MIP Heuristics

Motivation for Heuristics

Why not wait for branching?

- Produce feasible solutions as quickly as possible
 - Often satisfies user demands
 - Avoid exploring unproductive sub-trees
 - Better reduced-cost fixing
- Avoid "tree pollution"
 - Good fixings in a heuristic are often not good branches
- Increase diversity of search
 - Strategies in heuristic may differ from strategies in branching

Two Traditional Classes of Heuristics

- Plunging heuristics:
 - Maintain linear feasibility
 - Try to achieve integer feasibility
- Local improvement heuristics:
 - Maintain integer feasibility
 - Try to achieve linear feasibility

Plunging Heuristic Structure

- Fix a set of integer infeasible variables
 - Usually by rounding
- Perform bound strengthening to propagate implications
- Solve LP relaxation
- Repeat

Bound Strengthening

Propagate new bounds through inequalities

- Given a constraint:
 - $\bullet \sum a_j x_j \le b$
 - Split equalities into a pair of inequalities
- Consider a single x_k :
 - $a_k x_k + \inf \left(\sum_{j!=k} a_j x_j \right) \le \sum a_j x_j \le b$
 - $x_k \le (b \inf (\sum_{i!=k} a_i x_i)) / a_k$
 - Assuming $a_k \ge 0$
- Change in variable bound can produce changes in other bounds

Bound Strengthening Example

- $x + 2y + 3z \le 3$
 - all variables binary
 - -x=1
- $3 z \le 3 \inf (x + 2y) = 3 1 = 2$
- $z \le 2/3$

Plunging Details

Important details

- How many variables to fix per round:
 - All of them?
 - Inexpensive; no need to solve LP relaxations
 - But 'flying blind' after a few fixings
 - Bound strengthening helps
 - A few?
 - More expensive
 - LP relaxation can guide later choices
 - (variable values, reduced costs, etc.)
- In what order are variables fixed?
 - Variations useful for diversification

Local Improvement Heuristics

High-level structure

- Choose integer values for all integer variables
 - Produces linear infeasibility
- Iterate over integer variables:
 - Does adding/subtracting 1 reduce linear infeasibility?
- Infeasibility metrics:
 - Primary: number of violated constraints
 - Secondary: |b-Ax|

Local Improvement Details

- What initial values to assign to integer variables?
 - Rounded relaxation values
 - -0
- Move acceptance criteria?
 - Greedy
- What to do when local improvement gets stuck?
 - Reverse infeasibility metrics

Sub-MIP As A Paradigm

- Key recent insight for heuristics:
 - Can use MIP solver recursively as a heuristic
 - Solve a related model:
 - Hopefully smaller and simpler
 - Examples:
 - Local cuts [Applegate, Bixby, Chvátal & Cook, 2001]
 - Local branching [Fischetti & Lodi, 2003]
 - RINS [Danna, Rothberg, Le Pape, 2005]
 - Solution polishing [Rothberg, 2007]

Local Branching

Viewed as an Exact Method

- Local Branching [Fischetti and Lodi, 2002]
 - Assume an integer feasible solution x* is known.
 Label this solution the incumbent.
 - Step1:
 - a. Add the "local branching" constraint $|x x^*| \le k$
 - b. Solve this MIP
 - c. Replace the added constraint by $|x x^*| >= k + 1$
 - d. If a new incumbent x^{**} was found in (b) replace x^{*} by x^{**} and return to (a).
 - Step2: Solve the resulting MIP.

Local Branching

Viewed as a Heuristic

- Constrain sub-MIP to explore a small neighborhood of incumbent x*
 - $-|x-x^*| \le k$
 - k chosen to be ~20
 - Impose node limit on sub-MIP search
 - k can be adjusted dynamically
- Apply whenever a new incumbent is found
 - Including those found by local branching
- A succession of improving, neighboring solutions

RINS

- RINS [Danna, Rothberg, Le Pape, 2005]
- Relaxation Induced Neighborhood Search
 - Given two "solutions":
- x*: any integer feasible solution (not optimal)
- x^R: optimal relaxation solution (not integer feasible)
 - Fix variables that agree
 - Solve the result as a MIP
- Possibly requiring early termination
- Extremely effective heuristic
 - Often finds solutions that no other technique finds

RINS

Implementation

- Dynamically adjust future fixing fraction based on result of sub-MIP solution:
 - Sub-MIP finds seed solution:
 - Sub-MIP is too easy fix fewer variables next time
 - Sub-MIP does not find seed solution:
 - Sub-MIP is too hard fix more variables next time
 - Sub-MIP finds better solution:
 - Sub-MIP is just right

RINS Implementation – "Goldilocks Method"

RINS

Why is it so Effective?

- MIP models often involve a hierarchy of decisions
 - Some much more important than others
- Fixing variables doesn't just make the problem smaller
 - Often changes the nature of the problem
 - Extreme case:
 - Problem decomposes into multiple, simple problems
 - More general case:
 - Resolving few key decisions can have a dramatic effect
 - Strategies that worked well for the whole problem may not work well for RINS sub-MIP
 - More effective to treat it as a brand new MIP

An Evolutionary Algorithm

- Solution polishing [Rothberg, 2007]
- Three crucial components:
 - Selection:
- Choose a pair of candidate solutions
- More fit candidates more likely to be chosen
 - Combination:
- Combine the chosen pair to produce an offspring
 - Mutation:
- Allow the offspring to vary from the parents in some (random) way

The Population

- A single solution pool
 - Contains 40 best solutions
 - Ties are broken on age
 - Younger solutions push out older ones
- New solutions added immediately
 - No notion of generations
 - Mutation and combination quite expensive
 - Need to integrate new solutions quickly
- Solutions from regular MIP search also added to candidate pool
 - Tree search and evolutionary algorithm cooperate

Mutation

Apply a random mask vector:

- Solve truncated sub-MIP:
 - Only masked values allowed to differ from seed solution
 - Use Goldilocks method to determine how many to fix

Combination

 Only variables whose values differ in parents are allowed to vary in offspring

- Solve truncated sub-MIP
- Occasionally combine all solutions

Selection

- Selection method empirically not very important
 - Modest population size
- Simplest strategy worked well:
 - Pick a random parent from solution pool
 - Pick a random pair from among those with better objectives than the first

Putting it all Together

Rethinking MIP Tree Search

Sub-MIP As A Paradigm

- Key recent insight for heuristics:
 - Can use MIP solver recursively as a heuristic
 - Solve a related model:
 - Hopefully smaller and simpler
 - Examples:
 - Local cuts [Applegate, Bixby, Chvátal & Cook, 2001]
 - Local branching [Fischetti & Lodi, 2003]
 - RINS [Danna, Rothberg, Le Pape, 2005]
 - Solution polishing [Rothberg, 2007]

RINS

Why is it so Effective?

- MIP models often involve a hierarchy of decisions
 - Some much more important than others
- Fixing variables doesn't just make the problem smaller
 - Often changes the nature of the problem
 - Extreme case:
 - Problem decomposes into multiple, simple problems
 - More general case:
 - Resolving few key decisions can have a dramatic effect
 - Strategies that worked well for the whole problem may not work well for RINS sub-MIP
 - More effective to treat it as a brand new MIP

Tree-of-Trees

- Gurobi MIP search tree manager built to handle multiple related trees
 - Can transform any node into the root node of a new tree
- Maintains a pool of nodes from all trees
 - No need to dedicate the search to a single subtree

Tree-of-Trees

Tree-of-Trees

- Each tree has its own relaxation and its own strategies...
 - Presolved model for each subtree
 - Cuts specific to that subtree
 - Pseudo-costs for that subtree only
 - Symmetry detection on that submodel
 - Etc.
- Captures structure that is often not visible in the original model

Summary of Heuristics

- 5 heuristics prior to solving root LP
 - 5 different variable orders, fix variables in this order
- 15 heuristics within tree (9 primary, several variations)
 - RINS, rounding, fix and dive (LP), fix and dive
 (Presolve), Lagrangian approach, pseudo costs, Hail
 Mary (set objective to 0)
- 3 solution improvement heuristics
 - Applied whenever a new integer feasible is found

Performance

An Extreme Case

Gurobi Optimizer version 2.0.0

Set parameter heuristics to value 0

Read MPS format model from file ns1671066.mps.bz2 ns167106: 316 Rows, 2840 Columns, 31418 NonZeros Presolved: 315 Rows, 1819 Columns, 19336 Nonzeros

Root relaxation: objective 7.634608e+00, 241 iterations, 0.01 seconds

Nodes		Current	Node	·	Objectiv	re Bounds	1	Wor	k
Expl	Unexpl	Obj Dept	h Int	:Inf	Incumbent	BestBd	Gap	It/Node	Time
0	0	7.6346	0	20	_	7.6346	_	_	0s
0	0	7.6346	0	34	_	7.6346	_	_	0s
0	0	7.6346	0	2	_	7.6346	_	_	0s
0	0	7.6346	0	25	_	7.6346	_	_	0s
0	0	7.6346	0	6	_	7.6346	_	_	0s
0	2	7.6346	0	6	_	7.6346	_	_	0s
* 1998	1716		326		9.1334	7.6346	16.4%	25.2	1s
* 2002	1710		328		9.1031	7.6346	16.1%	25.1	1s
* 2172	1359		397		8.3611	7.6346	8.69%	23.9	1s
* 2177	1358		399		8.3608	7.6346	8.69%	23.8	1s
4467	2736	7.6346	166	25	8.3608	7.6346	8.69%	23.0	5s
* 5695	3015		352		8.3453	7.6346	8.52%	20.7	5s
23241	15991	8.3380	293	33	8.3453	7.6346	8.52%	13.7	10s
47601	35137	7.6346	68	35	8.3453	7.6346	8.52%	11.1	15s
*55945	37046		413		8.2735	7.6346	7.72%	10.6	16s
*70873	48462		408		8.2724	7.6346	7.71%	10.1	19s
*71445	48891		442		8.2715	7.6346	7.70%	10.1	19s
72961	50242	7.9725	114	40	8.2715	7.6346	7.70%	10.0	20s
91853	64329	8.0481	114	24	8.2715	7.6346	7.70%	10.4	25s
*97820	47515		348		8.0819	7.6346	5.53%	10.5	26s
111094	57352	7.6701	243	36	8.0819	7.6346	5.53%	10.6	30s
*125331	58815		336		8.0323	7.6346	4.95%	10.6	33s
133884	65918	7.7448	191	34	8.0323	7.6346	4.95%	10.3	35s
155922	81017	7.9642	164	57	8.0323	7.6346	4.95%	10.3	40s
181714	99222	cutoff	210		8.0323	7.6346	4.95%	10.1	45s
	118662	7.7712	201	54	8.0323	7.6346	4.95%	9.9	50s
	136907	7.6723	122	55	8.0323	7.6346	4.95%	9.7	55s
	156853	cutoff	170		8.0323	7.6346	4.95%	9.5	60s
*283256			297		7.9649	7.6346	4.15%	9.3	63s
*283273			306		7.9372	7.6346	3.81%	9.3	63s
*283308			313		7.9198	7.6346	3.60%	9.3	63s
	114559	7.6346	42	41	7.9198	7.6346	3.60%	9.3	65s
	118404	7.8606	175	28	7.9198	7.6346	3.60%	9.4	70s
*317714	45285		267		7.7546	7.6346	1.55%	9.2	73s

Explored 317872 nodes (2918681 simplex iterations) in 73.57 seconds Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 7.6346078431e+00, best bound 7.6346078431e+00, gap 0.0%

Gurobi Optimizer version 2.0.0

Read MPS format model from file ns1671066.mps.bz2 ns167106: 316 Rows, 2840 Columns, 31418 NonZeros Presolved: 315 Rows, 1819 Columns, 19336 Nonzeros

Found heuristic solution: objective 152.7836 Found heuristic solution: objective 49.3589

Root relaxation: objective 7.634608e+00, 241 iterations, 0.01 seconds

Nodes		Current Node				Objecti	Work				
Ex	pl Une	expl	Obj	Depth	Int	Inf	Incumbent	BestBd	Gap	It/Node	Time
	0	0	7.6	346	0	20	49.3589	7.6346	84.5%	_	0s
Н	0	0					7.8698	7.6346	2.99%	-	0s
Н	0	0					7.6346	7.6346	0.0%	-	0s

Explored 0 nodes (564 simplex iterations) in 0.12 seconds Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 7.6346078431e+00, best bound 7.6346078431e+00, gap 0.0%

A More Typical Example

Gurobi Optimizer version 2.0.0

Read MPS format model from file neos17.mps.bz2 NEOS17: 486 Rows, 535 Columns, 4931 NonZeros Presolved: 486 Rows, 511 Columns, 3194 Nonzeros

Root relaxation: objective 6.814985e-04, 545 iterations, 0.01 seconds

Nodes		des	Curren	t Node			Objecti	1	Work		
I	Expl (Jnexpl	Obj Dep	th In	tInf	İ	Incumbent	BestBd	Gap	It/Node	Time
	0	0	0.0007	0	171		_	0.0007	-	_	0s
Η	0	0					0.2227	0.0007	100%	-	0s
	0	0	0.0211	0	171		0.2227	0.0211	90.5%	-	0s
	0	0	0.0249	0	203		0.2227	0.0249	88.8%	-	0s
	0	2	0.0249	0	203		0.2227	0.0249	88.8%	-	0s
Η	1057	534					0.2032	0.0365	82.1%	39.6	1s
Н	1064	513					0.1983	0.0374	81.2%	39.9	1s
Η	1068	469					0.1836	0.0374	79.6%	39.9	1s
Н	1784	396					0.1797	0.0374	79.2%	37.3	1s
Н	1788	350					0.1672	0.0374	77.6%	37.2	1s
Н	1790	329					0.1672	0.0374	77.6%	37.2	1s
Н	1853	260					0.1503	0.0374	75.1%	36.9	1s
Н	1928	225					0.1502	0.0374	75.1%	36.3	1s
Н	2104	321					0.1500	0.0374	75.1%	33.9	2s
	8980	2701	infeasible	79			0.1500	0.1207	19.5%	25.0	5ຮ
3	30632	5748	0.1493	159	12		0.1500	0.1428	4.77%	20.3	10s
7	70932	11195	infeasible	150			0.1500	0.1454	3.05%	14.6	15s
11	L3234	13069	cutoff	93			0.1500	0.1467	2.21%	12.8	20s
15	55409	11595	infeasible	147			0.1500	0.1475	1.64%	11.9	25s
19	7219	8591	infeasible	157			0.1500	0.1482	1.21%	11.4	30s
24	12763	4142	cutoff	156			0.1500	0.1491	0.63%	10.8	35s

Cutting planes: Gomory: 36

Explored 257819 nodes (2719032 simplex iterations) in 36.53 seconds Thread count was 4 (of 4 available processors)

Optimal solution found (tolerance 1.00e-04)
Best objective 1.5000257742e-01, best bound 1.4999068902e-01, gap 0.0079%

Performance Benchmarks

- Performance test sets:
 - Mittelmann feasibility test set:
 - 34 models, difficult to find feasible solutions
 - http://plato.asu.edu/ftp/feas_bench.html
- Test platform:
 - Q9450 (2.66 GHz, quad-core system)
- Geometric Means
 - Run on a single processor
 - Gurobi 1.1 is 2.3X faster than CPLEX 12.0