B Concorde TSP Solver

Concorde TSP Solver ? is a package for solving the symmetric Traveling
Salesman Problem and other network optimization problems. It’s written
in C and is free for academic research use. It has been used to solve all the
110 instances of the TSPLIB to the optimum.

B.1 Building Concorde

To use the Concorde TSP Solver Callable Library from a C program, the
source code must be compiled into a static library file (.a extension in
Linux). The latest release of Concorde dates back to 2003, when CPLEX
version was 8.0. Hence, parts of the code must be adapted to make it com-
patible with the latest CPLEX releases. Below, we explain how to compile
the source on a Linux machine.

After downloading, extracting, and entering the concorde directory, the
first thing to do is configuring the Makefile’s. This is done by running the
configure script inside the current folder with option --with-cplex set
to the absolute path of the folder containing the cplex.h header file. On
our machine it was:
$ ./configure --with-cplex=/opt/ibm/ILOG/CPLEX_Studio121@/cplex/include/ilcplex

The Makefile’s generated by the configuration script incorrectly as-
sume the path to the CPLEX static library. To correct this issue open each
Makefile and replace line

LPSOLVER_LIB = /path/to/cplex/libcplex.a
with
LPSOLVER_LIB = /path/to/cplex/library/libcplex.a

On our machine it was

LPSOLVER_LIB = /opt/ibm/ILOG/CPLEX_Studio1210@/cplex/1ib/x86-64_linux/static_pic/
libcplex.a

Zhttp://www.math.uwaterloo.ca/tsp/concorde.html

68



Now that the Makefile’s are correct, we need to edit file LP/1pcplex8.c.

In fact, it uses the deprecated CPLEX parameter CPX_PARAM_FASTMIP, re-
sulting in the error shown below.

lpcplex8.c:1921:39: error: 'CPX_PARAM_FASTMIP' undeclared (first use in this function)

1921 | rval = CPXsetintparam (cplex_env, CPX_PARAM_FASTMIP, params->fastmip);

To fix this last problem, one could either get rid of the faulty line, or re—
define the parameter. We chose to redefine the parameter, hence editing
LP/1pcplex8.c by adding the following lines of code:

#ifndef CPX_PARAM_FASTMIP

. #define CPX_PARAM_FASTMIP 1017

#tendif

Finally, run make to compile the sources. A static library file named
concorde.a will be generated in the current directory. Make it executable
with

$ chmod +x concorde.a

and change its name to libconcorde.a. At this point, we simply copied
concorde. h header file to the include path of your project and 1ibconcorde. a
to the library path of our project, and compiled the sources with -1concorde
flag in GCC.

69



B.2

Useful functions

In our work we used two of the several functions that Concorde makes
available. The first one is CCcut_connect_components. Its purpose is to
detect the connected components of a graph. It takes the following argu-
ments:

ncount
ecount

elist

ncomp
compscount

comps

An integer that specifies the number of nodes in the graph.
An integer that specifies the number of edges in the graph.

A pointer to a vector of length 2 * ecount that specifies the two
nodes pertaining to each edge. In detail, elist[2*i] contains the
index of one of the nodes of the i—th edge, and elist[2*i + 1]
contains the other node index.

A pointer to a vector of length ecount that specifies the solution to
be examined. Each value is the capacity of the corresponding edge.

An integer pointer to receive the number of connected components.
An array to receive the number of nodes in each component.

An array to receive the edges pertaining to each component in the
same format of elist. This should be used in conjunction with
compscount to find which component each edge belongs to.

The second function is CCcut_violated_cuts. Its purpose is to detect
cuts whose capacity is smaller than a certain threshold. We used it to find
the violated SEC'’s. It takes the following arguments:

hcount

ecount

An integer that specifies the number of nodes in the graph.

An integer that specifies the number of edges in the graph.

70



elist A pointer to a vector of length 2 * ecount that specifies the two
nodes pertaining to each edge. In detail, elist[2*i] contains the
index of one of the nodes of the :—th edge, and elist[2*i + 1]
contains the other node index.

x A pointer to a vector of length ecount that specifies the solution to
be examined. Each value is the capacity of the corresponding edge.

cutoff A double that specifies the threshold to determine whether a cut is
violated or not.

doit _fn A callback function that is invoked every time a violated cut is found.
See below for more details.

pass_param A pointer to a user—handle which is passed to the doit_fn function.

Note that this function assumes the graph is connected and undirected.
The shrinking routines assume that we are working with the TSP and are
not interested in cuts of weight 2.0 or more.

The int (*doit_fn) callback is invoked every time a violated cut is
found, and takes the following argument types:

double The value of the cut.
int The number of nodes in the cut.
int * A pointer to a vector that specifies the indexes of the nodes in the cut.

void * A pointer to a user—handle passed previously to CCcut_violated_cuts.

71



