metaheuristic

Performance, Studies in Computational Intelligence (SCI) 114, 261–289 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

262 Chris Walshaw

In considering the multilevel paradigm however, a different question oc-
curs. Since the multilevel framework is a collaborative one, which always acts
in concert with some other technique, the question that arises is ‘given that
I am using algorithm X for addressing my problem, can its performance be
boosted by using a multilevel version of algorithm X?’

As we shall see, very often the answer appears to be emphatically yes,
either in terms of the solution quality, or the computational runtime, or both.

Indeed, in certain instances, it does seem to be the case that, in terms of
performance, the decision to use a multilevel scheme is far more important
then the actual choice of the underlying search algorithm.

Even more encouragingly, anecdotal evidence suggests that, in developing
a full-blown multilevel scheme, the multilevel framework (which at its most
basic requires a coarsening algorithm and a projection/extension operator) is
generally far easier to implement than a high-quality optimisation algorithm
for the problem. In fact, it is often the case that a coarsening algorithm can
be built from components found in solution construction heuristics, i.e. those
which are usually used to find an initial feasible (although poor quality) so-
lution, whilst the solution extension operator is usually a trivial reversal of
coarsening.

1.1 Overview

The rest of the chapter is organised as follows.
First we motivate the ideas and, via some sample results, consider evidence

for the strengths of the multilevel paradigm by describing by discussing the
widespread use of multilevel graph partitioning schemes. Multilevel techniques
have been employed in this field since 1993 and enable very high quality
solutions to be found rapidly. Thus, in Sect. 2, we provide sample results
which demonstrate that the multilevel approach when used in combination
with a state-of-the-art (single-level) local search strategy can dramatically
improve the asymptotic convergence in solution quality.

In Sect. 3, we then survey the use of multilevel techniques, both in the
field of graph-partitioning and also their increasing use in other combinatorial
optimisation problems. We also look at related ideas. In Sect. 4, we look
at generic features and extract some guiding principles that might aid the
application of the paradigm to other problems. Finally we summarise the
chapter in Sect. 5.

2 Extended Example: the Graph Partitioning Problem

The k-way graph partitioning problem (GPP) can be stated as follows: given
a graph G(V,E), possibly with weighted vertices and/or edges, partition the
vertices into k disjoint sets such that each set contains the same (or nearly
the same) vertex weight and such that the cut-weight, the total weight of

Multilevel Refinement for Combinatorial Optimisation 263

edges cut by the partition, is minimised. In combinatorial optimisation terms,
the cut-weight is the objective function whilst balancing the vertex weight is
a constraint (the balance constraint) and it is well known that this problem
is NP-hard.

The GPP has a number of applications, most notably the partitioning
of unstructured meshes for parallel scientific computing (often referred to as
mesh partitioning).

2.1 Multilevel Graph Partitioning

The GPP was the first combinatorial optimisation problem to which the mul-
tilevel paradigm was applied and there is now a considerable volume of liter-
ature about multilevel partitioning algorithms which we survey in Sect. 3.1.
Initially used as an effective way of speeding up partitioning schemes, it was
soon recognised as, more importantly, giving them a more ‘global’ perspec-
tive [21], and has been successfully developed as a strategy for overcoming
the localised nature of the Kernighan-Lin (KL) [26] and other optimisation
algorithms.

Typically, multilevel implementations match and coalesce pairs of adjacent
vertices to define a new graph and recursively apply this procedure until the
graph size falls below some threshold. The coarsest graph is then partitioned
(possibly with a crude algorithm) and the partition is successively refined on
all the graphs starting with the coarsest and ending with the original. At each
change of levels, the final partition of the coarser graph is used to give the
initial partition for the next level down.

The use of multilevel combinatorial refinement for partitioning was first
proposed by both Hendrickson & Leland [19] and Bui & Jones [10], inspired
by Barnard & Simon [2], who used a multilevel numerical algorithm to speed
up spectral partitioning.

Fig. 1. An example of multilevel partitioning

Fig. 1 shows an example of a multilevel partitioning scheme in action. On
the top row (left to right) the graph is coarsened down to 4 vertices which

264 Chris Walshaw

are (trivially) partitioned into 4 sets (bottom right). The solution is then
successively extended and refined (right to left; each graph shows the final
partition for that level). Although at each level the refinement is only local in
nature, a high quality partition is still achieved.

Graph Coarsening

A common method to create a coarser graph Gl+1(Vl+1, El+1) from Gl(Vl, El)
is the edge contraction algorithm proposed by Hendrickson & Leland [19]. The
idea is to find a maximal independent subset of graph edges, or a matching
of vertices, and then collapse them. The set is independent if no two edges
in the set are incident on the same vertex (so no two edges in the set are
adjacent), and maximal if no more edges can be added to the set without
breaking the independence criterion.

Having found such a set, each selected edge is collapsed and the vertices,
u1, u2 ∈ Vl say, at either end of it are merged to form a new vertex v ∈ Vl+1

with weight ||v|| = ||u1|| + ||u2||. Edges which have not been collapsed are
inherited by the child graph, Gl+1, and, where they become duplicated, are
merged with their weight summed. This occurs if, for example, the edges
(u1, u3) and (u2, u3) exist when edge (u1, u2) is collapsed. Because of the
inheritance properties of this algorithm, it is easy to see that the total vertex
weight remains the same, ||Vl+1|| = ||Vl||, and the total edge weight is reduced
by the sum of the collapsed edge weights.

2

1

1

2
2

2

Fig. 2. An example of coarsening via matching and contraction

Fig. 2 shows an example where, on the left, two pairs of vertices are
matched (indicated by a dotted line). On the right, the resulting coars-
ened graph is shown, with numbers illustrating the resulting vertex and edge
weights (assuming that the original graph had unit weights).

A simple way to construct a maximal independent subset of edges is to
create a randomly ordered list of the vertices and visit them in turn, matching
each unmatched vertex with an unmatched neighbour (or with itself if no
unmatched neighbours exist). Matched vertices are removed from the list. If
there are several unmatched neighbours the choice of which to match with

Multilevel Refinement for Combinatorial Optimisation 265

can be random, but it has been shown by Karypis & Kumar [21] that it can
be beneficial to the optimisation to collapse the most heavily weighted edges.

As discussed below (Sect. 4.1), coarsening has the effect of filtering the
solution space. To see this suppose that two vertices u, v ∈ Gl are matched
and coalesced into a single vertex v′ ∈ Gl+1. When a refinement algorithm is
subsequently used on Gl+1 and whenever v′ is assigned to one of the partition
subsets, both u and v are also both being assigned to that subset. In this way
the matching restricts a refinement algorithm working on Gl+1 to consider
only those configurations in the solution space in which u and v lie in the
same subset, although the particular subset to which they are assigned is
not specified at the time of coarsening. Since many vertex pairs are generally
coalesced from all parts of Gl to form Gl+1 this set of restrictions is equivalent
to filtering the solution space and hence the surface of the objective function.

The Initial Partition

The hierarchy of graphs is constructed recursively until the number of vertices
is smaller than some threshold and then an initial partition is found for the
coarsest graph. At its simplest, the coarsening is terminated when the number
of vertices in the coarsest graph is the same as the number of subsets required,
k, and then vertex i is assigned to subset Si. However, since the vertices of the
coarsest graph are not generally homogeneous in weight, this does require some
mechanism for ensuring that the final partition is balanced, i.e. each subset has
(approximately) the same vertex weight. Various methods have been proposed
for achieving this, commonly either by terminating the contraction so that the
coarsest graph GL still retains enough vertices, |VL|, to achieve a balanced
initial partition (i.e. so that typically |VL| � k) [19, 21], or by incorporating
load-balancing techniques alongside the refinement algorithm, e.g. [46].

Refinement

At each level, the partition from the previous level is extended to give an initial
partition and then refined. Various refinement schemes have been successfully
used including a variety of metaheuristics, which we survey below, Sect. 3.1.
Most commonly, however, the refinement is based on the Kernighan-Lin (KL)
bisection optimisation algorithm [26] which includes the facility (albeit lim-
ited) to enable it to escape from local minima. Recent implementations almost
universally use the linear time complexity improvements (e.g. bucket sorting
of vertices) introduced to partitioning by Fiduccia & Mattheyses [14]. For
more details see one of the many implementations, e.g. [19, 23, 46].

In terms of the multilevel framework, the only requirements are that the
scheme must be able to refine an existing partition (rather than starting from
scratch) and must be able to cope with weighted graphs since, even if the
original graph is not weighted, the coarsened graphs will all have weights
attached to both vertices and edges because of the coarsening procedures.

266 Chris Walshaw

Partition Extension

Having optimised the partition on a graph Gl, the partition must be extended
onto its parent Gl−1. The extension algorithm is trivial; if a vertex v ∈ Vl is
in subset Si then the matched pair of vertices that it represents, v1, v2 ∈ Vl−1,
are also assigned to Si.

2.2 Multilevel Results

To illustrate the potential gains that the multilevel paradigm can offer, we
give some example results. These are not meant to be exhaustive in any way
but merely give an indication of typical performance behaviour.

In [44], detailed tests are carried out to assess the impact of multilevel
refinement on the GPP. Here we summarise those results.

The experimental data consists of two test suites, one of which is a smallish
collection of 16 sparse, mostly mesh-based graphs, drawn from a number of
real-life applications, and often used for benchmarking. The other test suite
consists of 90 instances, originally compiled to test graph-colouring algorithms
and including a number of randomly generated examples. Although perhaps
not representative of partitioning applications, they reveal some interesting
results. This colouring test suite is further subdivided into 3 density classes;
low (under 33 %) with 58 out of 90 instances, medium (between 33 % and 67
%) with 23 instances and high (over 67 %) with just 9 instances.

In this context, the density, or edge density, of a graph, G(V,E), is
defined as the percentage of all possible edges and given by 2|E|/[|V |·(|V |−1)],
so that a complete graph (where every vertex is adjacent to every other),
with |V | · (|V | − 1)/2 edges, has a density of 100 %.

The tests compare the JOSTLE implementation of the Kernighan-Lin
(KL) algorithm [46] against its multilevel counterpart (MLKL). As discussed
in [44], and similar to most local search schemes, the KL algorithm contains
a parameter, λ, known as the intensity, which allows the user to specify
how long the search should continue before giving up (specifically how much
effort the search should make to escape local minima). When λ = 0 the refine-
ment is purely greedy in nature, whereas if λ →∞ the search would continue
indefinitely.

To assess the algorithms, we measure the run-time and solution quality for
a chosen group of problem instances and for a variety of intensities. We then
normalise these values with reference solution quality and run-time values and
finally plot averaged normalised solution quality against averaged normalised
run-time for each intensity value.

Fig. 3(a) shows the results for the sparse suite and the dramatic improve-
ment in quality imparted by the multilevel framework is immediately clear.
Even for purely greedy refinement (i.e. the extreme left-hand point on either
curve) the MLKL solution quality is far better than KL and it is results like

Multilevel Refinement for Combinatorial Optimisation 267

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160av
g

cu
t-

w
ei

gh
t (

%
 e

xc
es

s
ov

er
 b

es
t k

no
w

n)

avg runtime (normalised by greedy algorithm)

Kernighan-Lin
multilevel Kernighan-Lin

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300 350av
g

cu
t-

w
ei

gh
t (

%
 e

xc
es

s
ov

er
 b

es
t k

no
w

n)

avg runtime (normalised by greedy algorithm)

Kernighan-Lin
multilevel Kernighan-Lin

(a) sparse instances (b) low-density instances

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400av
g

cu
t-

w
ei

gh
t (

%
 e

xc
es

s
ov

er
 b

es
t k

no
w

n)

avg runtime (normalised by greedy algorithm)

Kernighan-Lin
multilevel Kernighan-Lin

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 200 400 600 800 1000 1200 1400 1600av
g

cu
t-

w
ei

gh
t (

%
 e

xc
es

s
ov

er
 b

es
t k

no
w

n)

avg runtime (normalised by greedy algorithm)

Kernighan-Lin
multilevel Kernighan-Lin

(c) medium-density instances (d) high-density instances

Fig. 3. Plots of convergence behaviour for the partitioning test suites

these that have helped to promote multilevel partitioning algorithms to the
status they enjoy today.

Figs. 3(b)–(d) meanwhile show the partitioning results for the colouring
test suite. Fig. 3(b) more or less confirms the conclusions for the sparse results
and although the curves are closer together, MLKL is the clear winner. For
the medium and high-density examples however, it is a surprise (especially
considering the widely accepted success of multilevel partitioning) to find that
these conclusions are no longer valid. For the high-density instances, Fig. 3(d),
MLKL is still the leading algorithm, although only very marginally. However
for the medium-density results, Fig. 3(c), MLKL fails to achieve the same
performance as KL and the multilevel framework appears to actually hinder
the optimisation. We discuss this further in the following section.

2.3 Iterated Multilevel Results

Although the medium density results are disappointing, in fact a simple res-
olution does exist which works by reusing the best partitions that have been
found. Indeed, given any partition of the original problem we can carry out
solution-based recoarsening by insisting that, at each level, every vertex v
matches with a neighbouring vertex in the same set. When no further coarsening

268 Chris Walshaw

is possible this will result in a partition of the coarsest graph with the same
cost as the initial partition of the original. Provided the refinement algorithms
guarantee not to find a worse partition than the initial one, the multilevel re-
finement can then guarantee to find a new partition that is no worse than the
initial one.

This sort of technique is frequently used in graph-partitioning for dynamic
load-balancing, e.g. [36, 45], although if the initial partition is unbalanced, the
quality guarantee can be lost in satisfying the balance constraint. However it
can also be used to find very high quality partitions, albeit at some expense,
and the multilevel procedure can be iterated via repeated coarsening and
uncoarsening. At each iteration the current best solution is used to construct a
new hierarchy of graphs, via recoarsening, and guarantees not to find a worse
solution than the initial one. However, if the matching includes a random
factor, each iteration is very likely to give a different hierarchy of graphs to
previous iterations and hence allows the refinement algorithm to visit different
solutions in the search space.

We refer to this process as an iterated multilevel algorithm (see
Sect. 3.1 for further discussion). It requires the user to specify an additional
intensity parameter, namely the number of failed outer iterations (i.e. the
number of times the algorithm coarsens and uncoarsens the graph without
finding a better solution).

Fig. 4 illustrates the results for the iterated multilevel algorithm (IMLKL)
alongside the MLKL and KL results for the two test suites. These plots contain
exactly the same information about MLKL and KL as Fig. 3, only here it is
more compressed because of the long IMLKL run-times.

In fact the results for the sparse and high-density instances are not so
interesting; for the sparse suite, Fig. 4(a), IMLKL more or less continues
the MLKL curve in Fig. 3(a) with a few percentage points improvement and
very shallow decay, whilst for the high-density instances, Fig. 4(d), IMLKL
does not appear to offer much improvement at all. However for the low and
medium-density subclasses, in Figs. 4(b) and 4(c) respectively, the asymp-
totic performance offered by IMLKL is impressive and worthy of further and
more thorough investigation. In both cases IMLKL dramatically improves on
MLKL and, for the medium-density instances, even appears to overcome the
shortcomings of MLKL and significantly improves on the KL results.

Summary

It is clear that the multilevel framework can enormously benefit the perfor-
mance of a state-of-the-art local search scheme. Its task is made more difficult
if the graphs are dense, but nevertheless, via the simple technique of recoars-
ening, an iterated multilevel scheme seems to be able to overcome this.

Multilevel Refinement for Combinatorial Optimisation 269

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250av
g

cu
t-

w
ei

gh
t (

%
 e

xc
es

s
ov

er
 b

es
t k

no
w

n)

avg runtime (normalised by greedy algorithm)

Kernighan-Lin
multilevel Kernighan-Lin

iterated multilevel Kernighan-Lin

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500av
g

cu
t-

w
ei

gh
t (

%
 e

xc
es

s
ov

er
 b

es
t k

no
w

n)

avg runtime (normalised by greedy algorithm)

Kernighan-Lin
multilevel Kernighan-Lin

iterated multilevel Kernighan-Lin

(a) sparse instances (b) low-density instances

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000av
g

cu
t-

w
ei

gh
t (

%
 e

xc
es

s
ov

er
 b

es
t k

no
w

n)

avg runtime (normalised by greedy algorithm)

Kernighan-Lin
multilevel Kernighan-Lin

iterated multilevel Kernighan-Lin

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 500 1000 1500 2000 2500 3000 3500av
g

cu
t-

w
ei

gh
t (

%
 e

xc
es

s
ov

er
 b

es
t k

no
w

n)

avg runtime (normalised by greedy algorithm)

Kernighan-Lin
multilevel Kernighan-Lin

iterated multilevel Kernighan-Lin

(c) medium-density instances (d) high-density instances

Fig. 4. Plots of convergence behaviour including iterated multilevel partitioning
results

3 Survey of Multilevel Implementations

In this section we survey existing literature about multilevel implementations
in a variety of contexts.

The survey is broken up into three categories: graph-partitioning, other
combinatorial problems and related ideas. As mentioned above, multilevel
graph-partitioning has been widely investigated and so Sect. 3.1 affords a
number of general observations about multilevel strategies. Indeed it is be-
cause of its success in this area that the multilevel paradigm has started to
be utilised elsewhere and so Sect. 3.2 takes a look at the increasing numbers
of multilevel algorithms for other combinatorial problems. Finally Sect. 3.3
considers similar concepts such as smoothing.

3.1 Survey of Multilevel Graph-Partitioning

As has been mentioned in Sect. 2, graph-partitioning has been by far the most
common application area for multilevel refinement and it is now a de facto
standard technique to use. Furthermore, it has been tested with a wide variety
of metaheuristic and local refinement schemes and gives a good indication

270 Chris Walshaw

of how robust the multilevel framework can be. In addition, a number of
enhancements and extensions have appeared, all of which demonstrate the
flexibility of the paradigm.

Table 1. Multilevel graph-partitioning algorithms and variants

Feature of interest References

Multilevel metaheuristics
Ant Colony Optimisation Langham & Grant [28]; Korošec et al. [27]
Cooperative Search Toulouse et al. [40]
Genetic Algorithms Kaveh & Rahimi [25]; Soper et al. [38]
Tabu Search Battiti et al. [3]; Vanderstraeten et al. [41]
Simulated Annealing Romem et al. [32]; Vanderstraeten et al. [41]

Multilevel enhancements
Coarsening Homogeniety Abou-Rjeili & Karypis [1]; Gupta [17]
Constraint Relaxation Walshaw & Cross [46]
Inexact Coarsening Bui & Jones [10]
Recoarsening Gupta [17]; Toulouse et al. [40]; Walshaw [44]

Related problems
Aspect Ratio Optimisation Vanderstraeten et al. [41]; Walshaw et al. [48]
Hypergraph Partitioning Karypis & Kumar [24]
Multi-constraint/objective Karypis & Kumar [22]; Schloegel et al. [37]
Network Mapping Walshaw & Cross [47]

Table 1 shows a summary of some of the implementations. This list is
far from comprehensive; indeed a survey of multilevel graph-partitioning al-
gorithms could fill a paper in itself. However, here the aim is to highlight a
variety of interesting cases and we focus on three different classes: multilevel
metaheuristics, multilevel enhancements and related problems that
have been successfully addressed by multilevel algorithms.

Multilevel Metaheuristic Refinement Schemes

A first point to note is the variety of optimisation algorithms with which the
multilevel framework has been used. Apart from the commonly used problem-
specific algorithm of Kernighan & Lin (KL) [26], mentioned above, a wide
variety of well-known metaheuristics have been applied. These are normally
used to refine the solution at each level and, provided they can operate on
weighted graphs, essentially require no modifications. Specifically, ant colony
optimisation [28, 27], cooperative search [40], evolutionary/genetic algorithms
[25], simulated annealing [32, 41] and various flavours of tabu search [3, 41],
have been successfully applied, generally with great success.

Multilevel Refinement for Combinatorial Optimisation 271

Although space precludes a more detailed study, positive comments by au-
thors are common. For example, Vanderstraeten et al., referring to multilevel
simulated annealing and multilevel tabu search, state that the ‘contraction
procedure not only speeds up the . . . partitioning method, but also results in
better mesh decompositions’ [41]. Meanwhile, Korošec et al., in their imple-
mentation of multilevel ant colony optimisation, state that ‘with larger graphs,
which are often encountered in mesh partitioning, we had to use a multilevel
method to produce results that were competitive with the results given by other
algorithms’ [27].

Multilevel Enhancements

Perhaps of more interest, especially in terms of applying the multilevel frame-
work to completely different problem areas, is the development of a number
of multilevel enhancements which can be used to improve performance still
further.

For example, a number of authors have noted that the coarsest graphs
can become very inhomogeneous in terms of vertex weight [1, 17]. This is
particularly noticeable for so-called scale-free graphs1, which often arise
when modelling links between web pages. In the worst cases, the coarsening
may start to form star graphs, with one very large ‘super-vertex’ attached to
many small vertices. Most coarsening schemes cannot cope with this type of
graph and will only manage to collapse one edge at each level (i.e. a multilevel
scheme for a star graph with 1,000 vertices will have 1,000 levels) resulting in
very poor runtime performance. As a result, coarsening algorithms have been
introduced to ensure that the vertex weights stay relatively homogeneous,
usually by merging clusters of two (or more) vertices which are not adjacent,
e.g. [1, 17]. We refer to this as coarsening homogeneity and although it
might seem very specific to partitioning, a similar idea has recently been used
in a multilevel algorithm for the Vehicle Routing Problem [30] (see below,
Sect. 3.2).

Another multilevel enhancement is developed in [46], where it is demon-
strated that by relaxing the balancing constraint (i.e. that the subsets are all
of the same size) at the coarsest graph levels, and tightening it up level by
level, higher quality results can be found. This idea of constraint relaxation
has also been used for the Vehicle Routing Problem [30] (see also Sect. 3.2).

In one of the first multilevel graph partitioning implementations [10], Bui
& Jones collapsed edges and merged vertices without taking account of ver-
tex or edge weights (see Sect. 2.1). As a result, the coarsened graph did not
represent the original problem with complete accuracy (e.g. since an edge in
a coarsened graph might equally represent one or one hundred edges of the

1 Typically in scale-free graphs the degree distribution follows a power-law rela-
tionship so that some vertices are highly connected, although most are of low
degree.

272 Chris Walshaw

original graph and so it is no longer obvious which cut edges to prefer). We
refer to this as inexact coarsening and although it is not necessarily recom-
mended, especially in the case of graph partitioning where it is fairly easy
to create exact coarse representations of the problem, it is interesting to see
that this kind of coarsening could still ‘dramatically improve the performance
of the Kernighan-Lin and greedy algorithms’ [10]. This is especially encourag-
ing for other combinatorial problems, where it may not even be possible to
create an exact coarsened representation.

Finally, as we have seen in Sect. 2.3, a powerful, and very straightforward
technique is to use solution-based recoarsening. Indeed this feature can be
used in two different ways: either, as in [44], as an outer loop which treats
the multilevel partitioner almost as a black-box and iterates its use; or, as in
[17], where the framework cycles up and down through the coarser levels to
find a very high quality initial solution for very little computational expense
(since the coarse graphs are very small). In Sect. 3.2, we classify these as either
external or internal recoarsening, respectively.

Related Partitioning Problems

The multilevel paradigm has also been successfully extended to a range of
partitioning problem variants.

In particular, the development of successful multilevel hypergraph2 par-
titioning schemes has sparked a great deal of interest in the VLSI/circuit
partitioning community, e.g. [11]. Indeed, Karypis and Kumar, pre-eminent
developers of such schemes state that ‘the power of [their algorithm] is primar-
ily derived from the robustness of the multilevel paradigm that allows the use
of a simple k-way partitioning refinement heuristic instead of the [commonly
used] O(k2) complexity k-way FM refinement’ [24].

Similarly, in [22, 37], multilevel graph partitioning techniques have been
successfully modified to deal with other, more generalised graphs such as those
which have multiple vertex weights (multi-constraint problems) or multiple
edge weights (multi-objective problems).

Finally and more specifically, multilevel graph partitioning techniques have
been shown to adapt well to modified objective functions. For example, in [41,
48], the aspect ratio (shape) of the subdomains is optimised as an alternative
to the cut-weight. Meanwhile, [47] considers the problem mapping graphs
onto parallel networks with heterogeneous communications links – a successful
mapping is then one in which adjacent subsets generally lie on ‘adjacent’
processors.

An important point about these last two problems is that, in both cases,
the coarsening scheme requires almost no modifications and the new prob-
lem class is optimised solely by changes to the objective function (and hence

2 A hypergraph is a generalisation of a graph in which an edge describes a relation-
ship between an arbitrary number of vertices.

Multilevel Refinement for Combinatorial Optimisation 273

the refinement scheme). This makes an interesting point: using the multilevel
framework, the global layout of the final partition can be radically changed
just by modifying the local cost function. This corroborates the suggestion
that the multilevel framework adds a global perspective to (local) partition-
ing schemes.

3.2 Survey of Multilevel Combinatorial Optimisation

Apart from its wide uptake in the graph-partitioning area, multilevel refine-
ment schemes are increasingly appearing for other combinatorial problems.
Typically, the results are early indicators and the ideas not yet fully devel-
oped, but in most applications authors report successes, either in speeding up
a metaheuristic or local search algorithm, or in improving the quality of its
results. Furthermore, it is often seen as an appropriate method for addressing
larger-scale problem instances which, hitherto, have not been tractable.

To survey these implementations, we first describe each one briefly, high-
lighting the multilevel techniques that it employs, and then, at the end of this
section, attempt to summarise and classify the approaches.

Biomedical Feature Selection. In [29], Oduntan investigates multi-
level schemes for feature selection and classification in biomedical data. Two
possible coarsening strategies are suggested, one of which clusters decision
variables, in a manner akin to multilevel partitioning, and represents them
as a single variable and another, ‘feature pre-setting’, which recursively ex-
cludes features (decision variables) from each level. This second approach is
unlike most multilevel implementations in that it is essentially evaluating only
partial solution spaces at each level (as opposed to restricted spaces), but,
because of the computational cost of maintaining an exact cost evaluation for
the clustering version, random feature pre-setting is used for most of the ex-
perimentation. Nonetheless, the multilevel technique is ‘outstandingly better’
and ‘generates higher and more stable average classification accuracies’ than
the other evaluated feature selection techniques.

Capacitated Multicommodity Network Design (CMND). In [12],
Crainic et al. implement a multilevel cooperative search algorithm for the
CMND problem. The coarsening is achieved via fixed edges which are com-
puted from an initial solution calculated by a tabu search (solution-based
coarsening) and a form of iterated multilevel refinement is performed by prop-
agating elite solutions up through the multilevel hierarchy (as well as down).
The authors discuss the issue of how rapidly to coarsen the problem and the
compromise between a high number of levels and large coarsening factors, and
cite this as a future research challenge. Nonetheless, the initial results are very
encouraging and experiments on a set of benchmark problems showed that the
approach yields ‘solutions comparable to those obtained by the current best
metaheuristics for the problem’ and that the multilevel framework ‘appears to
perform better when the number of commodities is increased (which, normally,
increases the difficulty of the problem)’.

274 Chris Walshaw

Covering Design. Another problem that has recently been investigated
with multilevel cooperative techniques is that of covering design in which the
aim is to minise the number subsets of a given size which ‘cover’ the problem
instance (i.e. so that every member of the problem instance is contained in at
least a given number of the subsets). This problem is extremely difficult to
solve to optimality and in [13], Dai et al. use multilevel cooperative tabu search
to improve upper bounds (in order, for example, to improve the efficiency of
enumeration techniques such as branch-and-cut). They use solution-based re-
coarsening and a ‘direct interpolation’ operator, which projects elite solutions
found at the coarsest level directly down to the the original problem. The
results are impressive – the methods succeed in computing new upper bounds
for 34 out of 158 well-known benchmark problems – and the authors confirm
that, for this problem, ‘multilevel search and cooperation drastically improve
the performance of tabu search’. Furthermore, since similar cost functions and
neighbourhood structures exist in other problems such as packing design, t-
design and feature selection in bio-informatics and data mining, the authors
suggest that ‘the main framework of the re-coarsening and direct interpolation
operations can be applied in a multilevel cooperative search algorithm for such
problems’.

DNA Sequencing by Hybridization. Blum & Yábar use a multilevel
framework to enhance an ant colony algorithm for the computational part
of this problem [5, 6]. It is closely related to the selective travelling sales-
man problem, a variant in which only a subset of the vertices are visited,
and the authors use a similar coarsening approach to that mentioned below,
in which edges are fixed to create tour segments or paths. In experiments,
the algorithms (both single- and multilevel) solve all benchmark problems to
optimality, but the multilevel version substantially reduces the computation
time of the ant colony optimisation, and is between 3 to 28 times faster. Fur-
thermore the authors believe that for larger problem instances, the multilevel
framework ‘may also improve the quality of the obtained solutions’.

Graph Colouring Problem. In [44], Walshaw discusses the develop-
ment of multilevel graph colouring schemes. The coarsening uses similar ver-
tex matching to the graph partitioning, with one important difference: since
the objective here is to colour each vertex differently to any of its neighbours,
the matching is carried out between non-adjacent vertices (so that all vertices
in a coarsened cluster can be given the same colour). The experimentation
illustrates that, for sparse and low-density graphs at least, the multilevel par-
adigm can either speed up or even give some improvements in the asymptotic
convergence of well known algorithms such as tabu search. However, the im-
pact of the multilevel framework is less impressive than for other problems
and the paper concludes with a number of suggestions that might help to
improve the results.

Graph Ordering. One problem area that has received a fair amount
of interest from multilevel practitioners is that of graph ordering. This is
almost certainly because the applications from which it arises (such as the

Multilevel Refinement for Combinatorial Optimisation 275

efficient solution of linear systems) are closely related to those in which graph
partitioning occurs (e.g. parallel scientific computing) and the two problems
have some overlap.

For example, Boman & Hendrickson describe the use of a multilevel algo-
rithm for reducing the envelope of sparse matrices [7], a technique which aims
to place all the non-zeroes as close as possible to the diagonal of a matrix and
which can help to speed up the solution of sparse linear systems. They re-
port good results, better than some of the commonly used methods, although
they conclude that their scheme would probably be better if combined with a
state-of-the-art local search algorithm. This conclusion is confirmed by Hu &
Scott who have also developed a multilevel method for the same problem and
which uses such a scheme, the hybrid Sloan algorithm, on the coarsest graph
only [20]. They report results which are of similar quality to the standalone
hybrid Sloan algorithm (i.e. as good as the best known results) but which, on
average, can be computed in half the time.

Both of these approaches use a coarsening algorithm based on vertex
matching, and similar to those used for multilevel graph partitioning schemes.
More recently, however, Safro et al. discuss the use of a multilevel algorithm
for the linear arrangement problem [35], which has the aim of ordering the
vertices of a graph so that the sum of edge lengths in the corresponding lin-
ear arrangement is minimised, a problem with several diverse applications. In
this work, the coarsening is described as ‘weighted aggregation’ (as opposed to
‘strict aggregation’) in which each vertex can be divided into fractions which
are then merged. In other words, a coarsened vertex will in general consist
of fractions of several vertices from the original graph, rather than a discrete
set of two (or more). In experiments, the authors found that their algorithm
generally outperformed standard methods on most test cases, although it had
some problems on uniform random graphs. This echoes some of the findings
for multilevel graph partitioning which seems to prefer certain types of graph.

Finally, it is worth noting that unlike most problems discussed in this sec-
tion, the schemes described in all three papers produce inexact representations
of the problem in coarsened spaces. This is due to the nature of the graph or-
dering problem and may be inevitable, but see the classification section below
(page 277) for further discussion.

Travelling Salesman Problem (TSP). The TSP is a prototypical (ar-
guably the prototypical) combinatorial problem and consequently is one of the
first on which new algorithms are tested.

In the earliest multilevel approach to the TSP, Saab, using a technique de-
scribed as ‘dynamic contraction’, applied algorithms to recursively construct
chains of cities and then implemented a simple local search algorithm [34].
The results demonstrate that ‘the improvement due to contraction’ (in our
context, the improvement due to the multilevel framework) ‘is significant in
all cases and ranges from 33.1 % to 108.4 %’ although possibly, as the author
acknowledges, this is because the local search is a very basic heuristic in this
case. This paper is also interesting because it proposes dynamic contraction

276 Chris Walshaw

as a generic strategy for combinatorial problems and, apart from the TSP,
also demonstrates the approach on the graph bisection problem.

Subsequently, Walshaw independently applied a similar coarsening ap-
proach using fixed edges to build a multilevel version of the well-known
chained Lin-Kernighan algorithm (together with a more powerful variant, Lin-
Kernighan-Helsgaun) [42, 44]. The multilevel results showed significant im-
provement on the single-level versions and are ‘shown to enhance considerably
the quality of tours for both the Lin-Kernighan and Chained Lin-Kernighan
algorithms, in combination the TSP champion heuristics for nearly 30 years’.

Finally, in [8], Bouhmala combined a multilevel approach with a genetic
algorithm adapted for the TSP. Interestingly, and in contrast to the two pre-
vious approaches, the coarsening is based on merging pairs of cities and aver-
aging their coordinates. Although this is a simpler approach to fixing edges, it
means that any coarsened version does not represent the original problem in-
stance exactly and, because of the modified coordinates, the cost of a solution
in one of the coarsened spaces is not the same as the cost if that solution is
projected back to the original. Nonetheless, the results indicate that ‘the new
multilevel construction algorithm’ (i.e. just using the coarsening without any
refinement) ‘produces better results than the Clark-Wright algorithm, and that
the multilevel genetic algorithm was found the clear winner when compared to
the traditional genetic algorithm’.

Vehicle Routing Problem (VRP). A problem closely related to the
TSP (although significantly complicated by additional side constraints) is the
VRP and in [30], Rodney et al. demonstrate that it too is susceptible to
multilevel techniques. The coarsening scheme is similar to that used previously
for the TSP [34, 42] and recursively fixes edges into potential routes (whilst
additionally respecting vehicle capacity constraints).

The resulting framework is tested with a variety of problem-specific local
search heuristics and it is found that, for a test suite of well-known benchmark
problems, the best multilevel solutions are on average within 7.1 % of opti-
mality as compared with 18.4 % for the single-level version of the algorithm.
Although this is not quite so good as results from a state-of-the-art genetic
algorithm code, it has since been shown that an iterated version (see below
and Sect. 2.3) of the multilevel scheme finds solutions within 2.6 % of optimal,
comparable with the genetic algorithm and considerably faster (especially as
the problem size increases).

As part of this work on the VRP, two multilevel enhancement techniques
are developed and tested.

The first employs constraint relaxation (referred to in [30] as ‘route
overloading’), as discussed in Sect. 3.1. In the context of the VRP, this means
allowing routes in the coarser level to exceed the vehicle capacity constraint.
This is then tightened up gradually as the multilevel scheme approaches the
finer levels and, ultimately, the original problem.

Multilevel Refinement for Combinatorial Optimisation 277

The second enchancement (referred to as ‘segment balancing’) tried to
balance the fixed edge segments in terms of demand and cost in order to
provide more homogeneous coarsening (see also Sect. 3.1).

Combined together, these two enhancements provide the best results and
are useful ideas in the generic application of multilevel techniques.

Other Problems. The above list is not comprehensive and, for exam-
ple, multilevel techniques have been applied to other problems such as sat-
isfiability [33] and the still life problem [15]. Unfortunately, neither example
showed significant benefits, either because the work is only in its preliminary
stages and still requires further development, or possibly because the prob-
lem is simply not suitable for multilevel coarsening. In either case, it seems
appropriate to exclude it from generalisations about the multilevel framework
pending further investigation (since, as is common with heuristics, we merely
seek evidence that multilevel techniques can be used successfully, rather than
proof that they will always be successful). However, it is worth noting, as is
discussed in [44], that although the multilevel paradigm seems to assist in
most problems to which it has been applied, the benefits are not necessarily
universal.

Summary and Classification

Because of the flexibility of the paradigm, multilevel schemes can appear in
a variety of guises. Nonetheless, it is still possible to draw out some common
features from the schemes listed above. Table 2 summarises the above ap-
proaches and aims to help classify them, both by the optimisation algorithm
they use for refinement, and in terms of the multilevel techniques they em-
ploy: the coarsening strategy (coarsen); whether they produce exact coarse
representations of the problem; and what type, if any, of recoarsening they
use (recoarsen).

One of the most obvious classifications then is the refinement algorithm
used to optimise the solution at each level. Often these are special-purpose
or problem-specific, but in many cases a ‘standard’ metaheuristic is used
(although it should be understood that in the context of combinatorial opti-
misation there is no such thing as a standard metaheuristic and all will require
some modification or, at the very least, parameter tuning).

A second way of classifying the schemes is by their coarsening strategy
(the column headed coarsen). Although this is always problem-specific, it
will generally depend on whether the problem requires a solution based on an
ordering or a classification of the vertices. In the case of ordering problems
(such as the travelling salesman and vehicle routing problems), it is usual to
recursively fix edges between vertices, a path-based coarsening. For classifi-
cation problems (such as graph partitioning and graph colouring), it is usual
to merge vertices, a set-based approach.

Although it might seem that these are very similar operations, in practice
path-based coarsening generates a set of fixed path-segments in the coarsened

278 Chris Walshaw

Table 2. Multilevel algorithms for combintorial problems

Problem, [reference] refinement coarsen exact recoarsen

Biomedical feature selection [29] Tabu Search set+ yes
Capacitated multicommodity Cooperative Search path yes internal

network design [12]
Covering design [13] Cooperative Search set yes internal
DNA sequencing [5, 6] Ant Colonies path yes
Graph colouring [44] Tabu Search set yes
Graph ordering (envelope) [7] problem-specific set no
Graph ordering (wavefront) [20] problem-specific set no
Graph ordering (linear) [35] Simulated Annealing set∗ no external
Travelling salesman [34] problem-specific path yes
Travelling salesman [42] problem-specific path yes
Travelling salesman [8] Genetic Algorithms set no
Vehicle routing [30] problem-specific path yes external

spaces and each path-segment contains an ordering of its internal vertices.
Meanwhile, set-based coarsening usually generates a weighted graph; edges
that are internal to each merged set of vertices are collapsed.

Note that two variant approaches were also employed: in biomedical fea-
ture selection [29], as an alternative to set-based clustering the implementation
also coarsens by recursively excluding decision variables and hence evaluating
only partial solutions, denoted as ‘set+’ in the table; meanwhile the multi-
level approach to the linear graph ordering problem [35] uses an aggregated
set-based approach, denoted as ‘set∗’ in the table – see above for details.

A third way of comparing schemes is by considering whether coarsened
versions of the problem instance give an exact or an inexact approximation of
the original solution space. In this context, by exact we mean that evaluation
of the objective function for a solution of a coarsened space is exactly the
same as if that solution were extended back into the original space and the
objective function evaluated there.

Note that even for problems where exact representation is possible, it is
usually also possible to generate inexact representations. As we have seen in
Sect. 3.1, at its simplest this can just be by ignoring vertex and or edge weights
when coarsening graphs for partitioning purpose. Alternatively, if nearby ver-
tices are merged to create a coarsened version of a travelling salesman problem
(as mentioned above), then the inter-vertex distances will be incorrect and
hence the coarsed problem is inexact.

Usually, employing an exact coarsening is more accurate but will involve
some modifications to the optimisation scheme (for example, to take account
of vertex weights or fixed edges). Conversely, an inexact coarsening is easier
to implement and the optimisation scheme can often be used without modifi-
cation.

Multilevel Refinement for Combinatorial Optimisation 279

Interestingly, all of the approaches to graph ordering use set-based coars-
ening and merge vertices, rather than employing the path-based fixed edges
that might be expected from an ordering problem, and as a result they all
end up with an inexact representation of the problem. It is intriguing to ask
whether an exact representation might be more effective in these cases.

A final method we have used to classify the work is to look at whether the
approach employs recoarsening (the column labelled recoarsen), possibly
as part of an iterated multilevel scheme. As we have seen in Sect. 2.3 this
can be extremely easy to implement and highly effective. However we also
distinguish here between external and internal recoarsening.

In this context, internal recoarsening can propagate elite solutions up
through the multilevel hierarchy (as well as down) and the scheme may only
ever carry out one refinement phase on the original uncoarsened problem (i.e.
once it believes that a very high quality solution has been found at the coarser
levels).

Conversely, external recoarsening takes place as part of repeated multilevel
cycles (see Fig. 6), in an iterated multilevel scheme (in this case refinement
will take place on the original uncoarsened problem at the end of every cycle).
Of course, the distinction is not completely clear and it is possible for a scheme
using internal recoarsening to return repeatedly to the original problem and
thus resemble an iterated scheme.

3.3 Other Related Work

Because multilevel algorithms are well-known in many areas of mathemat-
ics other than combinatorial optimisation, there is a large body of literature
which could be said to be related to the methods presented here. In particular,
multigrid methods are often used to solve partial differential equations on a
hierarchy of grids or meshes, whilst multi-scale or multi-resolution meth-
ods typically address continuous problems by viewing them at a number of
different levels. However, because of the nature of the problems the operators
which transfer solutions from one scale to another are necessarily somewhat
different from the discrete techniques discussed here. For interested readers a
good start is Brandt’s review paper [9] and for an analysis of the fundamental
similarities of all these ideas see Teng [39].

Another related idea is that of aggregation which can be used either
to approximate an intractable problem with a smaller one or, sometimes, to
provide decision-makers with models at different levels of detail. In that sense,
it tends to deal more with the modelling aspects of optimisation problems (as
opposed to finding a solution for a given model). However, it is certainly true
that, when combined with disaggregation there is a degree of crossover with
multilevel ideas. For further information see the survey paper of Rogers et al.
[31].

An idea particularly related in scope and design to the principles behind
multilevel refinement is the search space smoothing scheme of Gu and Huang

280 Chris Walshaw

[16]. This uses recursive smoothing (analogous to recursive coarsening) to
produce versions of the original problem which are simpler to solve. Thus in
the example application Gu and Huang apply their technique to the TSP by
forcing the inter-city edges to become increasingly uniform in length at each
smoothing phase (if all edges between all cities are the same length then every
tour is optimal). The obvious drawback is that each smoothing phase distorts
the problem further (so that a good solution to a smoothed problem may not
be a good solution to the original). In addition, the smoothed spaces are the
same size as the original problem, even if the solution is potentially easier to
refine, and hence may be equally as expensive to optimise. By contrast, exact
multilevel coarsening filters the solution space (although with the obvious
drawback that the best solutions may be removed from the coarsened spaces)
and so the coarsened spaces are smaller and hence can be refined more rapidly
(even inexact coarsening reduces the size of the space although strictly it does
not filter it). It is also unclear whether search space smoothing is as general
as coarsening and hence whether it could be applied to problems other than
the TSP.

Finally, multilevel combinatorial optimisation is also closely related to de-
velopments in various semi-discrete optimisation problems. For example, it has
been applied, with great success, to force-directed (FD) graph drawing. This
is not a combinatorial problem, since the optimisation typically minimises
a continuous energy function, but it does share some of the characteristics.
Until recently FD methods were generally limited to small, sparse graphs,
typically with no more than 1,000 vertices. The introduction of the multilevel
framework, however, extended the size of graphs to which they could success-
fully be applied by several orders of magnitude, again through the ‘global’
improvement given by the multilevel scheme [18, 43].

4 Generic Analysis of the Multilevel Framework

In this section we draw together common elements of the examples in the
previous sections. We give an explanation for the strengths of the multilevel
paradigm and derive some generic guidelines for future attempts at other
combinatorial problems.

4.1 Multilevel Dynamics

As we have seen, the multilevel paradigm is a simple one, which at its most
basic involves recursive coarsening to create a hierarchy of approximations to
the original problem. An initial solution is found and then iteratively refined,
usually with a local search algorithm, at each level in reverse order.

Considered from the point of view of the hierarchy, a series of increasingly
coarser versions of the original problem are being constructed. It is hoped
that each problem Pl retains the important features of its parent Pl−1 but

Multilevel Refinement for Combinatorial Optimisation 281

the (usually) randomised and irregular nature of the coarsening precludes any
rigorous analysis of this process.

On the other hand, viewing the multilevel process from the point of view
of the objective function and, in particular the hierarchy of solution spaces,
is considerably more enlightening. Typically the coarsening is carried out by
matching groups (usually pairs) of solution variables together and representing
each group with a single variable in the coarsened space.

Previously authors have made a case for multilevel schemes (and in partic-
ular partitioning) on the basis that the coarsening successively approximates
the problem with smaller, and hence easier to solve, solution spaces.

In fact it is somewhat better than this; as we have seen in the discussion
about coarsening for the graph-partitioning problem (GPP), Sect. 2.1, pro-
vided that the coarsening is exact, it actually filters the solution space by
placing restrictions on which solutions the refinement algorithm can visit.

A similar argument can be made for path-based coarsening algorithms,
such as those employed for the TSP [44], and in a more general sense, we
can think about combining decision variables so that changing one decision
variable in a coarsened space is equivalent to changing several in the origi-
nal solution space. In all cases, provided that the coarsening is exact, then
coarsening has the effect of filtering the solution space.

Furthermore, an investigation of how the filtering actually performs for the
GPP & TSP is carried out in [49] and it is shown that typically the coarsening
filters out the higher cost solutions at a much faster rate than the low cost
ones, especially for sparse and low-density problems.

We can then hypothesise that, if the coarsening manages to filter the so-
lution space so as to gradually remove the irrelevant high cost solutions, the
multilevel representation of the problem combined with even a fairly simple
refinement algorithm should work well as an optimisation strategy. And when
combined with sophisticated metaheuristics, it can be very powerful indeed.

On a more pragmatic level this same process also allows the refinement to
take larger steps around the solution space (e.g. for graph partitioning, rather
than swapping single vertices, the local search algorithm can swap whole sets
of vertices as represented by a single coarsened vertex). This may be why the
strategy still works even if the coarsening is inexact.

One further general observation about multilevel dynamics, that can be
drawn from experimental evidence, is that the multilevel framework often
seems to have the effect of stabilising the performance of the local search
schemes. In particular, for the graph partitioning and travelling salesman
problems (and the GCP at low intensities) the multilevel versions appear
to have much lower variation in solution quality (in terms of the standard
deviation of randomised results) [44]. However, it is not clear why this should
be the case.

282 Chris Walshaw

4.2 A Generic Multilevel Framework

To summarise the paradigm, multilevel optimisation combines a coarsen-
ing strategy together with a refinement algorithm (employed at each level
in reverse order) to create an optimisation metaheuristic. Fig. 5 contains a
schematic of this process in pseudo-code (here Pl refers to the coarsened prob-
lem after l coarsening steps, Cl is a solution of this problem and C0

l denotes
the initial solution).

multilevel refinement(input problem instance P0)
begin

l ← 0 // level counter
while (coarsening)

Pl+1 ← coarsen(Pl)
l ← l+1

end
Cl = initialise(Pl)
while (l > 0)

l ← l−1
C0

l ← extend(Cl+1, Pl)
Cl ← refine(C0

l , Pl)
end
return C0 // solution

end

Fig. 5. A schematic of the multilevel refinement algorithm

The question then arises, how easy is it to implement a multilevel strategy
for a given combinatorial problem?

First of all let us assume that we know of a refinement algorithm for the
problem, which refines in the sense that it attempts to improve on existing so-
lutions. If no such refinement algorithm exists (e.g. if the only known heuristics
for the problem are based on construction) it is not clear that the multilevel
paradigm can be applied.

Typically the refinement algorithm will be either a problem-specific algo-
rithm, or a metaheuristic, and it must be able to cope with any additional
restrictions placed on it by the coarsening (e.g. for the set-based coarsening,
the graphs are always weighted whether or not the original is; for path-based,
the refinement must not change fixed edges in the coarsened levels).

To implement a multilevel algorithm, given a problem and a refinement
strategy for it, we then require three additional basic components: a coarsening
algorithm, an initialisation algorithm and an extension algorithm (which takes
the solution on one problem and extends it to the parent problem). It is
difficult to talk in general terms about these requirements, but the existing

Multilevel Refinement for Combinatorial Optimisation 283

examples suggest that the extension algorithm can be a simple and obvious
reversal of the coarsening step which preserves the same cost.

The initialisation is also generally a simple canonical mapping where by
canonical we mean that a solution is ‘obvious’ (e.g. GPP – assign k vertices
one each to k subsets; GCP – colour a complete graph; TSP – construct a tour
to visit 2 cities) and that the refinement algorithm cannot possibly improve
on the initial solution at the coarsest level (because there are no degrees of
freedom).

Coarsening

This just leaves the coarsening which is then perhaps the key component of
a multilevel implementation. For the existing examples three principles seem
to hold:

• The number of levels need not be determined a priori but coarsening
should cease when any further coarsening would render the initialisation
degenerate.

• A solution in any of the coarsened spaces should induce a legitimate so-
lution on the original space. Thus, at any stage after initialisation the
current solution could simply be extended through all the problem levels
to achieve a solution of the original problem.

• Ideally, any solution in a coarsened space should have the same cost with
respect to the objective function as its extension to the original space (i.e.
the coarsening is exact): this requirement ensures that the coarsening is
truly filtering the solution space. However, the paradigm does seem to work
well even if this is not the case (and indeed, exact coarsening techniques
are not always possible).

This still does not tell us how to coarsen a given problem and the examples
in Sect. 3 suggest that it is very much problem-specific. However, it is often
possible that construction heuristics (traditionally used to construct an initial
feasible solution prior to single-level refinement) can be modified into coars-
ening heuristics (e.g. the TSP & VRP rely on this technique). Furthermore,
it has been shown (for partitioning at least), that it is usually more prof-
itable for the coarsening to respect the objective function in some sense (e.g.
[21, 48]) and most construction heuristics (apart from completely randomised
instances) have this attribute.

Multilevel Enhancements

As we saw in Sect. 3, there are a number of generic ideas that can be used to
improve the performance of a multilevel algorithm (these are discussed in more
detail under multilevel enhancements in Sect. 3.1 and also in the summary
of Sect. 3.2). In particular, techniques such as constraint relaxation and

284 Chris Walshaw

coarsening homogeneity seem to be beneficial and are worth investigation
for other problems.

Perhaps the most powerful, however, is solution-based recoarsening, par-
ticularly if used as part of an iterated multilevel algorithm. This is usually
very easy to implement (relying merely on the coarsening being capable of re-
specting an existing solution) and can often considerably improve the solution
quality of a multilevel scheme (e.g. see Sect. 2.3).

iterated multilevel refinement(input problem instance P)
begin

C ← multilevel refinement(P) // initialise best solution
i ← 0 // unsuccessful iteration count
while (i < γ) // for intensity parameter γ

C′ ← multilevel refinement(P , C)
if (f(C′) < f(C)) // C′ has lower cost

C ← C′ // update best solution
i ← 0 // reset unsuccessful count

else
i ← i+1

endif
end

end

Fig. 6. A schematic of the iterated multilevel refinement algorithm

Fig. 6 shows a schematic of a possible iterated multilevel algorithm (al-
though there are other ways to specify the stopping criterion). Thus, after
calculating an initial solution the algorithm repeatedly recoarsens and refines
until no lower cost solution (where f() denotes the objective/cost function)
has been found after γ iterations. The only modification required to the mul-
tilevel algorithm of Fig. 5 is that it must take an existing solution as an
additional input and coarsen that.

Summary

It seems likely that the most difficult aspect in implementing an effective mul-
tilevel scheme for a given problem and refinement algorithm is the (problem-
specific) task of devising the coarsening strategy. However, examples indicate
that this is often relatively straightforward.

4.3 Typical Runtime

One of the concerns that might be raised about multilevel algorithms is that
instead of having just one problem to optimise, the scheme creates a whole

Multilevel Refinement for Combinatorial Optimisation 285

hierarchy of approximately O(log2 N) problems (assuming that the coarsening
approximately halves the problem size at each level). In fact, it is not too
difficult to show that there is approximately a factor-of-two difference in the
runtime between a local search algorithm (or metaheuristic) at intensity λ,
LSλ, and the multilevel version, MLLSλ. In other words, if T (A) denotes the
runtime of algorithm A, then T (MLLSλ) ≈ 2T (LSλ).

Suppose first of all that the LS algorithm is O(N) in execution time and
that the multilevel coarsening manages to halve the problem size at every
step. This is an upper bound and in practice the coarsening rate is actually
slightly lower (e.g. between 5/8 to 6/8 is typical for GPP and TSP examples
[44], rather than the theoretic maximum of 1/2). Let TL = T (LSλ) be the time
for LSλ to run on a given instance of size N and TC the time to coarsen and
contract it. The assumption on the coarsening rate gives us a series of problems
of size N,N/2, N/4, . . . , O(1) (≈ N/N) whilst the assumption on LSλ having
linear runtime gives the total runtime for MLLSλ as TC +TL/N + . . .+TL/4+
TL/2+TL. If λ is small then TC can take large proportion of the runtime and
so multilevel algorithms using purely greedy refinement policies (i.e. typically
λ = 0) tend to take more than twice the runtime of the equivalent local search
although this depends on how long the coarsening takes compared with the
solution construction (typically both O(N)). However, if λ is large enough
then typically TC � TL and so we can neglect it giving a total runtime of
TL/N + . . .+TL/2+TL ≈ 2TL, i.e. MLLSλ takes twice as long as LSλ to run.

Furthermore, if the local search scheme is also linear in λ, the intensity, it
follows from T (MLLSλ) ≈ 2T (LSλ) that T (MLLSλ) ≈ T (LS2λ). This effect
is particularly visible for the TSP [42], but even for other problems where,
for example λ expresses the number of failed iterations of some loop of the
scheme, although this factor of two rule-of-thumb breaks down somewhat, it
still gives a guide figure for the cost of a multilevel scheme.

Finally note that if the multilevel procedure is combined with an O(N2)
or even O(N3) refinement algorithm then this analysis comes out even better
for the multilevel overhead, i.e. T (MLLSλ) < 2T (LSλ), as the final refinement
step would requires an even larger proportion of the total.

Of course, this analysis assumes that the intensity of the search scheme
is in some way dependent on the asymptotic convergence rate of the best
solution. However, for local search schemes which are governed by a CPU time-
limit, even tighter controls can be placed on the run-time of the multilevel
version. Indeed, since the size of the problem at each level is known before
any refinement takes place, the CPU time remaining after coarsening could
be shared appropriately between each level and, for example, the multilevel
version could be guaranteed to take the same time as the LS scheme.

286 Chris Walshaw

5 Summary

We have seen evidence that the multilevel paradigm can aid metaheuristics
and local search algorithms to find better or faster solutions for a growing
number of combinatorial problems. We have discussed the generic features of
these implementations and extracted some guidelines for its use. We have also
identified some straightforward multilevel enhancements including recoarsen-
ing/iterated multilevel algorithms, homogeneous coarsening and constraint
relaxation, all of which can boost its performance still further.

Overall this augments existing evidence that, although the multilevel
framework cannot be considered as a panacea for combinatorial optimisation
problems, it can provide a valuable (and sometimes a remarkably valuable) ad-
dition to the combinatorial optimisation toolkit. In addition, and unlike most
metaheuristics, it is collaborative in nature and works alongside a separate
refinement algorithm – successful examples include ant colony optimisation,
cooperative search, genetic algorithms, simulated annealing and tabu search.

With regard to future work, clearly it is of great interest to further validate
(or contradict) the conclusions by extending the range of problem classes. It
is also valuable to identify and generalise those multilevel techniques which
boost a particular application’s performance still further (e.g. such as iterated
multilevel schemes) so that they can become more widely employed.

References

1. A. Abou-Rjeili and G. Karypis. Multilevel algorithms for partitioning power-law
graphs. In Proc. 20th Intl Parallel & Distributed Processing Symp., 2006, page
10 pp. IEEE, 2006.

2. S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Recur-
sive Spectral Bisection for Partitioning Unstructured Problems. Concurrency:
Practice & Experience, 6(2):101–117, 1994.

3. R. Battiti, A. Bertossi, and A. Cappelletti. Multilevel Reactive Tabu Search for
Graph Partitioning. Preprint UTM 554, Dip. Mat., Univ. Trento, Italy, 1999.

4. C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

5. C. Blum and M. Yábar. Multi-level ant colony optimization for DNA sequencing
by hybridization. In F. Almeida et al., editors, Proc. 3rd Intl Workshop on
Hybrid Metaheuristics, volume 4030 of LNCS, pages 94–109. Springer-Verlag,
Berlin, Germany, 2006.

6. C. Blum, M. Yábar-Vallès, and M. J. Blesa. An ant colony optimization algo-
rithm for DNA sequencing by hybridization. Computers & Operations Research,
2007. (in press).

7. E. G. Boman and B. Hendrickson. A Multilevel Algorithm for Reducing the
Envelope of Sparse Matrices. Tech. Rep. 96-14, SCCM, Stanford Univ., CA,
1996.

8. N. Bouhmala. Combining local search and genetic algorithms with the multilevel
paradigm for the traveling salesman problem. In C. Blum et al., editors, Proc.
1st Intl Workshop on Hybrid Metaheuristics, 2004. ISBN 3-00-015331-4.

Multilevel Refinement for Combinatorial Optimisation 287

9. A. Brandt. Multiscale Scientific Computation: Review 2000. In T. J. Barth,
T. Chan, and R. Haimes, editors, Multiscale and Multiresolution Methods, pages
3–95. Springer-Verlag, Berlin, Germany, 2001.

10. T. N. Bui and C. Jones. A Heuristic for Reducing Fill-In in Sparse Matrix
Factorization. In R. F. Sincovec et al., editors, Parallel Processing for Scientific
Computing, pages 445–452. SIAM, Philadelphia, 1993.

11. J. Cong and J. Shinnerl, editors. Multilevel Optimization in VLSICAD. Kluwer,
Boston, 2003.

12. T. G. Crainic, Y. Li, and M. Toulouse. A First Multilevel Cooperative Algorithm
for Capacitated Multicommodity Network Design. Computers & Operations
Research, 33(9):2602–2622, 2006.

13. C. Dai, P. C. Li, and M. Toulouse. A Multilevel Cooperative Tabu Search
Algorithm for the Covering Design Problem. Dept Computer Science, Univ.
Manitoba, 2006.

14. C. M. Fiduccia and R. M. Mattheyses. A Linear Time Heuristic for Improving
Network Partitions. In Proc. 19th IEEE Design Automation Conf., pages 175–
181. IEEE, Piscataway, NJ, 1982.

15. J. E. Gallardo, C. Cotta, and A. J. Fernández. A Multi-level Memetic/Exact
Hybrid Algorithm for the Still Life Problem. In T. P. Runarsson et al., editors,
Parallel Problem Solving from Nature – PPSN IX, volume 4193 of LNCS, pages
212–221. Springer-Verlag, Berlin, 2006.

16. J. Gu and X. Huang. Efficient Local Search With Search Space Smoothing: A
Case Study of the Traveling Salesman Problem (TSP). IEEE Transactions on
Systems, Man & Cybernetics, 24(5):728–735, 1994.

17. A. Gupta. Fast and effective algorithms for graph partitioning and sparse matrix
reordering. IBM Journal of Research & Development, 41(1/2):171–183, 1996.

18. D. Harel and Y. Koren. A Fast Multi-Scale Algorithm for Drawing Large
Graphs. Journal of Graph Algorithms & Applications, 6(3):179–202, 2002.

19. B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs.
In S. Karin, editor, Proc. Supercomputing ’95, San Diego (CD-ROM). ACM
Press, New York, 1995.

20. Y. F. Hu and J. A. Scott. Multilevel Algorithms for Wavefront Reduction. RAL-
TR-2000-031, Comput. Sci. & Engrg. Dept., Rutherford Appleton Lab., Didcot,
UK, 2000.

21. G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Par-
titioning Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–
392, 1998.

22. G. Karypis and V. Kumar. Multilevel Algorithms for Multi-Constraint Graph
Partitioning. In D. Duke, editor, Proc. Supercomputing ’98, Orlando. ACM
SIGARCH & IEEE Comput. Soc., 1998. (CD-ROM).

23. G. Karypis and V. Kumar. Multilevel k-way Partitioning Scheme for Irregular
Graphs. Journal of Parallel & Distributed Computing, 48(1):96–129, 1998.

24. G. Karypis and V. Kumar. Multilevel k-way Hypergraph Partitioning. VLSI
Design, 11(3):285–300, 2000.

25. A. Kaveh and H. A. Rahimi-Bondarabady. A Hybrid Graph-Genetic Method for
Domain Decomposition. In B. H. V. Topping, editor, Computational Engineering
using Metaphors from Nature, pages 127–134. Civil-Comp Press, Edinburgh,
2000. (Proc. Engrg. Comput. Technology, Leuven, Belgium, 2000).

26. B. W. Kernighan and S. Lin. An Efficient Heuristic for Partitioning Graphs.
Bell Systems Technical Journal, 49:291–308, 1970.

288 Chris Walshaw

27. P. Korošec, J. Šilc, and B. Robič. Solving the mesh-partitioning problem with
an ant-colony algorithm. Parallel Computing, 30:785–801, 2004.

28. A. E. Langham and P. W. Grant. A Multilevel k-way Partitioning Algorithm for
Finite Element Meshes using Competing Ant Colonies. In W. Banzhaf et al.,
editors, Proc. Genetic & Evolutionary Comput. Conf. (GECCO-1999), pages
1602–1608. Morgan Kaufmann, San Francisco, 1999.

29. I. O. Oduntan. A Multilevel Search Algorithm for Feature Selection in Biomed-
ical Data. Master’s thesis, Dept. Computer Science, Univ. Manitoba, 2005.

30. D. Rodney, A. Soper, and C. Walshaw. The Application of Multilevel Re-
finement to the Vehicle Routing Problem. In D. Fogel et al., editors, Proc.
CISChed 2007, IEEE Symposium on Computational Intelligence in Scheduling,
pages 212–219. IEEE, Piscataway, NJ, 2007.

31. D. F. Rogers, R. D. Plante, R. T. Wong, and J. R. Evans. Aggregation and
Disaggregation Techniques and Methodology in Optimization. Operations Re-
search, 39(4):553–582, 1991.

32. Y. Romem, L. Rudolph, and J. Stein. Adapting Multilevel Simulated Annealing
for Mapping Dynamic Irregular Problems. In S. Ranka, editor, Proc. Intl Parallel
Processing Symp., pages 65–72, 1995.

33. Camilo Rostoker and Chris Dabrowski. Multilevel Stochastic Local Search for
SAT. Dept Computer Science, Univ. British Columbia, 2005.

34. Y. Saab. Combinatorial Optimization by Dynamic Contraction. Journal of
Heuristics, 3(3):207–224, 1997.

35. I. Safro, D. Ron, and A. Brandt. Graph minimum linear arrangement by mul-
tilevel weighted edge contractions. Journal of Algorithms, 60(1):24–41, 2006.

36. K. Schloegel, G. Karypis, and V. Kumar. Multilevel Diffusion Schemes for
Repartitioning of Adaptive Meshes. Journal of Parallel & Distributed Comput-
ing, 47(2):109–124, 1997.

37. K. Schloegel, G. Karypis, and V. Kumar. A New Algorithm for Multi-objective
Graph Partitioning. In P. Amestoy et al., editors, Proc. Euro-Par ’99 Parallel
Processing, volume 1685 of LNCS, pages 322–331. Springer-Verlag, Heidelberg,
Germany, 1999.

38. A. J. Soper, C. Walshaw, and M. Cross. A Combined Evolutionary Search and
Multilevel Optimisation Approach to Graph Partitioning. Journal of Global
Optimization, 29(2):225–241, 2004.

39. S.-H. Teng. Coarsening, Sampling, and Smoothing: Elements of the Multilevel
Method. In M. T. Heath et al., editors, Algorithms for Parallel Processing,
volume 105 of IMA Volumes in Mathematics and its Applications, pages 247–
276. Springer-Verlag, New York, 1999.

40. M. Toulouse, K. Thulasiraman, and F. Glover. Multi-level Cooperative Search:
A New Paradigm for Combinatorial Optimization and an Application to Graph
Partitioning. In P. Amestoy et al., editors, Proc. Euro-Par ’99 Parallel Process-
ing, volume 1685 of LNCS, pages 533–542. Springer-Verlag, Berlin, 1999.

41. D. Vanderstraeten, C. Farhat, P. S. Chen, R. Keunings, and O. Zone. A Retrofit
Based Methodology for the Fast Generation and Optimization of Large-Scale
Mesh Partitions: Beyond the Minimum Interface Size Criterion. Computer Meth-
ods in Applied Mechanics & Engineering, 133:25–45, 1996.

42. C. Walshaw. A Multilevel Approach to the Travelling Salesman Problem. Op-
erations Research, 50(5):862–877, 2002.

43. C. Walshaw. A Multilevel Algorithm for Force-Directed Graph Drawing. Journal
of Graph Algorithms & Applications, 7(3):253–285, 2003.

Multilevel Refinement for Combinatorial Optimisation 289

44. C. Walshaw. Multilevel Refinement for Combinatorial Optimisation Problems.
Annals of Operations Research, 131:325–372, 2004.

45. C. Walshaw. Variable partition inertia: graph repartitioning and load-balancing
for adaptive meshes. In S. Chandra M. Parashar and X. Li, editors, Advanced
Computational Infrastructures for Parallel and Distributed Adaptive Applica-
tions. Wiley, New York. (Invited chapter – to appear in 2008).

46. C. Walshaw and M. Cross. Mesh Partitioning: a Multilevel Balancing and Re-
finement Algorithm. SIAM Journal on Scientific Computing, 22(1):63–80, 2000.

47. C. Walshaw and M. Cross. Multilevel Mesh Partitioning for Heterogeneous
Communication Networks. Future Generation Computer Systems, 17(5):601–
623, 2001.

48. C. Walshaw, M. Cross, R. Diekmann, and F. Schlimbach. Multilevel Mesh
Partitioning for Optimising Domain Shape. International Journal of High Per-
formance Computing Applications, 13(4):334–353, 1999.

49. C. Walshaw and M. G. Everett. Multilevel Landscapes in Combinatorial Opti-
misation. Tech. Rep. 02/IM/93, Comp. Math. Sci., Univ. Greenwich, London
SE10 9LS, UK, April 2002.

