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Summary. Eight distinct (and in some cases little known) formulations of the
Travelling Salesman Problem as an Integer Programme are given. Apart from the
standard formulation all the formulations are ‘compact’ in the sense that the number
of constraints and variables is a polynomial function of the number of cities in the
problem. Comparisons of the formulations are made by projecting out variables in
order to produce polytopes in the same space. It is then possible to compare the
strengths of the Linear Programming relaxations. These results are illustrated by
computational results on a small problem.
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1 Introduction

In this paper we survey eight different formulations of the Asymmetric
Travelling Salesman Problem (ATSP) as an Integer Programme (IP). We
choose to treat the Asymmetric case as being more general than the Symmetric
case. Some of the work has been published elsewhere by other authors. Our
purpose is, however, to provide new results as well as present a unifying
framework, by projecting all the formulations into the same space.

In Sect. 2 we present the eight formulations classifying them as ‘conven-
tional’ (C), “sequential” (S), “flow based” (F) and “time staged” (T). The
reasons for these terms will become apparent. In order to facilitate comparison
between the formulations, in some cases we introduce extra variables which
equate to expressions within the models. This enables us, in Sect. 3, to
compare the Linear Programming (LP) relaxations of all the formulations by
projecting out all, but the, common variables. Such comparisons have already
been done for some of the formulations by Padberg and Sung (1991), Wong
(1980) and Langevin et al. (1990).

Some of the time staged formulations have also been compared by
Gouveia and Voss (1995) and discussed by Picard and Queyranne (1978).
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The sequential formulation has also been improved by Gouveia and Pires
(2001). The extra variables incorporated in this formulation have been used
by Sherali and Driscoll (2002) to further tighten the Linear Programming
relaxation.

Comparisons have also been made for some formulations of the Symmetric
TSP by Carr (1996) and Arthanari and Usha (2000). We unify all these results
in the same framework.

In Sect. 4 we present computational results on a small illustrative example
in order to verify the results of Sect. 3.

2 Eight Formulations of the ATSP

In all our formulations we will take the set of cities as N = {1, 2, ..., n} and
define variables

xij = 1 iff arc (i, j) is a link in the tour
= 0 otherwise(i ̸= j)

cij will be taken as the length of arc(i, j)

The objective function will be:

Minimise
∑

i,j
i̸=j

cijxij (1)

2.1 Conventional Formulation (C)
(Dantzig, Fulkerson and Johnson (1954))

∑

j
j ̸=i

xij = 1 ∀ i ∈ N (2)

∑

i
i̸=j

xij = 1 ∀ j ∈ N (3)

∑

i,j∈M
i̸=j

xij ≤ |M |− 1 ∀ M ⊂ N such that {1} /∈M, |M | ≥ 2 (4)

(the symbol ‘⊂’ represents proper inclusion)

This formulation has 2n−1 + n− 1 constraints and n(n− 1) 0–1 variables.
The exponential number of constraints makes it impractical to solve

directly. Hence, the usual procedure is to apply the Assignment constraints
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(2) and (3) and append only those Subtour Elimination constraints (4) when
violated. Alternatively, different relaxations such as the LP relaxation or the
Spanning-2 Tree relaxation can be applied and solved iteratively. A reference
to these methods is Lawler et al. (1995).
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A variant of the above formulation (which we will not classify as a different
formulation) is to replace constraints (4) by:

∑

i∈M
j∈M

xij ≥ 1 ∀ M ⊂ N where {1} /∈ M and M = N −M (5)

Constraints (5) can be obtained by adding constraints (2) for i ∈ M and
subtracting from (4).

2.2 Sequential Formulation (S) (Miller, Tucker and Zemlin (1960))

Constraints (2) and (3) are retained but we introduce (continuous) variables

ui = sequence in which city i is visited (i ̸= 1)

and constraints

ui − uj + nxij ≤ n− 1 ∀ i, j ∈ N − {1}, i ̸= j (6)

This formulation has n2 − n + 2 constraints, n(n − 1) 0–1 variables and
(n− 1) continuous variables.

2.3 Flow Based Formulations

Single Commodity Flow (F1) (Gavish and Graves (1978))
Constraints (2) and (3) are retained but we also introduce (continuous)
variables:

yij = ‘Flow’ in an arc (i, j)i ̸= j

and constraints:

yij ≤ (n− 1)xij ∀ i, j ∈ N, i ̸= j (7)
∑

j
j ̸=1

y1j = n− 1 (8)

∑

i
i̸=j

yij −
∑

k
i̸=k

yjk = 1 ∀ j ∈ N − {1} (9)

Constraints (8) and (9) restrict n− 1 units of a single commodity to flow
into city 1 and 1 unit to flow out of each of the other cities. Flow can only
take place in an arc if it exists by virtue of constraints (7).

It is possible to improve this formulation (F1’) by tightening constraints
(7) for i ̸=1 to:

yij ≤ (n− 2)xij ∀ i, j ∈ N − {1}, i ̸= j (10)
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This relies on the observation that at most n− 2 units can flow along any
arc not out of city 1. We are not aware of any other authors having recognised
this improvement.

This formulation has n(n + 2) constraints, n(n − 1) 0–1 variables and
n(n− 1) continuous variables.

Two Commodity Flow (F2) (Finke, Claus and Gunn (1983))
Constraints (2) and (3) are retained but we also introduce (continuous)
variables:

yij = ‘Flow’ of commodity 1 in arc (i, j)i ̸= j

zij = ‘Flow’ of commodity 2 in arc (i, j)i ̸= j

and constraints:
∑

j
j ̸=1

(y1j − yj1) = n− 1 (11)

∑

j

(yij − yji) = 1 ∀ i ∈ N − {1}, i ̸= j (12)

∑

j
j ̸=1

(z1j − zj1) = −(n− 1) (13)

∑

j

(zij − zji) = −1 ∀ i ∈ N − {1}, i ̸= j (14)

∑

j

(yij + zij) = n− 1 ∀ i ∈ N (15)

yij + zij = (n− 1)xij ∀ i, j ∈ N (16)

Constraints (11) and (12) force (n − 1) units of commodity 1 to flow in
at city 1 and 1 unit to flow out at every other city. Constraints (13) and (14)
force (n− 1) units of commodity 2 to flow out at city 1 and 1 unit to flow in
at every other city. Constraints (15) force exactly (n − 1) units of combined
commodity in each arc. Constraints (16) only allow flow in an arc if present.

This formulation has n(n + 4) constraints, n(n − 1) 0–1 variables and
2n(n− 1) continuous variables.

Multi-Commodity Flow (F3) (Wong (1980) and Claus (1984))
Constraints (2) and (3) are retained but we also introduce (continuous)
variables:

yk
ij = ‘Flow’ of commodity k in arc (i, j) κ ∈ N − {1}
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and constraints:

yk
ij ≤ xij ∀ i, j, k ∈ N, k ̸= 1 (17)
∑

i

yk
1i = 1 ∀ k ∈ N − {1} (18)

∑

i

yk
i1 = 0 ∀ k ∈ N − {1} (19)

∑

i

yk
ik = 1 ∀ k ∈ N − {1} (20)

∑

j

yk
kj = 0 ∀ k ∈ N − {1} (21)

∑

i

yk
ij −

∑

i

yk
ji = 0 ∀ j, k ∈ N − {1}, j ̸= k (22)

Constraints (17) only allow flow in an arc which is present. Constraints
(18) force exactly one unit of each commodity to flow in at city 1 and
constraints (19) prevent any commodity out at city 1. Constraints (20) force
exactly one unit of commodity k to flow out at city k and constraints (21)
prevent any of commodity k flowing in at city k. Constraints (22) force
‘material’ balance for all commodities at each city, apart from city 1 and
for commodity k at city k.

This formulation has n3 +n2 +6n− 3 constraints, n(n− 1) 0− 1 variables
and n(n− 1)2 continuous variables.

2.4 Timed Staged Formulations

1st Stage Dependent T1 (Fox, Gavish and Graves (1980))
In order to facilitate comparisons with the other formulations it is convenient,
but not necessary, to retain the variables xij (linked to the other variables
by constraints (25)) and constraints (2) and (3). We introduce 0–1 integer
variables:

yt
ij = 1 if arc (i, j) is traversed at stage t

= 0 otherwise

and constraints:
∑

i,j,t

yt
ij = n (23)

∑

j,t
t≥2

tyt
ij −

∑

k,t

tyt
ki = 1 ∀ i ∈ N − {1} (24)

xij −
∑

t

yt
ij = 0 ∀ i, j ∈ N, i ̸= j (25)
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In addition we impose the conditions:

yt
il = 0∀ t ̸= n, yt

ij = 0∀ t ̸= 1, yl
ij = 0∀ i ̸= 1, i ̸= j (26)

Constraints (24) guarantee that if a city is entered at stage t it is left at
stage t + 1. Removing certain variables by conditions (26) forces city 1 to be
left only at stage 1 and entered only at stage n.

It is not necessary to place upper bounds of 1 on the variables xij , and
this condition may be violated in the LP relaxation.

This model has n(n + 2) constraints and n(n − 1)(n + 1) 0–1 variables.
Clearly, but for constraints (25) and variables xij this model would be even
more compact having only n constraints and n(n − 1) variables. This is a
remarkable formulation for this reason although, as will be shown in the
next section it is also remarkably bad in terms of the strength of its Linear
Programming relaxation and therefore the slowness of its overall running time.

2nd Stage Dependent T2 (Fox, Gavish and Graves (1980))
We use the same variables as in T1 and constraints (2), (3) and (25)
together with:

∑

i,t
i̸=j

yt
ij = 1 ∀ j ∈ N (27)

∑

j,t
j ̸=i

yt
ij = 1 ∀ i ∈ N (28)

∑

i,j ̸=i

yt
ij = 1 ∀ t ∈ N (29)

∑

j,t
t≥2

tyt
ij −

∑

k,t

tyt
ki = 1 ∀ i ∈ N − {1} (30)

Clearly this is a disaggregated form of T1.
This model has 4n−1 constraints and n(n−1)(n+1) 0–1 variables. Again

but for the constraints (25) and variables xij this would be smaller. In fact
the yt

ij variables can, in this formulation, be regarded as continuous.

3rd Stage Dependent T3 (Vajda (1961))
We use the same variables as in T1 and T2 and constraints (2), (3) and (25)
together with: ∑

j

y1
1j = 1 (31)

∑

i

yn
i1 = 1 (32)
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∑

j

yt
ij −

∑

k

yt−1
ki = 0 ∀ i, t ∈ N − {1} (33)

Constraint (31) forces city 1 to be left at stage 1 and constraint (32) forces
it to be entered at stage n. Constraints (33) have the same effect as (24).

This model has 2n2 − n + 3 constraints and n(n− 1)(n + 1) 0–1 variables
which again could be reduced by leaving out constraints (25) and variables
xij . Again the yt

ij variables can be regarded as continuous.
All the formulations, apart from C, have a polynomial (in n) number of

constraints. This makes them superficially more attractive than C. However,
the number of constraints may still be large, for practically sized n, and the
LP relaxations weaker. These considerations are discussed in the next section.

3 Comparison of LP Formulations

All formulations presented in Sect. 2 can be expressed in the form:

Minimise c.x
subject to Ax + By ∼ b where ‘∼’ represents ‘<=’ and ‘=’ relations. (34)

x, y ≥ 0

x is the vector of variables xi,j and y the different vectors used in the
formulations S, F and T. In the case of S and F y represents continuous
variables but in the case of T integer variables.

In order to facilitate comparisons between the formulation S, F with C
we can project out the continuous variables y to create a model involving
only x . The size of the polytopes of the associated LP relaxations can then
be compared. We will denote the polytope of the resultant LP relaxation of
a (projected) model M as P(M). In the case of formulation T1 the variables
y must be integer. The projection out of such variables is more complex and
may not even result in an IP (see Kirby and Williams (1997)). However, we
can still project out the variables y from the LP relaxation and return an
IP. The LP relaxation of this IP will be weaker than that resulting from the
true projection. It will still, however, be a valid comparator of computational
difficulty when LP based IP methods are used. Therefore we will continue to
use the notation P(M) for the resulting polytope when projecting out the LP
relaxations of the variables y in T1.

In order to project out the variables y in all the formulations we can use
Fourier-Motzkin elimination (see Williams (1986)) or equivalently full Benders
Decomposition (1962). Martin (1999) gives a full general description of the
methods of projection. We do not reproduce the derivation of the methods
here but simply restate them. The projection out of the variables y is effected
by finding all real vectors w , of appropriate dimension, such that,
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w’B ≥ 0 (35)

Where w has non-negative entries corresponding to rows of (34) with ‘≤’
constraints and unconstrained entries in rows with ‘=’ constraints. The set of
w satisfying (35) form a convex polyhedral cone and can be characterised by
its extreme rays. It is therefore sufficient to seek the finite set of w representing
extreme rays, which are what would be obtained by (restricted) Fourier-
Motzkin elimination. We denote these as rows of the matrix Q. Applying
Q to (34) gives:

QAx ≤ Qb (36)

as an alternative formulation to C. Of course, as would be expected, (36)
will have an exponential number of constraints, unlike (34), but is in the same
space as C.

We present the effect of the matrix Q for each of the formulations S, F
and T of Sect. 2.

Formulation S
The effect of Q is to eliminate u2, u3, ..., un from all the inequalities in (6).
This is done by adding those inequalities around each directed cycle M ⊂ N ,
where 1/∈M . This results in inequalities (for each subset M ⊂ N by virtue of
(2) and (3))

xi1i2 + xi2i3 + · · · + xi|M|i1 ≤ |M |− |M |
n

(37)

(together with (2), (3) and non-negativity).

Clearly |M |− 1 < |M |− |M |
n

since M ⊂ N

Since cycles are subsets of their associated sets this demonstrates that

P(S) ⊃ P(C) (38)

(strict inclusion can be proved by numerical examples).
Therefore the LP relaxation associated with S will be weaker than that

associated with C. This result has already been obtained by Wong (1980) and
Padberg and Sung (1991).

Formulation F1
The effect of Q is to, for each (subset) M ⊂ N , where 1/∈M , create

∑

i,j∈M

xij ≤ |M |− |M |
n− 1

(39)

Clearly |M |− 1 < |M |− |M |
(n− 1)

< |M |− |M |
n
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demonstrating that

P(S) ⊃ P(F1) ⊃ P(C) (40)

(Strict inclusion can again be proved by numerical examples).
This result is also obtained by Wong (1980).
Applying the same elimination procedure to the modified formulation

(F1’) we obtain

1
n− 1

∑

i∈M−{1}
j∈M

xij +
∑

i,j∈M

xij ≤ |M |− |M |
n− 1

(41)

Clearly, by virtue of (2) and (3),
1

n− 1

∑

i∈M−{1}
j∈M

xij ≤ 1− |M |
n− 1

Hence P(F1) ⊃ P(F1′) (42)

(Strict inclusion can again be proved by numerical examples).

Formulation F2
If zij are interpreted as the ‘slack’ variables in (16) we can use (16) to
substitute them out reducing this formulation to F1. This demonstrates that

P(F2) = P(F1) (43)

This result is also given by Langevin et al. (1990).

Formulation F3
The effect of Q is to, for each M ⊂ N ,where 1/∈M , create

∑

i,j∈M

xij ≤ |M |− 1 (44)

i.e. constraints (4) of formulation C.

Hence P(F3) = P(C) (45)

This remarkable result is also obtained by Wong (1980) and Padberg and
Sung (1991)

Formulation T1
The effect of Q is to, for each M ⊂ N , where 1/∈M , create

∑

i∈M
j∈M

xij ≥
|M |
n

(46)
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and ∑

i,j∈N

xij = n (47)

In the absence of assignment constraints, in this formulation, it is not
possible to convert (46) to a form similar to (4). We therefore express it in
a form similar to (5). Representing constraints (37) in a similar form to (5)
demonstrates that

P(S) ⊂ P(T1) (48)

Formulation T2
The effect of Q is to, for each subset M of N − {1}, create

1
n− 1

∑

i∈M
j∈M−{1}

xij +
1

n− 1

∑

i∈M−{1}
j∈M

xij +
∑

i,j∈M

xij ≤ |M |− |M |
n− 1

(49)

However, other constraints are also created which, to date, it has not
been possible to obtain through the combinatorial explosion resulting from
projection. Padberg and Sung give constraints equivalent to (49) as the
projection of T1. This is clearly wrong.

Hence P(T2) ⊂ P(F1’) (50)

Again strict inclusion can be proved by numerical examples.

Formulation T3
We have again not been able to discover the full effect of Q. However, one of
the effects of the projection is to produce constraints (49) but there are others

Hence P(C) ⊂ P(T3) ⊂ P(T2) (51)

Numerical examples demonstrate that the inclusion is strict.

4 Computational Results

In order to demonstrate the comparative sizes of different formulations and
the relative strengths of their LP relaxations we give results below for a 10
city TSP.

These results were obtained using the NEWMAGIC modelling language
and EMSOL optimiser.
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Model Size LP Obj. Iterations Time IP Nodes Time
(secs) Obj. (secs)

C 502*90
Conventional 766 37 1 766 0 1

Ass. 804 40 1 804 0 1
relaxation 835 43 1 835 0 1
+ subtours (5) 878 48 1 881 9 1
+ subtours (3)
+ subtours (2)

S 92*99 773.6 77 3 881 665 16
Sequential

F1 120*180 794.22 148 1 881 449 13
1 Commodity
F1’ 120*180 794.89 142 1 881 369 11
Modified

F2 140*270 794.22 229 2 881 373 12
2 Commodity

F3 857*900 878 1024 7 881 9 13
Multi
Commodity

T1 10*990 364.5 25 1 No solution after 12 hours
1st Stage
Dependent

T2 120*990 799.46 246 18 881 2011 451
2nd Stage
Dependent

T3 193*990 804.5 307 5 881 145 27
3rd Stage
Dependent

5 Concluding Remarks

Eight formulations of the ATSP as an IP have been compared. Unlike other
published work in this area the authors provide a unifying framework, in the
form of projection, to conduct the comparison. Verification of the results are
obtained through a numerical example.

The authors are now investigating, in the first instance, strategies for the
manual introduction of the sub-tour elimination constraints with a view to
developing a fully automated procedure. This work is being done using the
NEWMAGIC modelling language.
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