MIP Heuristics



Motivation for Heuristics

Why not wait for branching?

 Produce feasible solutions as quickly as possible
— Often satisfies user demands
— Avoid exploring unproductive sub-trees
— Better reduced-cost fixing

 Avoid “tree pollution”

— Good fixings in a heuristic are often not good branches

* Increase diversity of search
— Strategies in heuristic may differ from strategies in branching



Two Traditional Classes of Heuristics

* Plunging heuristics:
— Maintain linear feasibility
— Try to achieve integer feasibility
e Local improvement heuristics:
— Maintain integer feasibility
— Try to achieve linear feasibility



Plunging Heuristic Structure

Fix a set of integer infeasible variables
— Usually by rounding

Perform bound strengthening to propagate
implications

Solve LP relaxation
Repeat



Bound Strengthening

Propagate new bounds through inequalities

Given a constraint:
=2 ax<b
= Split equalities into a pair of inequalities
Consider a single x,:
"a x tinf (2 ax)<2ax<b
" x < (b—inf(2;_a;x))/a
= Assuminga, =0

Change in variable bound can produce changes in other
bounds



Bound Strengthening Example

e X+2y+3z<3

= all variables binary

" x=1
e 3z<3-inf(x+2y)=3-1=2
e 27<2/3



Plunging Details

Important details

* How many variables to fix per round:

— All of them?

* |nexpensive; no need to solve LP relaxations

e But ‘flying blind” after a few fixings
— Bound strengthening helps

— A few?
* More expensive

e LP relaxation can guide later choices
— (variable values, reduced costs, etc.)

 |n what order are variables fixed?
— Variations useful for diversification



Local Improvement Heuristics

High-level structure

 Choose integer values for all integer
variables

— Produces linear infeasibility
* [terate over integer variables:

— Does adding/subtracting 1 reduce linear
infeasibility?

e Infeasibility metrics:

— Primary: number of violated constraints
— Secondary: | b-Ax|



Local Improvement Details

 What initial values to assign to integer
variables?

— Rounded relaxation values
-0

* Move acceptance criteria?
— Greedy

 What to do when local improvement gets
stuck?

— Reverse infeasibility metrics



Sub-MIP As A Paradigm

e Key recent insight for heuristics:
— Can use MIP solver recursively as a heuristic
— Solve a related model:

e Hopefully smaller and simpler

— Examples:
e Local cuts [Applegate, Bixby, Chvatal & Cook, 2001]
e Local branching [Fischetti & Lodi, 2003]

RINS [Danna, Rothberg, Le Pape, 2005]

Solution polishing [Rothberg, 2007]



Local Branching

Viewed as an Exact Method

Local Branching [Fischetti and Lodi, 2002]

— Assume an integer feasible solution x* is known.
Label this solution the incumbent.
— Stepl:
a. Add the “local branching” constraint |x - x*| <=k
b. Solve this MIP
c. Replace the added constraint by |x —x*| >=k +1
d

If a new incumbent x** was found in (b) replace x* by
x** and return to (a).

— Step2: Solve the resulting MIP.



Local Branching

Viewed as a Heuristic

e Constrain sub-MIP to explore a small
neighborhood of incumbent x*

— |x-x*| <=k

— k chosen to be ~20

— Impose node limit on sub-MIP search
— k can be adjusted dynamically

 Apply whenever a new incumbent is found
— Including those found by local branching

e A succession of improving, neighboring
solutions



RINS

RINS [Danna, Rothberg, Le Pape, 2005]

Relaxation Induced Neighborhood Search

— Given two “solutions”:
x*: any integer feasible solution (not optimal)
xR: optimal relaxation solution (not integer feasible)

— Fix variables that agree

— Solve the result as a MIP

Possibly requiring early termination

Extremely effective heuristic

— Often finds solutions that no other technique finds



RINS

Implementation

 Dynamically adjust future fixing fraction based
on result of sub-MIP solution:
— Sub-MIP finds seed solution:

e Sub-MIP is too easy - fix fewer variables next time
— Sub-MIP does not find seed solution:
e Sub-MIP is too hard - fix more variables next time

— Sub-MIP finds better solution:
e Sub-MIP is just right



Fraction fixed

RINS

Implementation — “Goldilocks Method”

1
0.8
0.4
0.2
0
Pass
——|jb12 sp97ar rococoB12-100000

15



RINS

Why is it so Effective?

e MIP models often involve a hierarchy of decisions
— Some much more important than others

e Fixing variables doesn’t just make the problem
smaller

— Often changes the nature of the problem

* Extreme case:
— Problem decomposes into multiple, simple problems

e More general case:
— Resolving few key decisions can have a dramatic effect
— Strategies that worked well for the whole problem
may not work well for RINS sub-MIP
 More effective to treat it as a brand new MIP



Solution Polishing
An Evolutionary Algorithm

Solution polishing [Rothberg, 2007]

Three crucial components:

— Selection:
Choose a pair of candidate solutions
More fit candidates more likely to be chosen
— Combination:
Combine the chosen pair to produce an offspring
— Mutation:
Allow the offspring to vary from the parents in some (random) way



Solution Polishing
The Population

* A single solution pool

— Contains 40 best solutions
* Ties are broken on age

— Younger solutions push out older ones

e New solutions added immediately
— No notion of generations
e Mutation and combination quite expensive
* Need to integrate new solutions quickly
e Solutions from regular MIP search also added to candidate
pool

— Tree search and evolutionary algorithm cooperate



Solution Polishing
Mutation

 Apply a random mask vector:

Seed solution: 1 0 1 0 0 1 1

Random mask:

Mutation: ? 0 ? 0 0 ? 1

e Solve truncated sub-MIP:

e Only masked values allowed to differ from seed solution

e Use Goldilocks method to determine how many to fix



Solution Polishing
Combination

e Only variables whose values differ in parents are
allowed to vary in offspring

Parent 1: 1 0 1 0 0 1 1

Parent 2: 1 1 1 1 0 1 0

Offspring: 1 (?(1]|?]0|1]°7

e Solve truncated sub-MIP

e Occasionally combine all solutions

20



Solution Polishing
Selection

e Selection method empirically not very
Important

— Modest population size

e Simplest strategy worked well:

— Pick a random parent from solution pool

— Pick a random pair from among those with better
objectives than the first



Solution Polishing
Putting it all Together

Solution pool

22



Rethinking MIP Tree Search



Sub-MIP As A Paradigm

e Key recent insight for heuristics:
— Can use MIP solver recursively as a heuristic
— Solve a related model:

e Hopefully smaller and simpler

— Examples:
e Local cuts [Applegate, Bixby, Chvatal & Cook, 2001]
e Local branching [Fischetti & Lodi, 2003]

RINS [Danna, Rothberg, Le Pape, 2005]

Solution polishing [Rothberg, 2007]



RINS

Why is it so Effective?

e MIP models often involve a hierarchy of decisions
— Some much more important than others

e Fixing variables doesn’t just make the problem
smaller

— Often changes the nature of the problem

* Extreme case:
— Problem decomposes into multiple, simple problems

e More general case:
— Resolving few key decisions can have a dramatic effect
— Strategies that worked well for the whole problem
may not work well for RINS sub-MIP
 More effective to treat it as a brand new MIP



Tree-of-Trees

 Gurobi MIP search tree manager built to
handle multiple related trees

— Can transform any node into the root node of a
new tree

 Maintains a pool of nodes from all trees

— No need to dedicate the search to a single sub-
tree



Tree-of-Trees




Tree-of-Trees

e Each tree has its own relaxation and its own
strategies...

— Presolved model for each subtree

— Cuts specific to that subtree

— Pseudo-costs for that subtree only

— Symmetry detection on that submodel
— Etc.

e Captures structure that is often not visible in
the original model



Summary of Heuristics

e 5 heuristics prior to solving root LP
— 5 different variable orders, fix variables in this order
e 15 heuristics within tree (9 primary, several
variations)

— RINS, rounding, fix and dive (LP), fix and dive
(Presolve), Lagrangian approach, pseudo costs, Hail
Mary (set objective to 0)

e 3 solution improvement heuristics

— Applied whenever a new integer feasible is found



Performance



An Extreme Case

Gurobi Optimizer version 2.0.0

|Set parameter heuristics to value 0|

Read MPS format model from file ns1671066.mps.bz2

ns167106: 316 Rows, 2840 Columns, 31418 NonZeros

Presolved: 315 Rows, 1819 Columns, 19336 Nonzeros

Root relaxation: objective 7.634608e+00, 241 iterations, 0.01 seconds

Nodes ] Current Node 1 Objective Bounds ] Work

Expl Unexpl| Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 7.6346 0 20 - 7.6346 - -

0 0 7.6346 0 34 - 7.6346 - -

0 0 7.6346 0 2 - 7.6346 - -

0 0 7.6346 0 25 - 7.6346 - -

0 0 7.6346 0 6 - 7.6346 - -

0 2 7.6346 0 6 - 7.6346 - -

* 1998 1716 326 9.1334 7.6346 16.4% 25.2
* 2002 1710 328 9.1031 7.6346 16.1% 25.1
* 2172 1359 397 8.3611 7.6346 8.69% 23.9
* 2177 1358 399 8.3608 7.6346 8.69% 23.8
4467 2736 7.6346 166 25 8.3608 7.6346 8.69% 23.0

* 5695 3015 352 8.3453 7.6346 8.52% 20.7
23241 15991 8.3380 293 33 8.3453 7.6346 8.52% 13.7

47601 35137 7.6346 68 35 8.3453 7.6346 8.52% 11.1
*55945 37046 413 8.2735 7.6346 7.72% 10.6
*70873 48462 408 8.2724 7.6346 7.71% 10.1
*71445 48891 442 8.2715 7.6346 7.70% 10.1
72961 50242 7.9725 114 40 8.2715 7.6346 7.70% 10.0

91853 64329 8.0481 114 24 8.2715 7.6346 7.70% 10.4

*97820 47515 348 8.0819 7.6346 5.53% 10.5
111094 57352 7.6701 243 36 8.0819 7.6346 5.53% 10.6

*125331 58815 336 8.0323 7.6346 4.95% 10.6
133884 65918 7.7448 191 34 8.0323 7.6346 4.95% 10.3

155922 81017 7.9642 164 57 8.0323 7.6346 4.95% 10.3

181714 99222 cutoff 210 8.0323 7.6346 4.95% 10.1

209550 118662 7.7712 201 54 8.0323 7.6346 4.95% 9.9

234738 136907 7.6723 122 55 8.0323 7.6346 4.95% 9.7

262662 156853 cutoff 170 8.0323 7.6346 4.95% 9.5

*283256 133044 297 7.9649 7.6346 4.15% 9.3
*283273 121603 306 7.9372 7.6346 3.81% 9.3
*283308 114435 313 7.9198 7.6346 3.60% 9.3
283524 114559 7.6346 42 41 7.9198 7.6346 3.60% 9.3

294708 118404 7.8606 175 28 7.9198 7.6346 3.60% 9.4

*317714 45285 267 7.7546  7.6346 1.55% 9.2

Explored 317872 nodes (2918681 simplex iterations) in 73.57 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 7.6346078431e+00, best bound 7.6346078431e+00, gap 0.0%

Os
Os
Os
Os
Os
Os
1s
1s
1s
1s
5s
5s
10s
15s
16s
19s
19s
20s
25s
26s
30s
33s
35s
40s
45s
50s
55s
60s
63s
63s
63s
65s
70s
73s

Gurobi Optimizer version 2.0.0

Read MPS format model from file ns1671066.mps.bz2
ns167106: 316 Rows, 2840 Columns, 31418 NonZeros
Presolved: 315 Rows, 1819 Columns, 19336 Nonzeros

Found heuristic solution: objective 152.7836
Found heuristic solution: objective 49.3589

Root relaxation: objective 7.634608e+00, 241 iterations, 0.01 seconds

Nodes ] Current Node 1 Objective Bounds 1 Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time

0 0 7.6346 0 20 49.3589 7.6346 84.5% - Os
H 0 0 7.8698 7.6346 2.99% - Os
H 0 0 7.6346 7.6346 0.0% - Os

Explored 0 nodes (564 simplex iterations) in 0.12 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 7.6346078431e+00, best bound 7.6346078431e+00, gap 0.0%

31



A More Typical Example

Gurobi Optimizer version 2.0.0

Read MPS format model from file neosl7.mps.bz2
NEOS17: 486 Rows, 535 Columns, 4931 NonZeros
Presolved: 486 Rows, 511 Columns, 3194 Nonzeros

Root relaxation: objective 6.814985e-04, 545 iterations, 0.01 seconds

Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | 1t/Node Time

0 0 0.0007 0 171 - 0.0007 - - 0s
H 0 0 0.2227 0.0007  100% - 0s
0 0 0.0211 0 171 0.2227 0.0211 90.5% - 0s
0 0 0.0249 0 203 0.2227 0.0249 88.8% - 0s
0 2 0.0249 0 203 0.2227 0.0249 88.8% - 0s
H 1057 534 0.2032 0.0365 82.1% 39.6 1s
H 1064 513 0.1983 0.0374 81.2% 39.9 1s
H 1068 469 0.1836 0.0374 79.6% 39.9 1s
H 1784 396 0.1797 0.0374 79.2% 37.3 1s
H 1788 350 0.1672 0.0374 77.8% 37.2 1s
H 1790 329 0.1672 0.0374 77.6% 37.2 1s
H 1853 260 0.1503 0.0374 75.1% 36.9 1s
H 1928 225 01502 0.0374 _75.1% 36.3 1s
[H 2104 321 0.1500 0.0374 75.1% 33.9 2s |
8980 2701 infeasible 79 0.1500 0.1207 19.5% 25.0 5s
30632 5748 0.1493 159 12 0.1500 0.1428 4.77% 20.3 10s
70932 11195 infeasible 150 0.1500 0.1454 3.05% 14.6 15s
113234 13069 cutoff 93 0.1500 0.1467 2.21% 12.8 20s
155409 11595 infeasible 147 0.1500 0.1475 1.64% 11.9 25s
197219 8591 infeasible 157 0.1500 0.1482 1.21% 11.4 30s
242763 4142 cutoff 156 0.1500 0.1491 0.63% 10.8 35s

Cutting planes:
Gomory: 36

Explored 257819 nodes (2719032 simplex iterations) in 36.53 seconds
Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.5000257742e-01, best bound 1.4999068902e-01, gap 0.0079%



Performance Benchmarks

e Performance test sets:

— Mittelmann feasibility test set:

e 34 models, difficult to find feasible solutions
e http://plato.asu.edu/ftp/feas_bench.html

e Test platform:
— Q9450 (2.66 GHz, quad-core system)

e Geometric Means

— Run on a single processor
— Gurobi 1.1 is 2.3X faster than CPLEX 12.0



	MIP Heuristics
	Motivation for Heuristics
	Two Traditional Classes of Heuristics
	Plunging Heuristic Structure
	Bound Strengthening
	Bound Strengthening Example
	Plunging Details
	Local Improvement Heuristics
	Local Improvement Details
	Sub-MIP As A Paradigm
	Local Branching
	Local Branching
	RINS
	RINS�Implementation
	RINS�Implementation – “Goldilocks Method”
	RINS�Why is it so Effective?
	Solution Polishing�An Evolutionary Algorithm
	Solution Polishing�The Population
	Solution Polishing�Mutation
	Solution Polishing�Combination
	Solution Polishing�Selection
	Solution Polishing�Putting it all Together
	Foliennummer 23
	Sub-MIP As A Paradigm
	RINS�Why is it so Effective?
	Tree-of-Trees
	Tree-of-Trees
	Tree-of-Trees
	Summary of Heuristics
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Performance Benchmarks

