
Matheuristics

Martina Fischetti and Matteo Fischetti

Contents

Introduction . 2
General-Purpose MIP-Based Heuristics . 3

Local Branching . 4
Relaxation-Induced Neighborhood Search . 5
Polishing a Feasible Solution . 5
Proximity Search . 6

Application 1: Wind Farm Layout Optimization . 6
Choice of the MIP Model . 7
Choice of Ad Hoc Heuristics . 9
The Overall Matheuristic . 10
Computational Results . 11

Application 2: Prepack Optimization . 14
Mathematical Model . 15
Matheuristics . 16
Computational Experiments . 19

Application 3: Vehicle Routing . 22
The ASSIGN Neighborhood for TSP. 23
From TSP to DCVRP. 24
The Overall Matheuristic . 26

Conclusion . 31
Cross-References . 31
References . 31

M. Fischetti (�)
DTU, Technical University of Denmark, Kongens Lyngby, Denmark

Vattenfall BA Wind, Kongens Lyngby, Denmark
e-mail: martina.fischetti@vattenfall.com

M. Fischetti
DEI, University of Padova, Padova, Italy
e-mail: matteo.fischetti@unipd.it

© Springer International Publishing AG 2016
R. Martí et al. (eds.), Handbook of Heuristics,
DOI 10.1007/978-3-319-07153-4_14-1

1

mailto:martina.fischetti@vattenfall.com
mailto:matteo.fischetti@unipd.it

2 M. Fischetti and M. Fischetti

Abstract

As its name suggests, a matheuristic is the hybridization of mathematical
programming with metaheuristics. The hallmark of matheuristics is the central
role played by the mathematical programming model, around which the overall
heuristic is built. As such, matheuristic is not a rigid paradigm but rather
a concept framework for the design of mathematically sound heuristics. The
aim of this chapter is to introduce the main matheuristic ideas. Three specific
applications in the field of wind farm, packing, and vehicle routing optimization,
respectively, are addressed and used to illustrate the main features of the method.

Keywords
Heuristics • Large scale neighborhood search • Local branching • Mathemati-
cal programming • Matheuristics

Introduction

The design of heuristics for difficult optimization problems is itself a heuristic
process that often involves the following main steps.

After a clever analysis of the problem at hand and of the acceptable simplifica-
tions in its definition, one tries to set up an effective mathematical programming
(MP) model and to solve it by a general-purpose piece of software—often a mixed-
integer linear programming (MIP) solver. Due to the impressive improvement
of general-purpose solvers in recent years, this approach can actually solve the
instances of interest to proven optimality (or with an acceptable approximation)
within a reasonable computing time, in which case of course no further effort is
needed.

If this is not the case, one can insist on the MP approach and try to obtain
better and better results by improving the model and/or by enhancing the solver
by specialized features (cutting planes, branching, etc.). Or one can forget about
MP and resort to ad hoc heuristics not based on the MP model. In this latter case,
the MP model is completely disregarded or just used for illustrating the problem
characteristics and/or for getting an off-line indication of the typical approximation
error on a set of sample instances.

A third approach is however possible that consists in using the MP solver
as a basic tool within the heuristic framework. This hybridization of MP with
metaheuristics leads to the matheuristic approach, where the heuristic is built around
the MP model. Matheuristics became popular in recent years, as witnessed by the
publication of dedicated volumes and journal special issues [8, 19, 24] and by the
dedicated sessions on MP and metaheuristic conferences.

Designing an effective heuristic is an art that cannot be framed into strict
rules. This is particularly true when addressing a matheuristic, which is not a
rigid paradigm but a concept framework for the design of mathematically sound
heuristics. In this chapter, we will therefore try to illustrate some main matheuristic
features with the help of different examples of application.

Matheuristics 3

Section “General-Purpose MIP-Based Heuristics” describes powerful general-
purpose MIP heuristics that can be used within the matheuristic framework.
Interestingly, these heuristics can themselves be viewed as the first successful
applications of the matheuristic idea of hybridizing MP and metaheuristics. Indeed,
as noticed in [8], one of the very first illustrations of the power of the matheuristic
idea is the general-purpose local branching [7] paradigm, where a black-box MIP
solver is used to explore a solution neighborhood defined by invalid constraints
added to the MIP model for the sake of easing its solution.

Section “Application 1: Wind Farm Layout Optimization” addresses the design
of a matheuristic for wind farm optimization. This application is used to illustrate
the importance of the choice of the MIP model: models that are weak in polyhedral
terms can be preferred to tighter—but computationally much harder—models when
heuristic (as opposed to exact) solutions are required.

Section “Application 2: Prepack Optimization” addresses a packing problem
where the model is nonlinear, and the matheuristic is based on various ways to
linearize it after a heuristic fixing of some variables.

Finally, section “Application 3: Vehicle Routing” is used to illustrate an advanced
feature of matheuristics, namely, the solution of auxiliary MP models that describe
a subproblem in the solution process. In particular, we address a vehicle routing
problem and derive a matheuristic based on a set-partitioning MIP model asking for
the reallocation of a subset of customer sequences subject to capacity and distance
constraints.

The present chapter is based on previous published work; in particular, sec-
tions “General-Purpose MIP-Based Heuristics”, “Application 1: Wind Farm Layout
Optimization”, “Application 2: Prepack Optimization”, and “Application 3: Vehicle
Routing” are based on [8, 11, 13, 15], respectively.

General-Purpose MIP-Based Heuristics

Heuristics for general-purpose MIP solvers form the basis of the matheuristic’s
toolkit. Their relevance for our chapter is twofold. On the one hand, they are
invaluable tools for the solution of the subproblems tailored by the matheuristic
when applied to a specific problem. On the other hand, they illustrate the benefits
for a general-purpose MIP solver deriving from the use of metaheuristics concepts
such as local search and evolutionary methods.

Modern MIP solvers exploit a rich arsenal of tools to attack hard problems. It is
widely accepted that the solution of hard MIPs can take advantage from the solution
of a series of auxiliary linear programs (LPs) intended to enhance the performance
of the overall MIP solver. For example, auxiliary LPs may be solved to generate
powerful disjunctive cuts or to implement a strong branching policy. On the other
hand, it is a common experience that finding good-quality heuristic MIP solutions
often requires a computing time that is just comparable to that needed to solve the
LP relaxation. So, it makes sense to think of exact/heuristic MIP solvers where
auxiliary MIPs (as opposed to LPs) are heuristically solved on the fly, with the aim

4 M. Fischetti and M. Fischetti

of bringing the MIP technology under the chest of the MIP solver itself. This leads
to the idea of “translating into a MIP model” (MIPping in the jargon of [9]) some
crucial decisions to be taken when designing a MIP-based algorithm.

We next describe the new generation of MIP heuristics that emerged in the late
1990s, which are based on the idea of systematically using a “black-box” external
MIP solver to explore a solution neighborhood defined by invalid linear constraints.
We address a generic MIP of the form

.MIP / min cT x (1)

Ax � b; (2)

xj 2 f0; 1g; 8j 2 B; (3)

xj integer; 8j 2 G; (4)

xj continuous; 8j 2 C; (5)

where A is an m � n input matrix and b and c are input vectors of dimension m
and n, respectively. Here, the variable index set N WD f1; : : : ; ng is partitioned into
.B;G; C/, where B is the index set of the 0-1 variables (if any), while sets G and C
index the general integer and the continuous variables, respectively. Removing the
integrality requirement on variables indexed by I WD B [G leads to the so-called
LP relaxation.

Local Branching

The local branching (LB) scheme of Fischetti and Lodi [7] appears to be one of the
first general-purpose heuristics using a black-box MIP solver applied to subMIPs,
and it can be viewed as a precursor of matheuristics. Given a reference solution Nx
of a MIP with B 6D ;, one aims at finding an improved solution that is “not too far”
from Nx, in the sense that not too many binary variables need be flipped. To this end,
one can define the k-opt neighborhood N . Nx; k/ of Nx as the set of the MIP solutions
satisfying the invalid local branching constraint

�.x; Nx/ WD
X

j2BW NxjD0
xj C

X

j2BW NxjD1
.1 � xj / � k; (6)

for a small neighborhood radius k—an integer parameter typically set to 10 or 20.
The neighborhood is then explored (possibly heuristically, i.e., with some small
node or time limit) by means of a black-box MIP solver. Experimental results [10]
show that the introduction of the local branching constraint typically has the positive
effect of driving to integrality many component of the optimal solution of the LP
relaxation, improving the so-called relaxation grip and hence the capability of the
MIP solver to find (almost) optimal integer solutions within short computing times.

Matheuristics 5

Of course, this effect is lost if parameter k is set to a large value—a mistake that
would make local branching completely ineffective.

LB is in the spirit of local search metaheuristics and, in particular, of large-
neighborhood search (LNS) [29], with the novelty that neighborhoods are obtained
through “soft fixing,” i.e., through invalid cuts to be added to the original MIP
model. Diversification cuts can be defined in a similar way, thus leading to a flexible
toolkit for the definition of metaheuristics for general MIPs.

Relaxation-Induced Neighborhood Search

The relaxation-induced neighborhood search (RINS) heuristic of Danna, Rothberg,
and Le Pape [4] also uses a black-box MIP solver to explore a neighborhood of
a given solution Nx and was originally designed to be integrated in a branch-and-
bound solution scheme. At specified nodes of the branch-and-bound tree, the current
LP relaxation solution x� and the incumbent Nx are compared, and all integer-
constrained variables that agree in value are fixed. The resulting MIP is typically
easy to solve, as fixing reduces its size considerably, and often provides improved
solutions with respect to Nx.

Polishing a Feasible Solution

The polishing algorithm of Rothberg [27] implements an evolutionary MIP heuristic
which is invoked at selected nodes of a branch-and-bound tree and includes all
classical ingredients of genetic computation, namely:

• Population: A fixed-size population of feasible solutions is maintained. Those so-
lutions are either obtained within the branch-and-bound tree (by other heuristics)
or computed by the polishing algorithm itself.

• Combination: Two or more solutions (the parents) are combined with the
aim of creating a new member of the population (the child) with improved
characteristics. The RINS scheme is adopted, i.e., all variables whose value
coincides in the parents are fixed, and the reduced MIP is heuristically solved
by a black-box MIP solver within a limited number of branch-and-bound nodes.
This scheme is clearly much more time-consuming than a classical combina-
tion step in evolutionary algorithms, but it guarantees feasibility of the child
solution.

• Mutation: Diversification is obtained by performing a classical mutation step
that (i) randomly selects a “seed” solution in the population, (ii) randomly
fixes some of its variables, and (iii) heuristically solves the resulting reduced
MIP.

• Selection: Selection of the two parents to be combined is performed by
randomly picking a solution in the population and then choosing, again at
random, the second parent among those solutions with a better objective
value.

6 M. Fischetti and M. Fischetti

Proximity Search

Proximity search [10] is a “dual version” of local branching that tries to overcome
the issues related to the choice of the neighborhood radius k. Instead of hard-fixing
the radius, proximity search fixes the minimum improvement of the solution value
and changes the objective function to favor the search of solutions at small Hamming
distance with respect to the reference one.

The approach works in stages, each aimed at producing an improved feasible
solution. As in LB or RINS, at each stage a reference solution Nx is given, and one
aims at improving it. To this end, an explicit cutoff constraint

cT x � cT Nx � � (7)

is added to the original MIP, where � > 0 is a given tolerance that specifies the
minimum improvement required. The objective function of the problem can then be
replaced by the proximity function �.x; Nx/ defined in (6), to be minimized. One
then applies the MIP solver, as a black box, to the modified problem in the hope
of finding a solution better than Nx. Computational experience confirms that this
approach is quite successful (at least, on some classes of problems), due to the action
of the proximity objective function that improves the “relaxation grip” of the model.

A simple variant of the above scheme, called “proximity search with incumbent,”
is based on the idea of providing Nx to the MIP solver as a staring solution. To avoid
Nx be rejected because of the cutoff constraint (7), the latter is weakened to its “soft”
version

cT x � cT Nx � �.1 � �/ (8)

while minimizing �.x; Nx/ C M� instead of just �.x; Nx/, where � � 0 is a
continuous slack variable and M � 0 is a large penalty.

Application 1: Wind Farm Layout Optimization

Green energy became a topic of great interest in recent years, as environmental
sustainability asks for a considerable reduction in the use of fossil fuels. The wind
farm layout optimization problem aims at finding an allocation of turbines in a given
site so as to maximize power output. This strategic problem is extremely hard in
practice, both for the size of the instances in real applications and for the presence
of several nonlinearities to be taken into account. A typical nonlinear feature of this
problem is the interaction among turbines, also known as wake effect. The wake
effect is the interference phenomenon for which, if two turbines are located one
close to another, the upwind one creates a shadow on the one behind. Interference
is therefore of great importance in the design of the layout as it results into a loss of
power production for the turbine downstream.

Matheuristics 7

We next outline the main steps in the design of a sound matheuristic scheme for
wind farm layout optimization that is able to address the large-size instances arising
in practical applications.

Choice of the MIP Model

Different models have been proposed in the literature to describe interference. We
will consider first a simplified model from the literature [5], where the overall
interference is the sum of pairwise interferences between turbine pairs. The model
addresses the following constraints:

(a) a minimum and maximum number of turbines that can be built is given;
(b) there should be a minimal separation distance between two turbines to ensure

that the blades do not physically clash (turbine distance constraints);
(c) if two turbines are installed, their interference will cause a loss in the power

production that depends on their relative position and on wind conditions.

Let V denote the set of possible positions for a turbine, called “sites” in what
follows, and let

• NMIN and NMAX be the minimum and maximum number of turbines that can be
built, respectively;

• DMIN be the minimum distance between two turbines;
• dist.i; j / be the Euclidean distance between sites i and j ;
• Iij be the interference (loss of power) experienced by site j when a turbine is

installed at site i , with Ijj D 0 for all j 2 V ;
• Pi be the power that a turbine would produce if built (alone) at site i .

In addition, let GI D .V;EI / denote the incompatibility graph with

EI D fŒi; j � 2 V � V W dist.i; j / < DMIN; i < j g

and let n WD jV j denote the total number of sites. Two sets of binary variables are
defined:

xi D

�
1 if a turbine is built at site i I
0 otherwise

.i 2 V /

zij D

�
1 if two turbines are built at both sites i and j I
0 otherwise

.i; j 2 V; i < j /

The model then reads

8 M. Fischetti and M. Fischetti

max
X

i2V

Pixi �
X

i2V

X

j2V;i<j

.Iij C Iji /zij (9)

s.t. NMIN �
X

i2V

xi � NMAX (10)

xi C xj � 1 8Œi; j � 2 EI (11)

xi C xj � 1 � zij 8i; j 2 V; i < j (12)

xi 2 f0; 1g 8i 2 V (13)

zij 2 f0; 1g 8i; j 2 V; i < j (14)

Objective function (9) maximizes the total power production by taking interfer-
ence losses Iij into account. Constraints (11) model pairwise site incompatibility.
Constraints (12) force zij D 1 whenever xi D xj D 1; because of the objective
function, this is in fact equivalent to imposing zij D xixj .

The definition of the turbine power vector .Pi / and of interference matrix .Iij /
depends on the wind scenario considered, which greatly varies in time. Using
statistical data, one can in fact collect a large number K of wind scenarios k, each
associated with a pair .P k; I k/ with a probability �k , and define the average power
and interference to be used in the model as:

Pi WD

KX

kD1

�kP
k
i 8i 2 V (15)

Iij WD

KX

kD1

�kI
k
ij 8i; j 2 V (16)

While (9), (10), (11), (12), (13), and (14) turns out to be a reasonable model when
just a few sites have to be considered (say n � 100), it becomes hopeless when
n � 1000 because of the huge number of variables and constraints involved, which
grows quadratically with n. Therefore, when facing instances with several thousand
sites, an alternative (possibly weaker) model is required, where interference can be
handled by a number of variables and constraints that grows just linearly with n.
The model below is a compact reformulation of model (9), (10), (11), (12), (13),
and (14) that follows a recipe of Glover [17] that is widely used, e.g., in the quadratic
assignment problem [12, 32]. The original objective function (to be maximized),
rewritten as

X

i2V

Pixi �
X

i2V

0

@
X

j2V

Iij xj

1

A xi (17)

is restated as

Matheuristics 9

X

i2V

.Pixi � wi / (18)

where

wi WD

0

@
X

j2V

Iij xj

1

A xi D

(P
j2V Iij xj if xi D 1

0 if xi D 0

denotes the total interference caused by site i . Our compact model then reads

max z D
X

i2V

.Pixi � wi / (19)

s.t. NMIN �
X

i2V

xi � NMAX (20)

xi C xj � 1 8Œi; j � 2 EI (21)
X

j2V

Iij xj � wi CMi.1 � xi / 8i 2 V (22)

xi 2 f0; 1g 8i 2 V (23)

wi � 0 8i 2 V (24)

where the big-M term Mi D
P

j2V WŒi;j �62EI
Iij is used to deactivate constraint (22)

in case xi D 0, in which case wi D 0 because of the objective function.

Choice of Ad Hoc Heuristics

A simple 1-opt heuristic can be designed along the following lines. At each step, we
have an incumbent solution, say Qx, that describes the best-known turbine allocation
(Qxi D 1 if a turbine is built at site i , 0 otherwise), and a current solution x. Let

z D
X

i2V

Pixi �
X

i2V

X

j2V

Iij xi xj

be the profit of the current solution, � D
P

i2V xi be its cardinality, and define for
each j 2 V the extra-profit ıj incurred when flipping xj , namely:

ıj D

8
ˆ̂<

ˆ̂:

Pj �
X

i2V WxiD1

.Iij C Iji / if xj D 0;

�Pj C
X

i2V WxiD1

.Iij C Iji / if xj D 1

10 M. Fischetti and M. Fischetti

where we assume Iij D BIG for all incompatible pairs Œi; j � 2 EI , and BIG >P
i2V Pi is a large penalty value, while Ii i D 0 as usual.
We start with x D 0, z D 0, and � D 0 and initialize ıj D Pj for all j 2 V .

Then, we iteratively improve x by a sequence of 1-opt moves, according to the
following scheme. At each iteration, we look in O.n/ time for the site j with
maximum ıj C FLIP .j /, where function FLIP .j / takes cardinality constraints
into account, namely

FLIP .j / D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

�HUGE if xj D 0 and � � NMAX
�HUGE if xj D 1 and � � NMIN
CHUGE if xj D 0 and � < NMIN
CHUGE if xj D 1 and � > NMAX
0 otherwise

with HUGE � BIG (recall that function ıj C FLIPj has to be maximized).
Once the best j has been found, say j �, if ıj� C FLIP .j �/ > 0, we just

flip xj� ; update x, z, and � in O.1/ time; update all ıj ’s in O.n/ time (through
the parametric technique described in [11]); and repeat. In this way, a sequence
of improving solutions is obtained, until a local optimal solution that cannot be
improved by just one flip is found. To escape local minima, a simple perturbation
scheme can be implemented; see again [11] for details.

A 2-opt heuristic can similarly be implemented to allow a single turbine to move
to a better site—a move that requires flipping two variables. Each 2-opt exchange
requires O.n2/ time as it amounts to trying n 1-opt exchanges and to apply the best
one.

The Overall Matheuristic

Our final approach is a mixture of ad hoc (1- and 2-opt) and general MIP (proximity
search with incumbent) heuristics and works as shown in Algorithm 1.

At Step 2, the heuristics of section “Choice of Ad Hoc Heuristics” are applied in
their “initial-solution” mode where one starts with Qx D x D 0 and aborts execution
when 1-opt is invoked 10,000 consecutive times without improving Qx. At Step 4,
instead, a faster “cleanup” mode is applied. As we already have a hopefully good
incumbent Qx to refine, we initialize x D Qx and repeat the procedure until we count
100 consecutive 1-opt calls with no improvement of Qx. As to time-consuming 2-opt
exchanges, they are applied with a certain frequency and in any case just before the
final Qx is returned.

Two different MIP models are used to feed the proximity-search heuristic at
Step 6. During the first part of the computation, we use a simplified MIP model
obtained from (19), (20), (21), (22), (23), and (24) by removing all interference
constraints (22), thus obtaining a much easier problem. A short time limit is imposed
for each call of proximity search when this simplified model is solved. In this

Matheuristics 11

Algorithm 1: The overall matheuristic framework
1: read input data and compute the overall interference matrix (Iij);
2: apply ad hoc heuristics (1- and 2-opt) to get a first incumbent Qx;
3: while time limit permits do
4: apply quick ad hoc refinement heuristics (few iterations of 1- and 2-opt) to

possibly improve Qx;
5: if n > 2000, randomly remove points i 2 V with Qxi D 0 so as to reduce the

number of candidate sites to 2000;
6: build a MIP model for the resulting subproblem and apply proximity search

to refine Qx until the very first improved solution is found (or time limit is
reached);

7: end while
8: return Qx

way we aggressively drive the solution Qx to increase the number of built turbines,
without being bothered by interference considerations and only taking pairwise
incompatibility (21) into account. This approach quickly finds better and better
solutions (even in terms of the true profit), until either (i) no additional turbine can be
built or (ii) the addition of new turbines does in fact reduce the true profit associated
to the new solution because of the neglected interference. In this situation we switch
to the complete model (19), (20), (21), (22), (23), and (24) with all interference
constraints, which is used in all next executions of Step 6. Note that the simplified
model is only used at Step 6, while all other steps of the procedure always use the
true objective function that takes interference into full account.

Computational Results

The following alternative solution approaches were implemented in C language,
some of which using the commercial MIP-solver IBM ILOG Cplex 12.5.1 [21];
because of the big-Ms involved in the models, all Cplex’s codes use zero as
integrality tolerance (CPX_PARAM_EPINT = 0.0).

(a) proxy: The matheuristic outlined in the previous section, built on top of
Cplex with the following aggressive parameter tuning: all cuts deactivated,
CPX_PARAM_RINSHEUR = 1, CPX_PARAM_POLISHAFTERTIME = 0.0,
CPX_PARAM_INTSOLLIM = 2;

(b) cpx_def: The application of IBM ILOG Cplex 12.5.1 in its default setting,
starting from the same heuristic solution Qx available right after the first execution
of Step 2 of Algorithm 1;

(c) cpx_heu: Same as cpx_def, with the following internal tuning intended
to improve Cplex’s heuristic performance: all cuts deactivated, CPX_PA-
RAM_RINSHEUR = 100, CPX_PARAM_POLISHAFTERTIME = 20 % of the
total time limit;

12 M. Fischetti and M. Fischetti

(d) loc_sea: A simple heuristic not based on any MIP solver, that just loops on
Steps 4 of Algorithm 1 and randomly removes installed turbines from the current
best solution after 10,000 iterations without improvement of the incumbent.

For each algorithm, we recorded the best solution found within a given time
limit.

In our view, loc_sea is representative of a clever but not oversophisticated
metaheuristic, as typically implemented in practice, while cpx_def and cpx_heu
represent a standard way of exploiting a MIP model once a good feasible solution
is known.

Our test bed refers to an offshore 3,000� 3,000 (m) square withDMIN D 400 (m)
minimum turbine separation, with no limit on the number of turbines to be built (i.e.,
NMIN D 0 and NMAX D C1). Turbines are all of Siemens SWT-2.3-93 type (rotor
diameter 93 m), which produces a power of 0.0 MW for wind speed up to 3 m/s,
of 2.3 MW for wind speed greater than or equal to 16 m/s, and intermediate values
for winds in range 3–16 m/s according to a nonlinear power curve [30]. Pairwise
interference (in MW) was computed using Jensen’s model [22], by averaging
250,000+ real-world wind samples. Those samples were grouped into about 500
macro-scenarios to reduce the computational time spent for the definition of the
interference matrix. A pairwise average interference of 0.01 MW or less was treated
as zero. The reader is referred to [6] for details.

We generated five classes of medium-to-large problems with n ranging from
1,000 to 20,000. For each class, ten instances have been considered by generating n
uniformly random points in the 3,000� 3,000 square. (Although in the offshore case
turbine positions are typically sampled on a regular grid, we decided to randomly
generate them to be able to compute meaningful statistics for each value of n.)

In what follows, reported computing times are in CPU sec.s of an Intel Xeon E3-
1220 V2 quad-core PC with 16GB of RAM and do not take Step 1 of Algorithm 1
into account as the interference matrix is assumed to be precomputed and reused at
each run.

Computational results on our instances are given in Table 1, where each entry
refers to the performance of a given algorithm at a given time limit. In particular,
the left part of the table reports, for each algorithm and time limit, the number of
wins, i.e., the number of instances for which a certain algorithm produced the best-
known solution at the given time limit (ties allowed).

According to the table, proxy outperforms all competitors by a large amount for
medium-to-large instances. As expected, cpx_heu performs better for instances
with n D 1,000 as it is allowed to explore a large number of enumeration nodes
for the original model and objective function. Note that loc_sea has a good
performance for short time limits and/or for large instances, thus confirming its
effectiveness, whereas cpx_heu is significantly better than loc_sea only for
small instances and large time limits.

A different performance measure is given in the right-hand side part of Table 1,
where each entry gives the average optimality ratio, i.e., the average value of the
ratio between the solution produced by an algorithm (on a given instance at a given

Matheuristics 13

Table 1 Number of times each algorithm finds the best-known solution within the time limit
(wins) and optimality ratio with respect to the best-known solution—the larger, the better

Number of wins Optimality ratio

n Time limit (s) proxy cpx_def cpx_heu loc_sea proxy cpx_def cpx_heu loc_sea

1;000 60 6 1 3 0 0:994 0:983 0:987 0:916

300 4 2 4 0 0:997 0:991 0:998 0:922

600 7 3 7 0 0:997 0:992 0:997 0:932

900 5 2 3 0 0:998 0:993 0:996 0:935

1;200 5 1 5 0 0:998 0:992 0:997 0:939

1;800 5 1 4 0 0:998 0:992 0:996 0:942

3;600 4 2 5 0 0:998 0:995 0:997 0:943

5;000 60 9 6 6 5 0:909 0:901 0:901 0:904

300 10 0 0 0 0:992 0:908 0:908 0:925

600 10 0 10 0 0:994 0:908 0:994 0:935

900 10 0 0 0 0:994 0:908 0:908 0:936

1;200 10 0 0 0 0:994 0:908 0:925 0:939

1;800 9 0 1 0 0:996 0:908 0:971 0:946

3;600 5 0 5 0 0:996 0:932 0:994 0:948

10;000 60 9 9 8 10 0:914 0:913 0:914 0:914

300 10 2 2 2 0:967 0:927 0:927 0:936

600 10 0 10 0 0:998 0:928 0:998 0:944

900 10 0 0 0 1:000 0:928 0:928 0:948

1;200 10 0 0 0 1:000 0:928 0:928 0:951

1;800 10 0 0 0 1:000 0:928 0:928 0:957

3;600 9 0 0 1 1:000 0:928 0:928 0:964

15;000 60 9 10 9 9 0:909 0:912 0:911 0:909

300 10 8 7 8 0:943 0:937 0:935 0:937

600 10 0 10 0 0:992 0:939 0:992 0:942

900 10 0 0 0 1:000 0:939 0:939 0:956

1;200 9 0 0 1 1:000 0:939 0:939 0:959

1;800 9 0 0 1 1:000 0:939 0:939 0:965

3;600 9 0 0 1 1:000 0:939 0:939 0:972

20;000 60 9 9 9 10 0:901 0:902 0:901 0:902

300 10 8 10 10 0:933 0:933 0:933 0:933

600 9 0 9 1 0:956 0:935 0:956 0:941

900 10 0 0 0 0:978 0:935 0:935 0:945

1;200 10 0 0 0 0:991 0:935 0:935 0:950

1;800 10 0 0 0 0:999 0:935 0:935 0:963

3;600 10 0 0 0 1:000 0:935 0:935 0:971

ALL 60 42 35 35 34 0:925 0:922 0:922 0:909

300 44 20 23 20 0:966 0:939 0:940 0:930

600 46 3 46 1 0:987 0:941 0:987 0:938

900 45 2 3 0 0:994 0:941 0:941 0:944

1;200 44 1 5 1 0:997 0:940 0:945 0:947

1;800 43 1 5 1 0:999 0:940 0:954 0:955

3;600 36 2 10 2 0:999 0:946 0:959 0:959

14 M. Fischetti and M. Fischetti

time limit) and the best solution known for that instance—the closer to one, the
better. It should be observed that an improvement of just 1 % has a very significant
economical impact due to the very large profits involved in the wind farm context.
The results show that proxy is always able to produce solutions that are quite
close to the best one. As before, loc_sea is competitive for large instances when
a very small computing time is allowed, whereas cpx_def and cpx_heu exhibit
a good performance only for small instances and are dominated even by loc_sea
for larger ones.

Application 2: Prepack Optimization

Packing problems play an important role in industrial applications. In these
problems, a given set of items has to be packed into one or more containers
(bins) so as to satisfy a number of constraints and to optimize some objective
function.

Most of the contributions from the literature are devoted to the case where all
the items have to be packed into a minimum number of bins so as to minimize,
e.g., transportation costs; within these settings, only loading costs are taken into
account. The resulting problem is known as the bin packing problem and has been
widely studied in the literature both in its one-dimensional version [25] and in its
higher-dimensional variants [23].

We will next consider a different packing problem arising in inventory allocation
applications, where the operational cost for packing the bins is comparable, or even
higher, than the cost of the bins themselves. This is the case, for example, for
warehouses that have to manage a large number of different customers (e.g., stores),
each requiring a given set of items. Assuming that automatic systems are available
for packing, the required workforce is related to the number of different ways that
are used to pack the bins to be sent to the customers. To limit this cost, a hard
constraint can be imposed on the total number of different box configurations that
are used.

Prepacking items into box configurations has obvious benefits in terms of easier
and cheaper handling, as it reduces the amount of material handled by both the
warehouse and the customers. However, the approach can considerably reduce the
flexibility of the supply chain, leading to situations in which the set of items that
are actual shipped to each customer may slightly differ from the required one—at
the expense of some cost in the objective function. In addition, an upper bound on
overstocking is usually imposed for each store.

The resulting problem, known as prepack optimization problem (POP), was
recently addressed in [20], where a real-world application in the fashion industry is
presented, and heuristic approaches are derived using both constraint programming
(CP) and MIP techniques.

Matheuristics 15

Mathematical Model

In this section we briefly formalize POP and review the mathematical model
introduced in [20]. We are given a set I of types of products and a set S of stores.
Each store s 2 S requires an integer number ris of products of type i 2 I . Bins with
different capacities are available for packing items: we denote by K � ZC the set
of available bin capacities.

Bins must be completely filled and are available in an unlimited number for each
type. A box configuration describes the packing of a bin, in terms of number of
products of each type that are packed into it. We denote by NB the maximum
number of box configurations that can be used for packing all products and by
B D f1; : : : ; NBg the associated set.

Products’ packing into boxes is described by integer variables ybi : for each
product type i 2 I and box configuration b 2 B , the associated variable ybi
indicates the number of products of type i that are packed into the b-th box
configuration. In addition, integer variables xbs are used to denote the number of
bins loaded according to box configuration b that have to be shipped to store s 2 S .

Understocking and overstocking of product i at store s are expressed by
decisional variables uis and ois , respectively. Positive costs ˛ and ˇ penalize each
unit of under- and overstocking, respectively, whereas an upper bound ıis on the
maximum overstocking of each product at each store is also imposed.

Finally, for each box configuration b 2 B and capacity value k 2 K, a binary
variable tbk is introduced that takes value 1 if box configuration b corresponds to a
bin of capacity k.

Additional integer variables used in the model are qbis D xbs ybi (number of
items of type i sent to store s through boxes loaded with configuration b); hence,P

b2B qbis gives the total number of products of type i that are shipped to store s.
A mixed-integer nonlinear programming (MINLP) model then reads:

min
X

s2S

X

i2I

.˛uis C ˇois/ (25)

qbis D xbsybi .b 2 BI i 2 I I s 2 S/ (26)
X

b2B

qbis � ois C uis D ris .i 2 I I s 2 S/ (27)

X

i2I

ybi D
X

k2K

k tbk .b 2 B/ (28)

X

k2K

tbk D 1 .b 2 B/ (29)

ois � ıis .i 2 I I s 2 S/ (30)

tbk 2 f0; 1g .b 2 BI k 2 K/ (31)

xbs � 0 integer .b 2 BI s 2 S/ (32)

16 M. Fischetti and M. Fischetti

ybi � 0 integer .b 2 BI i 2 I / (33)

The model is of course nonlinear, as the bilinear constraints (26) involve the
product of decision variables. To derive a linear MIP model, the following standard
technique can be used. Each xbs variable is decomposed into its binary expansion
using binary variables vbsl (l D 0; : : : ; L), where L is easily computed from an
upper bound on xbs . When these variables are multiplied by ybi , the corresponding
product wbisl D vbsl ybi are linearized with the addition of suitable constraints.

Our final MIP is therefore obtained from (25), (26), (27), (28), (29), (30), (31),
(32), and (33) by adding

xbs D

LX

lD0

2lvbsl .b 2 BI s 2 S/ (34)

vbsl 2 f0; 1g .b 2 BI s 2 S I l D 0; : : : ; L/ (35)

and by replacing each nonlinear equation (26) with the following set of new
variables and constraints:

qbis D

LX

lD0

2lwbisl .b 2 BI i 2 I I s 2 S/ (36)

wbisl � Y vbsl .b 2 BI i 2 I I s 2 S I l D 0; : : : ; L/ (37)

wbisl � ybi .b 2 BI i 2 I I s 2 S I l D 0; : : : ; L/ (38)

wbisl � ybi � Y .1 � vbsl / .b 2 BI i 2 I I s 2 S I l D 0; : : : ; L/ (39)

wbisl � 0 .b 2 BI i 2 I I s 2 S I l D 0; : : : ; L/ (40)

(41)

where Y denotes an upper bound on the y variables.
In case all capacities are even, the following constraint—though redundant—

plays a very important role in improving the LP bound of our MIP model:

X

i2I

.uis C ois/ � 1

s 2 S W

X

i2I

ris is odd

!
(42)

Matheuristics

The MIP model of the previous subsection is by far too difficult to be addressed by
standard solvers. As a matter of fact, for real-world cases even the LP relaxation at
each node turns out to be very time consuming. So we designed ad hoc heuristic

Matheuristics 17

approaches to exploit the special structure of our MIP, following the matheuristic
paradigm.

Each heuristic is based on the idea of iteratively solving a restricted problem
obtained by fixing a subset of variables, so as to obtain a subproblem which is
(reasonably) easy to solve by a commercial MIP solver, but still able to produce
improved solutions.

Two kinds of heuristics can be implemented: constructive and refinement heuris-
tics. Constructive heuristics are used to find a solution H starting from scratch. In a
refinement heuristic, instead, we are given a heuristic solution H D .xH ; yH / that
we would like to improve. We first fix some x and/or y variables to their value inH ,
thus defining a solution neighborhood N .H/ ofH . We then search N .H/ by using
a general-purpose MIP solver on the model resulting from fixing. If an improved
solution is found within the given time limit, we update H and repeat; otherwise, a
new neighborhood is defined in the attempt to escape the local optimum.

Fixing all x or y Variables
A first obvious observation is that our basic MINLP model (25), (26), (27), (28),
(29), (30), (31), (32), and (33) reduces to a linear MIP if all the x (or all the y)
variables are fixed, as constraints (26) trivially become linear. According to our
experience, the resulting MIP (though nontrivial) is typically solved very quickly
by a state-of-the-art solver, meaning that one can effectively solve a sequence of
restricted MIPs where x and y are fixed, in turn, until no further improvement can
be obtained.

Let Ny.H/ and Nx.H/ denote the solution neighborhoods of H obtained by
leaving y or x free, i.e., when imposing x D xH or y D yH , respectively.

A basic tool that we use in our heuristics is function REOPT.S 0; yH / that
considers a store subset S 0 	 S and a starting yH and returns the best solution
H obtained by iteratively optimizing over the neighborhoods Nx.H/, Ny.H/,
Nx.H/, etc. after having removed all stores not in S 0, H being updated after each
optimization.

Fixing y Variables For All but One Configuration
Another interesting neighborhood, say Nx.H; yˇ/, is obtained by leaving all x
variables free and by fixing ybi D yHbi for all i 2 I and b 2 B n fˇg for a given
ˇ 2 B . In other words, we allow for changing just one (out of NB) configuration in
the current solution, and leave the solver the possibility to change the x variables as
well.

In our implementation, we first define a random permutation fˇ1; : : : ; ˇNBg of B .
We then optimize, in a circular sequence, neighborhoods Nx.H; yˇt / for t D
1; : : : ; NB; 1; : : : Each time an improved solution is found, we updateH and further
refine it through function REOPT.S; yH /. The procedure is stopped when there is
no hope of finding an improved solution, i.e., after NB consecutive optimizations
that do not improve the current H .

A substantial speedup can be obtained by heuristically imposing a tight upper
bound on the x variables, so as to reduce the number L C 1 of binary variables

18 M. Fischetti and M. Fischetti

vbsl in the binary expansion (34). An aggressive policy (e.g., imposing xbs � 1) is
however rather risky as the optimal solution could be cut off; hence, the artificial
bounds must be relaxed if an improved solution cannot be found.

Working with a Subset of Stores
Our basic constructive heuristic is based on the observation that removing stores
can produce a substantially easier model. Note that a solution H 0 D .x0; y0/ with
a subset of stores can easily be converted into a solution H D .x; y/ of the whole
problem by just invoking function REOPT.S; y0/.

In our implementation, we first define a store permutation s1; : : : ; sjS j according
to a certain criterion (to be discussed later). We then address, in sequence, the
subproblem with store set St D fs1; : : : ; stg for t D 0; : : : ; jS j.

For t D 0, store set S0 is empty and our MIP model just produces a y solution
with random (possibly repeated) configurations.

For each subsequent t , we start with the best solution Ht�1 D .xt�1; yt�1/ of
the previous iteration and convert it into a solution Ht D .xt ; yt / of the current
subproblem through the refining function REOPT.St ; yt�1/. Then we apply the
refinement heuristics described in the previous subsection to Ht , reoptimizing one
configuration at a time in a circular vein. To reduce computing time, this latter step
can be skipped with a certain frequency—except of course in the very last step when
St D S .

Each time a solution Ht D .xt ; yt / is found, we quickly compute a solution
H D .x; y/ of the overall problem through function REOPT.S; yt / and update the
overall incumbent where all stores are active.

As to store sequence s1; : : : ; sjS j, we have implemented three different strategies
to define it. For each store pair a; b, let the dissimilarity index dist.a; b/ be defined
as the distance between the two demand vectors .ria W i 2 I / and .rib W i 2 I /.

• random: The sequence is just a random permutation of the integers 1; : : : ; jS j;
• most_dissimilar: We first compute the two most dissimilar stores .a; b/,

i.e., such that a < b and dist.a; b/ is a maximum and initialize s1 D a. Then,
for t D 2; : : : ; jS j, we define S 0 D fs1; : : : ; st�1g and let

st D argmaxa2SnS 0fminfdist.a; b/ W b 2 S 0 g

• most_similar: This is just the same procedure as in the previous item, with
max and min operators reverted.

The rational of the most_dissimilar policy is to attach first a “core
problem” defined by the pairwise most dissimilar stores (those at the beginning
of the sequence). The assumption here is that our method performs better in its first
iterations (small values of t) as the size of the subproblem is smaller, and we have
plenty of configurations to accommodate the initial requests. The “similar stores”
are therefore addressed only at a later time, in the hope that the found configurations
will work well for them.

Matheuristics 19

A risk with the above policy is that the core problem becomes soon too difficult
for our simple refining heuristic, so the current solution in not updated after the
very first iterations. In this respect, policy most_similar is more conservative:
given for granted that we proceed by subsequently refining a previous solution
with one less store, it seems reasonable not to inject too much innovation in a
single iteration—as most_dissimilar does when it adds a new store with very
different demands with respect to the previous ones.

Computational Experiments

The heuristics described in the previous section have been implemented in C lan-
guage. IBM ILOG CPLEX 12.6 [21] was used as MIP solver. Reported computing
times are in CPU seconds of an Intel Xeon E3-1220 V2 quad-core PC with 16GB
of RAM. For each run a time limit of 900 s (15 m) was imposed.

Four heuristic methods have been compared: the three construction heuristics
random, most_dissimilar and most_similar of section “Working with
a Subset of Stores,” plus

• fast_heu: The fast refinement heuristic of section “Fixing y Variables For All
but One Configuration” applied starting from a null solution x D 0.

All heuristics are used in a multi-start mode, e.g., after completion they are
just restarted from scratch until the time limit is exceeded. At each restart, the
internal random seed is not reset; hence, all methods natively using a random
permutation (namely, fast_heu and random) will follow a different search path
at each run as the permutations will be different. As to most_dissimilar and
most_similar, after each restart the sequence s1; : : : ; sjS j is slightly perturbed
by five random pair swaps. In addition, after each restart the CPLEX’s random seed
is changed so as to inject diversification among runs even within the MIP solver.

Due to their heuristic nature, our methods—though deterministic—exhibit a
large dependency on the initial conditions, including the random seeds used
both within our code and in CPLEX. We therefore repeated several times each
experiment, starting with different (internal/CPLEX) random seeds at each run, and
also report average figures.

In case all capacities are even (as it is the case in our tesbed), we compute the
following trivial lower bound based on constraint (42)

LB WD minf˛; ˇg

ˇ̌
ˇ̌
ˇ

(
s 2 S W

X

i2I

ris is odd

) ˇ̌
ˇ̌
ˇ (43)

and abort the execution as soon as we find a solution whose value meets the lower
bound.

20 M. Fischetti and M. Fischetti

Test Bed
Our test bed coincides with the benchmark proposed in [20] and contains a number
of subinstances of a real-world problem (named AllColor58) with 58 stores that
require 24 (= 6 � 4) different items: T-shirts available in six different sizes and four
different colors (black, blue, red, and green). The available box capacities are 4, 6,
8, and 10. Finally, each item has a given overstock limit (0 or 1) for all stores but
no understock limits, and the overstock and understock penalties are ˇ D 1 and
˛ D 10, respectively.

Note that our testing environment is identical to that used in [20] (assuming
the PC used are substantially equivalent), so our results can fairly be benchmarked
against those therein reported.

Comparison Metric
To better compare the performance of our different heuristics, we also make use
of an indicator recently proposed by [1, 2] and aimed at measuring the trade-off
between the computational effort required to produce a solution and the quality of
the solution itself. In particular, let Qzopt denote the optimal solution value and let
z.t/ be the value of the best heuristic solution found at a time t . Then, a primal gap
function p can be computed as

p.t/ D

�
1 if no incumbent found until time t
�.z.t// otherwise

(44)

where �.
/ 2 Œ0; 1� is the primal gap, defined as follows

�.z/ D

8
<̂

:̂

0 if jQzopt j D jzj D 0,
1 if Qzopt
 z < 0,

z�Qzopt
maxfjQzopt j;jzjg

otherwise.
(45)

Finally, the primal integral of a run until time tmax is defined as

P .tmax/ D

R tmax
0

p.t/ dt

tmax
(46)

and is actually used to measure the quality of primal heuristics—the smaller
P .tmax/, the better the expected quality of the incumbent solution if we stopped
computation at an arbitrary time before tmax.

Computational Results
We addressed the instances provided in [20], with the aim of benchmarking our
matheuristics against the methods therein proposed. Results for the easiest cases
involving only NB D 4 box configurations (namely, instances Black58, Blue58,
Red58, and Green58) are not reported as the corresponding MIP model can be

Matheuristics 21

Table 2 Performance of
CPLEX and LNS heuristics
from [20]. Single run for each
instance. Times in CPU
seconds (time limit of 900 s)

CPLEX LNS

Instance NB Value Time (s) Value Time (s)

BlackBlue10 7 66 7 21 16

BlackBlue58 7 525 43 174 74

AllColor10 14 202 49 89 293

AllColor58 14 1828 273 548 900

Table 3 Performance of matheuristics. Single run for each instance. Times in CPU seconds (time
limit of 900 s)

most most

fast_heu random dissimilar similar

Instance LB Value Time (s) Value Time (s) Value Time (s) Value Time (s)

BlackBlue10 10 10 1 10 2 10 1 10 1

BlackBlue58 58 58 4 58 3 58 2 58 4

AllColor10 6 6 29 17 82 17 734 17 379

AllColor58 42 141 71 273 722 614 105 53 66

solved to proven optimality in less than one second by our solver—thus confirming
the figures given in [20].

Tables 2 and 3 report the performance of various heuristics in terms of solution
value and time and refer to a single run for each heuristic and for each instance.

Table 2 is taken from [20], where a two-phase hybrid metaheuristic was
proposed. In the first phase, the approach uses a memetic algorithm to explore
the solution space and builds a pool of interesting box configurations. In the
second phase, a box-to-store assignment problem is solved to choose a subset of
configurations from the pool—and to decide how many boxes of each configuration
should be sent to each store. The box-to-store assignment problem is modeled as a
(very hard in practice) MIP and heuristically solved either by a commercial solver
(CPLEX) or by a sophisticated large-neighborhood search (LNS) approach.

Table 3 reports the performance of our four matheuristics, as well as the
lower bound value LB computed through (43)—this latter value turned out to
coincide with the optimal value for all instances under consideration in the present
subsection.

Comparing Tables 2 and 3 shows that matheuristics outperform the LNS
heuristics analyzed in [20]. In particular, fast_heu is able to find very good
solutions (actually, an optimal one in 3 out of 4 cases) within very short computing
times. For the largest instance (AllColor58), however, most_similar qualifies
as the best heuristic both in terms of quality and speed.

To get more reliable information about the matheuristics’ performance, we ran
them 100 times for each instance, with different random seeds, and took detailed
statistics on each run. Table 4 reports, for each instance and for each heuristic,
the average completion time (time), the average time to find its best solution

22 M. Fischetti and M. Fischetti

Table 4 Average performance (out of 100 runs) of our heuristics

Instance Heuristic Time (s) Time_best (s) Pint #opt

BlackBlue10 fast_heu 1:08 1:08 0:34 100

random 1:44 1:44 0:27 100

most_dissimilar 1:26 1:26 0:25 100

most_similar 1:25 1:25 0:29 100

BlackBlue58 fast_heu 4:61 4:61 9:88 100

random 6:40 6:40 10:11 100

most_dissimilar 2:76 2:76 9:13 100

most_similar 5:62 5:62 15:42 100

AllColor10 fast_heu 71:82 71:82 3:81 100

random 600:29 304:06 18:63 36

most_dissimilar 704:33 241:12 19:69 27

most_similar 626:15 302:40 20:54 26

AllColor58 fast_heu 900:00 332:43 328:20 0

random 874:87 329:59 562:95 2

most_dissimilar 893:48 323:93 545:47 1

most_similar 859:86 287:50 404:29 1

(time_best), the primal integral after 900 s (pint, the lower the better), and the
number of provably optimal solutions found (#opt) out of the 100 runs. Note that, for
all instances, a solution matching the simple lower bound (43) was eventually found
by at least one of our heuristics. The 100-run statistics confirm that fast_heu is
very effective in all cases, though it is outperformed by most_similar for the
largest instance AllColor58 with respect to the #opt criterion. The results suggest
that a hybrid method running fast_heu and most_similar (possibly in
parallel) qualifies a robust heuristic with a very good performance for all instances.

Application 3: Vehicle Routing

In this section we address the NP-hard distance-constrained capacitated vehicle
routing problem (DCVRP) that can be defined as follows. We are given a central
depot and a set of n�1 customers, which are associated with the nodes of a complete
undirected graph G D .V;E/ where jV j D n, node 1 representing the depot. Each
edge Œi; j � 2 E has an associated finite cost cij � 0. Each node j 2 V has a request
dj � 0 (d1 D 0 for depot node 1). Customers need to be served by k cycles (routes)
passing through the depot, where k is fixed in advance. Each route must have a total
duration (computed as the sum of the edge costs in the route) not exceeding a given
limitD and can visit a subset S of customers whose total request

P
j2S dj does not

exceed a given capacity C . The problem then consists of finding a feasible solution

Matheuristics 23

covering exactly once all the nodes v 2 V n f1g and having a minimum overall cost;
see, e.g., [3, 31].

We will next outline the refinement matheuristic for DCVRP proposed in [15].

The ASSIGN Neighborhood for TSP

Sarvanov and Doroshko (SD) investigated in [28] the so-called ASSIGN neighbor-
hood for the pure Traveling Salesman Problem (TSP), i.e., for the problem of finding
a min-cost Hamiltonian cycle in a graph. Given a certain TSP solution (viewed as
node sequence < v1 D 1; v2;

 ; vn >), the neighborhood contains all the bn=2cŠ
TSP solutions that can be obtained by permuting, in any possible way, the nodes in
even position in the original sequence. In other words, any solution . 1; 2;

 ; n/
in the neighborhood is such that i D vi for all odd i . An interesting feature of
the neighborhood is that it can be explored exactly in polynomial time, though it
contains an exponential number of solutions. Indeed, for any given starting solution,
the min-cost TSP solution in the corresponding ASSIGN neighborhood can be
found efficiently by solving a min-cost assignment problem on a bn=2c � bn=2c
matrix; see, e.g., [18]. Starting from a given solution, an improving heuristic then
consists of exploring the ASSIGN neighborhood according to the following two
phases:

• node extraction, during which the nodes in even position (w.r.t. the current
solution) are removed from the tour, thus leaving an equal number of “free holes”
in the sequence;

• node reinsertion, during which the removed nodes are reallocated to the available
holes in an optimal way by solving a min-sum assignment problem.

The simple example in Fig. 1 gives an illustration of the kind of “improving
moves” involved in the method. The figure draws a part of a tour, corresponding
to the node sequence hv1; v2;

 ; v9i. In the node extraction phase, the nodes in
even position v2, v4, v6 e v8 are removed from the sequence, whereas all the other
nodes retain their position. In Fig. 1b the black nodes represent the fixed ones,
while the holes left by the extracted nodes are represented as white circles. If we
use symbol “�” to represent a free hole, the sequence corresponding to Fig. 1b
is therefore hv1;�; v3;�; v5;�; v7;�; v9i. The second step of the procedure, i.e.,
the optimal node reallocation, is illustrated in Fig. 1c, where nodes v4 and v6 swap
their position, whereas v2 and v8 are reallocated as in the original sequence. This
produces the improved part of tour hv1; v2; v3; v6; v5; v4; v7; v8; v9i.

In the example, the same final tour could have been constructed by a simple
2-opt move. However, for more realistic cases, the number of possible reallocation
is exponential in the number of extracted nodes; hence, the possible reallocation
patterns are much more complex and allow, e.g., for a controlled worsening of some
parts of the solution which are compensated by large improvement in other parts.

24 M. Fischetti and M. Fischetti

Fig. 1 A simple example of node extraction and reallocation

From TSP to DCVRP

One can conjecture that the ASSIGN neighborhood would work well if applied to
VRP problems. Indeed, due to the presence of several routes and of the associated
route constraints, in VRP problems the node sequence is not the only issue to be
considered when constructing a good solution: an equally important aspect of the
optimization is to find a balanced distribution of the nodes between the routes. In
this respect, heuristic refinement procedures involving complex patterns of node
reallocations among the routes likely are quite effective in practice.

We can therefore extend the SD method to DCVRP so as to allow for more
powerful move patterns, while generalizing its basic scheme so as to get rid of the
too simple min-sum assignment model for node reallocation in favor of a more
flexible reallocation model based on the (heuristic) solution of a more complex MIP
model. The resulting matheuristic will be introduced, step by step, with the help of
some illustrative examples.

Let us consider Fig. 2, where a nonoptimal part of a VRP solution is depicted. It
is clear that the position of node v3 is not very clever, in that inserting v3 between
node v1 and v2 is likely to produce a better solution (assuming this new solution is
not infeasible because of the route constraints). Even if v3 were an even position
node, however, this move would be beyond the possibility of the pure SD method,
where the extracted nodes can only be assigned to a hole left free by the removal
of another node—while no hole between v1 e v2 exists which could accommodate

Matheuristics 25

Fig. 2 The assignment of
node v3 to route r1 is
nonoptimal

Fig. 3 Improving the
solution depicted in Fig. 2

v3. The example then suggests a first extension of the basic SD method, consisting
of removing the 1-1 correspondence between extracted nodes and empty holes. We
therefore consider the concept of insertion point: after having extracted the selected
nodes, we construct a restricted solution through the remaining nodes, obtained
from the original one by short-cutting the removed nodes. All the edges in the
restricted solution are then viewed as potential insertion points for the extracted
nodes. In the example, removing v3 but not v1 and v2 would produce the restricted
solution depicted in Fig. 3a, where all dashed edges are possible insertion points for
the extracted nodes—this allows the method to produce the solution in Fig. 3b.

A second important extension comes from a more flexible node extraction
scheme that allows for the removal of a sequence of nodes; see Fig. 4 for an
illustration. Once a sequence of nodes has been extracted, one can use a heuristic

26 M. Fischetti and M. Fischetti

Fig. 4 Removing a sequence
of nodes to better reallocate
them (possibly in a different
order)

procedure to generate new sequences through the extracted nodes, to be allocated
to different insertion points. To be more specific, starting from the extracted node
sequences, one can create new derived sequences that combine the extracted nodes
in a different way and consider the possibility of assigning each derived sequence to
a different insertion point. Of course, one never knows in advance which are the best
sequences to be used, so all the (original and derived) sequences should be available
when solving the reallocation problem.

The above considerations imply the use of a reallocation model which goes far
beyond the scope of the original one, which is based on the solution of an easy
min-cost assignment problem. Indeed, the new reallocation model becomes a MIP
that receives as input the set of insertion points along with a (typically large) set
of node sequences through the extracted nodes and provides an (almost) optimal
allocation of at most one sequence to each insertion point, with the constraint that
each extracted node has to belong to one of the allocated sequences, while fulfilling
the additional constraints on the capacity and distance constraints on the routes. This
model will be described in more detail in the next section.

The Overall Matheuristic

Here is a possible implementation of the ideas outlined in the previous section,
leading to the so-called selection, extraction, recombination, and reallocation
(SERR) matheuristic.

(i) (Initialization). Apply a fast heuristic method to find a first (possibly infeasible,
see below) DCVRP solution.

(ii) (Selection). Apply one of the available criteria (to be described later) to
determine the nodes to be extracted—the nodes need not be consecutive, and
any node subset qualifies as a valid choice.

(iii) (Extraction). Extract the nodes selected in the previous step and construct
the corresponding restricted DCVRP solution obtained by short-cutting the
extracted nodes. All edges in the restricted solution are put in the list I of
the available insertion points.

Matheuristics 27

(iv) (Recombination). The node sequences extracted in the previous step (called
basic in the sequel) are initially stored in a sequence pool. Thereafter, heuristic
procedures (to be described later) are applied to derive new sequences through
the extracted nodes, which are added to the sequence pool. During this phase,
dual information derived from the LP relaxation of the reallocation model can
be used to find new profitable sequences—the so-called pricing step. Each
sequence s in the final pool is then associated with a (heuristically determined)
subset Is of the available insertion points in I. For all basic sequences s, we
assume that Is contains (among others) the pivot insertion point associated to
s in the original tour, so as to make it feasible to retrieve the original solution
by just reallocating each basic sequence to the associated pivot insertion point.

(v) (Reallocation). A suitable MIP (to be described later in greater details) is set
up and solved heuristically through a general-purpose MIP solver. This model
has a binary variable xsi for each pair .s; i/, where s is a sequence in the
pool and i 2 Is , whose value 1 means that s has to be allocated to i . The
constraints in the MIP stipulate that each extracted node has to be covered by
exactly one of the selected sequences s, while each insertion point i can be
associated to at most one sequence. Further constraints impose the capacity
and distance constraints in each route. Once an (almost) optimal MIP solution
has been found, the corresponding DCVRP solution is constructed and the
current best solution is possibly updated (in which case each route in the new
solution is processed by a 3-opt [26] exchange heuristic in the attempt of further
improving it).

(vi) (Termination). If at least one improved DCVRP solution has been found in the
last n iterations, we repeat from step (ii); otherwise the method terminates.

Finding a Starting Solution
Finding a DCVRP solution that is guaranteed to be feasible is an NP-hard problem;
hence, we have to content ourselves with the construction of solutions that, in
some hard cases, may be infeasible—typically because the total-distance-traveled
constraint is violated for some routes. In this case, the overall infeasibility of the
starting solution can hopefully be driven to zero by a modification of the SERR
recombination model where the capacity and distance constraints are treated in a
soft way through the introduction of highly penalized slack variables.

As customary in VRP problems, we assume that each node is assigned a
coordinate pair .x; y/ giving the geographical position of the corresponding cus-
tomer/depot in a two-dimensional map.

One option for the initialization of the current solution required at step (i) of the
SERR method is to apply the classical two-phase method of Fisher and Jaikumar
(FJ) [14]. This method can be implemented in a very natural way in our context in
that it is based on a (heuristic) solution of a MIP whose structure is close to that of
the reallocation model.

According to computational experience, however, the solution provided by the FJ
heuristic is sometimes “too balanced,” in the sense that the routes are filled so tightly
that leave not enough freedom to the subsequent steps of our SERR procedure.

28 M. Fischetti and M. Fischetti

Better results are sometimes obtained starting from a less-optimized solution whose
costs significantly exceed the optimal cost as, e.g., the one obtained by using a
simplified SWEEP method [16].

A second possibility is instead to start from an extremely good solution provided
by highly effective (and time-consuming) heuristics or metaheuristics, in the attempt
of improving this solution even further.

Node selection criteria
At each execution of step (ii), one of the following selection schemes is applied.

• scheme RANDOM-ALTERNATE: This criterion is akin to the SD one and selects
in some randomly selected routes all the nodes in even position, while in the
remaining routes the extracted nodes are those in odd position—the position
parity being determined by visiting each route in a random direction.

• scheme SCATTERED: Each node had a uniform probability of 50 % of being
extracted; this scheme allows for the removal of consecutive nodes, i.e., of route
subsequences.

• scheme NEIGHBORHOOD: Here one concentrates on a seed node, say v�, and
removes the nodes v with a probability that is inversely proportional to the
distance cvv� of v from v�.

Schemes RANDOM-ALTERNATE and SCATTERED appear particularly suited to
improve the first solutions, whereas the NEIGHBORHOOD scheme seems more
appropriate to deal with the solutions available after the first iterations.

Reallocation Model
Given the sequences stored in the pool and the associated insertion points (defined
through the heuristics outlined in the next subsection), our aim is to reallocate the
sequences so as to find a feasible solution of improved cost (if any). To this end, we
need to introduce some additional notation.

Let F denote the set of the extracted nodes, S the sequence pool, and R the set
of routes r in the restricted solution. For any sequence s 2 S , let c.s/ be the sum
of the costs of the edges in the sequence, and let d.s/ be the sum of the requests dj
associated with the internal nodes of s.

For each insertion point i 2 I, we define the extra-cost �si for assigning sequence
s (in its best possible orientation) to the insertion point i . For each route r 2 R in
the restricted solution, let I.r/ denote the set of the insertion points (i.e., edges)
associated with r , while let Qd.r/ and Qc.r/ denote, respectively, the total request and
distance computed for route r—still in the restricted tour. As already mentioned,
our MIP model is based on the following decision variables:

xsi D

�
1 if sequence s is allocated to the insertion point i 2 Is
0 otherwise

(47)

The model then reads:

Matheuristics 29

X

r2R
Qc.r/Cmin

X

s2S

X

i2Is

�sixsi (48)

subject to:

X

s2v

X

i2Is

xsi D 1 8v 2 F (49)

X

s2SWi2Is

xsi � 1 8i 2 I (50)

Qd.r/C
X

s2S

X

i2Is\I.r/
d .s/xsi � C 8r 2 R (51)

Qc.r/C
X

s2S

X

i2Is\I.r/
�sixsi � D 8s 2 S; r 2 R (52)

0 � xsi � 1 integer 8s 2 S; i 2 Is (53)

The objective function, to be minimized, gives the cost of the final DCVRP solution.
Indeed, each objective coefficient gives the MIP cost of an inserted sequence,
including the linking cost, minus the cost of the “saved” edge in the restricted
solution. Constraints (49) impose that each extracted node belongs to exactly one of
the selected sequences, i.e., that it is covered exactly once in the final solution. Note
that, in the case of triangular costs, one could replaceD by� in (49), thus obtaining
a typically easier-to-solve MIP having the structure of a set-covering (instead of set-
partitioning) problem with side constraints. Constraints (50) avoid a same insertion
point be used to allocate two or more sequences. Finally, constraints (51) and
(52) impose that each route in the final solution fulfills the capacity and distance
restriction, respectively.

In order to avoid to overload the model by an excessive number of variables, a
particular attention has to be paid to reduce the number of sequences and, for each
sequence, the number of the associated insertion points.

Node Recombination and Construction of Derived Sequences
This is a very crucial step in the SERR method. It consists not just of generating new
“good” sequences through the extracted nodes, but it also associates each sequence
to a clever set of possible insertion points that can conveniently accommodate it.
Therefore, one has two complementary approaches to attack this problem: (a) start
from the insertion points and, for each insertion point, try to construct a reasonable
number of new sequences which are likely to “fit well” or (b) start from the extracted
nodes and try to construct new sequences of small cost, no matter the position of the
insertion points. The following two-phase method turned out to be a good strategy
in practice.

30 M. Fischetti and M. Fischetti

In the first phase, the sequence pool is initialized by means of the original (basic)
sequences, and each of them is associated to its corresponding (pivot) insertion
point. This choice guarantees that the current DCVRP solution can be reconstructed
by simply selecting all the basic sequences and putting them back in their pivot
insertion point. Moreover, when the NEIGHBORHOOD selection scheme is used,
a further set of sequences is generated as follows. Let v� be the extracted seed
node, and let N.v�/ contain v� plus the, say, k closest extracted nodes (k D 4

in our implementation). A complete enumerative scheme is applied to generate all
the sequences through N.v�/ that are added to the pool. This choice is intended
to increase the chances of locally improving the current solution, by exploiting
appropriate sequences to reallocate the nodes in N.v�/ in an optimal way.

The second phase is only applied for the NEIGHBORHOOD and SCATTERED

selection schemes and corresponds to a pricing loop based on the dual information
available after having solved the LP relaxation of the current reallocation model.
The reader is again referred to [15] for details.

Examples
Extensive computational results for SERR matheuristic have been reported [15] and
are omitted because of space. We only report in Figs. 5 and 6 a plot of the incumbent
SERR solution for some instances from the literature. Computing time is given in
CPU seconds of an old AMD Athlon XP 2400+ PC with 1 GByte RAM, using
ILOG Cplex 8.0 as MIP solver. The figures show that SERR is able to significantly
improve the starting solution in the early part of its computation.

Fig. 5 Time evolution of the SERR solution for various CVRP instances, with FJ [14] initial
solution

Matheuristics 31

Fig. 6 Time evolution of the SERR solution for various CVRP instances, with SWEEP [16] initial
solution

Conclusion

Contamination of metaheuristics with mathematical programming leads to the
concept of “matheuristics.” The result is a general approach to design mathemat-
ically sound heuristics. In this chapter we presented the main ideas underlying
matheuristics, and used some case studies to illustrate them. For each application,
we described the specific problem at hand, the mathematical programming model
that formalizes it, and the way the model—or a simplification of it—can be used to
produce heuristic (as opposed to exact) solutions in an effective way.

Cross-References

�Adaptive and Multilevel Metaheuristics
�Constraint-Based Local Search
� Iterated Local Search

References

1. Achterberg T, Berthold T, Hendel G (2012) Rounding and propagation heuristics for mixed
integer programming. In: Operations research proceedings 2011, Zurich, pp 71–76

http://link.springer.com/Adaptive and Multilevel Metaheuristics
http://link.springer.com/Constraint-Based Local Search
http://link.springer.com/Iterated Local Search

32 M. Fischetti and M. Fischetti

2. Berthold T (2013) Measuring the impact of primal heuristics. Oper Res Lett 41(6):611–614
3. Christofides N, Mingozzi A, Toth P (1979) The vehicle routing problem. Combinatorial

optimization. Wiley, New York
4. Danna E, Rothberg E, Le Pape C (2005) Exploring relaxation induced neighborhoods to

improve MIP solutions. Math Program 102:71–90
5. Donovan S (2005) Wind farm optimization. In: Proceedings of the 40th annual ORSNZ

conference, Wellington, pp 196–205
6. Fischetti M (2014) Mixed-integer models and algorithms for wind farm layout optimization.

Master’s thesis, University of Padova. http://tesi.cab.unipd.it/45458/1/tesi_Fischetti.pdf
7. Fischetti M, Lodi A (2003) Local branching. Math Program 98:23–47
8. Fischetti M, Lodi A (2011) Heuristics in mixed integer programming. In: Cochran JJ (ed) Wiley

encyclopedia. Volume 8 of operations research and management science. John Wiley & Sons,
Hoboken, pp 738–747

9. Fischetti M, Lodi A, Salvagnin D (2010) Just MIP it! In: Maniezzo V, Stützle T, Voß S (eds)
Matheuristics. Volume 10 of annals of information systems. Springer, Boston, pp 39–70

10. Fischetti M, Monaci M (2014) Proximity search for 0–1 mixed-integer convex programming.
J Heuristics 6(20):709–731

11. Fischetti M, Monaci M (2016) Proximity search heuristics for wind farm optimal layout. J
Heuristics 22(4):459–474

12. Fischetti M, Monaci M, Salvagnin D (2012) Three ideas for the quadratic assignment problem.
Oper Res 60(4):954–964

13. Fischetti M, Monaci M, Salvagnin D (2015, to appear) Mixed-integer linear programming
heuristics for the prepack optimization problem. Discret Optim

14. Fisher ML, Jaikumar R (1981) A generalized assignment heuristic for vehicle routing.
Networks 11:109–124

15. De Franceschi R, Fischetti M, Toth P (2006) A new ILP-based refinement heuristic for vehicle
routing problems. Math Program 105(2–3):471–499

16. Gillett BE, Miller LR (1974) A heuristic algorithm for the vehicle dispatch problem. Oper Res
22:340–349

17. Glover F (1975) Improved linear integer programming formulations of nonlinear integer
problems. Manage Sci 22:455–460

18. Gutin G, Yeo A, Zverovitch A (2007) Exponential neighborhoods and domination analysis for
the TSP. In: Gutin G, Punnen AP (eds) The traveling salesman problem and its variations.
Volume 12 of combinatorial optimization. Springer, Boston, pp 223–256

19. Hansen P, Maniezzo V, Voß S (2009) Special issue on mathematical contributions to meta-
heuristics editorial. J Heuristics 15(3):197–199

20. Hoskins M, Masson R, Melanon GG, Mendoza JE, Meyer C, Rousseau L-M (2014) The
prepack optimization problem. In: Simonis H (ed) Integration of AI and OR techniques
in constraint programming. Volume 8451 of lecture notes in computer science. Springer,
Berlin/Heidelberg, pp 136–143

21. IBM ILOG (2014) CPLEX User’s Manual
22. Jensen NO (1983) A note on wind generator interaction. Technical report, Riso-M-2411(EN),

Riso National Laboratory, Roskilde
23. Lodi A, Martello S, Monaci M (2002) Two-dimensional packing problems: a survey. Eur J

Oper Res 141:241–252
24. Maniezzo V, Stützle T, Voß S (eds) (2010) Matheuristics – hybridizing metaheuristics and

mathematical programming. Volume 10 of annals of information systems. Springer, Boston
25. Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations.

John Wiley & Sons, Chichester
26. Rego C, Glover F (2007) Local search and metaheuristics. In: Gutin G, Punnen A (eds)

The traveling salesman problem and its variations. Volume 12 of combinatorial optimization.
Springer, Boston, pp 309–368

27. Rothberg E (2007) An evolutionary algorithm for polishing mixed integer programming
solutions. INFORMS J Comput 19:534–541

http://tesi.cab.unipd.it/45458/1/tesi_Fischetti.pdf

Matheuristics 33

28. Sarvanov VI, Doroshko NN (1981) The approximate solution of the travelling salesman
problem by a local algorithm with scanning neighborhoods of factorial cardinality in cubic time
(in Russian). In: Software: algorithms and programs. Mathematical Institute of the Belorussian
Academy of Sciences, Minsk, pp 11–13

29. Shaw P (1998) Using constraint programming and local search methods to solve vehicle rout-
ing problems. In: Maher M, Puget J-F (eds) Principles and practice of constraint programming
CP98. Volume 1520 of lecture notes in computer science. Springer, Berlin/Heidelberg, pp 417–
431

30. SIEMENS AG. SWT-2.3-93 Turbine, Technical Specifications. http://www.energy.siemens.
com

31. Toth P, Vigo D (2002) An overview of vehicle routing problems. In: The vehicle routing
problem. SIAM monographs on discrete mathematics and applications, Philadelphia

32. Xia Y, Yuan YX (2006) A new linearization method for quadratic assignment problem. Optim
Methods Softw 21:803–816

http://www.energy.siemens.com
http://www.energy.siemens.com

	Matheuristics
	Contents
	Introduction
	General-Purpose MIP-Based Heuristics
	Local Branching
	Relaxation-Induced Neighborhood Search
	Polishing a Feasible Solution
	Proximity Search

	Application 1: Wind Farm Layout Optimization
	Choice of the MIP Model
	Choice of Ad Hoc Heuristics
	The Overall Matheuristic
	Computational Results

	Application 2: Prepack Optimization
	Mathematical Model
	Matheuristics
	Fixing all x or y Variables
	Fixing y Variables For All but One Configuration
	Working with a Subset of Stores

	Computational Experiments
	Test Bed
	Comparison Metric
	Computational Results

	Application 3: Vehicle Routing
	The ASSIGN Neighborhood for TSP
	From TSP to DCVRP
	The Overall Matheuristic
	Finding a Starting Solution
	Node selection criteria
	Reallocation Model
	Node Recombination and Construction of Derived Sequences
	Examples

	Conclusion
	Cross-References
	References

