
CBC vs CPLEX

Setud guide and first steps

Filippo Checchinato
Davide De Pieri

Padova, May 5, 2019

Introduction

In this paper we are going to describe the setup of Coin-Or Branch and Cut
(CBC), an open source mixed integer programming solver that represents an
alternative to licensed software like CPLEX and GUROBI.

We tested this tool on Windows through Visual Studio Community 2017
and on Linux through CMAKE (with CLion). We will explain all the nec-
essary steps to make the solver work properly. We found that on Windows
it is easier to just download the precompiled binaries available on the CBC
site, while on Linux it is also possible to compile CBC through a script called
CoinBrew.

The COIN-OR Foundation

The Computational Infrastructure for Operations Research (COIN-OR) Foun-
dation, Inc., is a no-profit educational and scientific foundation that was
established in March 2004 to manage the COIN-OR project. The mission
of the foundation is to create and disseminate knowledge related to all as-
pects of computational Operations Research by promoting and supporting
community-driven developments of open-source software that exploit state-
of-the-art research in OR. A comprehensive list of the projects in development
can be found on the COIN-OR website under the project section1.

COIN-OR Branch and Cut (CBC)

CBC2 is an open-source (distributed under the Eclipse Public License) mixed
integer linear programming solver written in C++, and can be used as a
callable library or using a stand-alone executable. CBC links a number of
other COIN-OR projects for additional functionality, including: Coin-Or Lin-
ear Programming (CLP, the default solver for LP relaxations), Coin-Or Cut
Generation Library (CGL, for cut generation) and CoinUtils (for various util-
ities). The software way originally developed by John Forrest, nowadays a
retired IBM researcher, and his team.

1https://www.coin-or.org/projects
2https://github.com/coin-or/Cbc

1

Setup on Windows

This setup will use the precompiled libraries; binaries for Windows and other
platforms are available for download from the CBC bintray3. Scrolling down
the page until the ”Download section” we can choose our preferred version: as
we will use Visual Studio 2017, we pick Cbc-2.10-win32-msvc15.zip. This
is the archive that contains the binaries, headers and libraries for Windows
environments.

Once the archive is downloaded we unzip the content in a folder of our
choice. Let us take a look to the content in order to understand the role of
the directories:

• /path/to/Cbc-2.10-win32-msvc15/bin: contains the files cbc.exe
and clp.exe which can be used through command line with additional
parameters to read models and solve them.

• /path/to/Cbc-2.10-win32-msvc15/include: this folder contains the
definitions of all classes, methods and structures, both for C++ and C,
that we can use inside our code to build and solve our models.

• /path/to/Cbc-2.10-win32-msvc15/lib: contains the compiled black-
box libraries that allow to run the procedures defined in the header files
of the include directory.

Now let us configure the Visual Studio environment; as it is common for
external libraries we want to define a custom property to load CBC files.
This is very handy, as it requires a setup only the first time: when a new
project is created, the property file can be loaded to immediately use the
libraries.

First of all we open a new Visual Studio project by clicking on File>new>Project.
From the different models proposed we choose a C++ empty project as shown
on Figure 1. We open the Property Window (either through the menu View
or by pressing F4) and open the configuration debug and release, in accord to
the architecture (x64 in one case), to show the current properties; right click
on one of the folders (we assume Debug x64) and select ‘Add new property
window’ (Figure 2). On the popup window just appeared we choose the
name of the new property (e.g. CBC Debug.props) and confirm. In the list
of the Property Window now we can see the configuration just created. We
right-click on it and select ‘properties’. From the list of settings on the left
we select C/C++. On the corresponding panel that appears on the right we
edit the field Additional include directories (Figure 3). Here we set a

3https://bintray.com/coin-or/download/Cbc

2

Figure 1: Empty project window

Figure 2: Add new property configuration

3

Figure 3: Additional include directories C/C++

new value corresponding to the path to the header files of Cbc, specifically
/path/to/Cbc-2.10-win32-msvc15/include/coin.
Then we move to Linker and edit the field Additional libraries directories
(Figure 4). As before, we set a new value corresponding to the path to the li-
braries to import in our project, specifically /path/to/Cbc-2.10-win32-msvc15/lib.
Now, under Linker section we move to Input and edit the field Additional
dependencies(Figure 5). Here we manually add the name of the libraries
we want to import in our project (without path) and that are located inside
the directory specified in the previously step. The list of these files should be:

libCbc.lib
libCbcSolver.lib
libCgl.lib
libClp.lib
libClpSolver.lib
libCoinUtils.lib
libOsi.lib
libOsiCbc.lib
libOsiClp.lib
libOsiCommonTests.lib

Finally we apply the changes and select ‘Ok’. Now, all we have to do to
work with Cbc in our C code is to include the <Cbc C Interface.h> interface

4

Figure 4: Additional libraries directories

Figure 5: Additional dependencies

5

at the beginning of the code. The directives we applied to the property file
allow the environment to recognize the new interface and all the methods
used to build and solve our models.

Setup on Linux

In this setup we will compile CBC from scratch using a script called CoinBrew
which will also download all the dependencies directly from the official git
repository; it is also possible to use the precompiled libraries, but this case
is not covered in this section.

We create a directory of our choice for our library and we save on it
the CoinBrew4 script available in the download section (by right-clicking the
link and saving it with extension .sh). We will now follow the instructions
provided in the CBC git repository5; to download all the required files to
build CBC in a terminal we use:

/path/to/coinbrew.sh fetch --main-proj=Cbc

Before proceeding with the compilation one has to be sure to have gcc
and g++ installed (you can check by typing them in a terminal); you may have
to manually install a fortran compiler through your packet manager of choice
(e.g. apt, pacman); the packet is usually called gfortran or gcc-fortran.
If you are missing some other dependency, this next command will stop with
an error and will tell what package is required.

/path/to/coinbrew.sh build --main-proj=Cbc --test

Type y when prompted to fetch the files. The compilation might take
a while but if it was successful the script will terminate without any error
message and you can proceed with (answer y when prompted like before):

/path/to/coinbrew.sh install --main-proj=Cbc

If the process was successful we can see a folder build in our original
directory, inside which there are many other folders. We are interested only
to three of them: bin, include and lib; these serve the same purpose as
their Windows counterpart, just check the previous section for a detailed
explanation.

A simple way to configure CMAKE is to follow the following structure
for the CMakeList.txt file:

4https://coin-or.github.io/coinbrew/
5https://github.com/coin-or/Cbc

6

CMAKE d e c l a r a t i o n s e . g . ver s ion , standard . . .
. . .

Set a v a r i a b l e to your bu i ld d i r e c t o r y
s e t (CBC ROOT DIR path/ to /cbc/ bu i ld)

Other s e t t i n g s and f l a g s
. . .

CBC headers d i r e c t o r y toge the r with
(eventua l) other i n c lude d i r e c t o r i e s
i n c l u d e d i r e c t o r i e s (project name

. . .
${CBC ROOT DIR}/ inc lude / co in)

Other s e t t i n g s e . g . add executab l e s ()
. . .

CBC l i b r a r i e s with extens i on . so and
(eventua l) other l i b r a r i e s
t a r g e t l i n k l i b r a r i e s (project name

. . .
${CBC ROOT DIR}/ l i b / n a m e o f t h e l i b r a r y . so)

Since there are many libraries with extension .so, a simple way to list
them without wasting too much time is to open the lib directory in a ter-
minal and type ls -1 *.so, this will output a nice and tidy list, then each
file must be formatted like in the example.

Finally, in the code (assuming it is a C project) we include <Cbc C interface.h>.

Code Examples

In this section we focus on the basic instructions to build and solve a model
using structures and functions provided by the Cbc C interface. To do this
we compare each piece of code with the corresponding instructions used in
CPLEX, in order to ease the learning for those who are familiar with this
environment. Both sections are written in C.

7

Initialization

CBC
1 #include <Cbc_C_Interface.h>
2

3 int main(int argc, char **argv){
4

5 Cbc_Model *mod;
6 mod = Cbc_newModel();
7 Cbc_setProblemName(mod, "MODEL_NAME");
8 ...
9 }

CPLEX
1 #include <cplex.h>
2

3 int main(int argc, char **argv){
4

5 int error;
6 CPXENVptr env = CPXopenCPLEX(&error);
7 CPXLPptr lp = CPXcreateprob(env, &error, "MODEL_NAME");
8 ...
9 }

To initialize an environment for our model we simply define a pointer to a
Cbc Model structure which can be initialized by the Cbc newModel() method.
Differently from CPLEX, we don’t need to define a structure for the data (lp)
and one for the parameters (env), as the model handles everything internally.

Add new variables

To add a new variable to the CBC model, function Cbc addCol() is used.
From the following examples we can see how the syntax is slightly different
between the two solvers. CPLEX function returns an integer value giving
the success or the failure of the operation, while the similar method in Cbc
is void and does not provide this information. Also, Cbc allows for the
insertion of one variable at time, while with CPLEX we can handle more
variables through an array of parameters and then call CPXnewcols() once
to add them all to the model.

8

FUNCTION
1 void Cbc_addCol(
2 Cbc_Model* model,
3 const char* name,
4 double lb,
5 double ub,
6 double obj,
7 char isInteger,
8 int nz,
9 int* rows,

10 double* coefs
11)

model pointer to a Cbc Model
name variable name
lb column lower bound
ub column upper bound
obj objective function coefficient
isInteger 1 if variable is integral, 0 otherwise
nz number of rows (constraints) where this

column appears, can be 0 if constraints will
be added later.

rows index of rows where this column
appears, NULL if rows will be added later

coefs coefficients that this column appears
in its rows, NULL if rows will be added later

CBC
1 void myAddNewVariable(Cbc_Model *mod){
2 const double lower_bound_x = 0.0;
3 const double upper_bound_x = 1.0;
4 char integral = ’1’;
5 char *cname = (char *)calloc(100, sizeof(char));
6 sprintf(cname, "myNewVariable");
7 double coeffCost = 12.5;
8

9 Cbc_addCol(mod, cname, lower_bound_x, upper_bound_x, coeffCost,
10 integral, 0, NULL, NULL);
11 ...
12 }

CPLEX
1 void myAddNewVariable(CPXENVptr env, CPXLPptr lp){
2 const double lower_bound_x = 0.0;
3 const double upper_bound_x = 1.0;
4 const char binary = ’B’;
5 char **cname = (char **)calloc(1, sizeof(char *));
6 cname[0] = (char *)calloc(100, sizeof(char));
7 sprintf(cname[0], "myNewVariable");
8 double coeffCost = 12.5;
9

10 if (CPXnewcols(env, lp, 1, &coeffCost, &lower_bound_x, &upper_bound_x,
11 &binary, cname)) printf(" column creation failed");
12 ...
13 }

9

Add new constraints

To add a new constraint (row), we can use the function Cbc addRow(). While
CPLEX allows to add an ”empty” constraint (with CPXnewrows()) and then
change the values of the considered variables (with CPXchgcoef()), Cbc only
allows to add a single ”filled” constraint in a way similar to CPXaddrows() or
CPXaddlazyconstraints(). Considerations on the return type are similar
those made in the previous section.

FUNCTION
1 Cbc_addRow(
2 Cbc_Model* model,
3 const char* name,
4 int nz,
5 const int* cols,
6 const double* coefs,
7 char sense,
8 double rhs
9)

model problem object
name constraint name, will raise errors if it contains

spaces, forbidden characters or it is a duplicate
nz number of variables with non-zero coefficients

in this row
cols index of variables that appear in this row
coefs cofficients that that variables appear
sense constraint sense: L if ≤, G if ≥, E if =,

R if ranged and N if free
rhs right hand size

CBC
1 void myAddNewConstraint(Cbc_Model *mod){
2 const double rhs = 2.0;
3 const char sense = ’E’;
4 int nz = 2;
5 int *cols = (int*)calloc(nz, sizeof(int));
6 double *coefs = (double*)calloc(nz, sizeof(double));
7 char *cname = (char *)calloc(100, sizeof(char));
8 sprintf(cname, "myNewConstraint");
9 ...

10 Cbc_addCol(mod, cname, nz, cols, coefs, sense, rhs);
11 }

10

CPLEX
1 void myAddNewConstraint(CPXENVptr env, CPXLPptr lp){
2 double rhs = 2.0;
3 const char sense = ’E’;
4 int nz = 2;
5 const int rcnt = 1;
6 const int rmatbeg = 0;
7 int *cols = (int*)calloc(nz, sizeof(int))
8 double *coefs = (double*)calloc(nz, sizeof(double))
9 char **cname = (char **)calloc(1, sizeof(char *));

10 cname[0] = (char *)calloc(100, sizeof(char));
11 sprintf(cname[0], "myNewConstraint");
12 ...
13 if (CPXaddrows(env, lp, 0, rcnt, nz, &rhs, &sense, &rmatbeg, cols,
14 coefs, NULL, cname)) printf(" constraint creation failed");
15 }

Solve a model and retrieve the solutions

To solve a model previously built we can invoke function Cbc solve(). At
the end of the computation it will return an int informing if the optimal
solution was found or not. To retrieve the value of the objective function we
call Cbc getObjValue(), while if we want the solution for our variables the
function to call is Cbc getColSolution(). Note that the allocation in mem-
ory of the solution vector is handled internally, therefore neither malloc()
nor free() is required.

CBC
1 void solveMyModel(Cbc_Model* mod){
2 if(!Cbc_solve(mod)) {
3 printf("No optimal solution found");
4 exit(1);
5 }
6 double obj = Cbc_getObjValue(mod);
7 double* variables = Cbc_getColSolution(mod);
8 }

11

CPLEX
1 void solveMyModel(CPXENVptr env, CPXLPptr lp){
2 if(!CPXmipopt(env, lp)) {
3 printf("The model can’t be solved");
4 exit(1);
5 }
6 double obj;
7 CPXgetobjval(env, lp, &obj);
8 double* variables = (double*) calloc(CPXgetnumcols(env, lp), sizeof(double));
9 CPXgetx(env, lp, variables, 0, CPXgetnumcols(env, lp)-1);

10 }

Save and Load models

Once our model is built, we may have to export it to a file in order to solve it
through command line or run it on a different machine. To export a model
we simply call the method Cbc writeLp() which creates a file filename with
.lp extension. The same extension is used in CPLEX and Gurobi. It may be
useful if we want to compare the performance of these different solvers. To
import a model in our code we call Cbc readLp() which implies the previous
creation of an empty model to be filled by the one written in the file.

CBC
1 void exportMyModel(Cbc_Model* mod){
2 Cbc_writeLp(mod, "Cbc_model"); // Save to "Cbc_model.lp"
3 }
4

5 void importMyModel(const char* filename){
6 Cbc_Model* mod = Cbc_newModel();
7 Cbc_readLp(mod, filename); // Requires .lp extension
8 }

CPLEX
1 void exportMyModel(CPXENVptr env, CPXLPptr lp){
2 CPXwriteprob(env, lp, "CPLEX_model.lp", NULL);
3 }
4

5 void importMyModel(const char* filename){
6 int error;
7 CPXENVptr env = CPXopenCPLEX(&error);
8 CPXLPptr lp = CPXcreateprob(env, &error, "CPLEX_model");
9 CPXreadcopyprob(env, lp, filename, NULL);

10 }

12

Delete model

To close a model we use Cbc deleteModel(). This function releases all the
resources which were allocated internally by Cbc including the reference to
the array returned by Cbc getColSolution().

CBC
1 void closeMyModel(Cbc_Model* mod){
2 ...
3 Cbc_deleteModel(mod);
4 }

CPLEX
1 void closeMyModel(CPXENVptr env, CPXLPptr lp){
2 ...
3 CPXfreeprob(env, &lp);
4 CPXcloseCPLEX(&env);
5 }
6

Command line

As already discussed in the Setup section, after downloading the Cbc binaries
(or, eventually, after compiling them), we have access to three folders, namely
bin, include and lib. To setup the environment and link our code to the
right libraries and headers we use include and lib . Inside the bin folder
we can find two executables, cbc and clp, which can be used to solve models
through command line. In particular, clp solves only the relaxation of the
problem, while cbc takes into account the integrabily constraints (if any).

To use these tools we have to open a terminal and move to the bin
directory. Alternatively, we can add the executables in the PATH of the
system and use them from any location. The model we want to solve must
be in .lp format. Then we simply type:

cbc.exe myCbcModel.lp

or, in Linux environment:

cbc myCbcModel.lp

The model will be then read and solved. During the process the program
outputs real-time information about the solution process and, at the end, the
value of the optimal solution along with information on the used cuts and
elapsed time.

13

Documentation

Currently, the Cbc project lacks a satisfactory documentation: the infor-
mation is lacking and quite scattered. In the last few years however, the
community has grown and a number of release versions of the source code
has been released. This improved the performances of the solver, but at the
same time parts of the documentation became outdated or incomplete, hence
it is often a good idea to take a look directly at the source files to have some
insight.

We list here the references to the webpages that we used to move our first
steps in Cbc and that we consider reliable sources of information.

• Official Site - https://github.com/coin-or/Cbc: The official site
from which all the following links can be found. Besides the source
code, the github page provides an overview of the entire project.

• Binaries - https://bintray.com/coin-or/download/Cbc: This is
where we can find the latest binary packages for Windows and Linux
Environments.

• User Guide - https://coin-or.github.io/Cbc/: An User guide
that provide a general overview of the software, providing practical
examples of code (C++ only).

• Doxygen - https://www.coin-or.org/Doxygen/Cbc/hierarchy.ht
ml: The standard C++ documentation generated from the source code.
This is the main reference to understand methods and parameters.
(NOTE: The C documentation is summarized at https://www.coin
-or.org/Doxygen/Cbc/Cbc C Interface 8h.html)

• Command Line - https://projects.coin-or.org/CoinBinar
y/export/1059/OptimizationSuite/trunk/Installer/files/
doc/cbcCommandLine.pdf: An in-depth guide for the use of Cbc
through command line, although it is the official reference it is quite
incomplete, for a more complete explanation of the available parameters
see: https://www.gams.com/latest/docs/S CBC.html.

14

https://github.com/coin-or/Cbc
https://bintray.com/coin-or/download/Cbc
https://coin-or.github.io/Cbc/
https://www.coin-or.org/Doxygen/Cbc/hierarchy.html
https://www.coin-or.org/Doxygen/Cbc/hierarchy.html
https://www.coin-or.org/Doxygen/Cbc/Cbc__C__Interface_8h.html
https://www.coin-or.org/Doxygen/Cbc/Cbc__C__Interface_8h.html
https://projects.coin-or.org/CoinBinary/export/1059/OptimizationSuite/trunk/Installer/files/doc/cbcCommandLine.pdf
https://projects.coin-or.org/CoinBinary/export/1059/OptimizationSuite/trunk/Installer/files/doc/cbcCommandLine.pdf
https://projects.coin-or.org/CoinBinary/export/1059/OptimizationSuite/trunk/Installer/files/doc/cbcCommandLine.pdf
https://www.gams.com/latest/docs/S_CBC.html

